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ABSTRACT

In this paper, we analyze the dynamic effect of a reservoir computer (RC) on its performance. Modified Kuramoto’s coupled oscillators
are used to model the RC, and synchronization, Lyapunov spectrum (and dimension), Shannon entropy, and the upper bound of the Kol-
mogorov–Sinai entropy are employed to characterize the dynamics of the RC. The performance of the RC is analyzed by reproducing the
distribution of random, Gaussian, and quantum jumps series (shelved states) since a replica of the time evolution of a completely random
series is not possible to generate. We demonstrate that hyperchaotic motion, moderate Shannon entropy, and a higher degree of synchro-
nization of Kuramoto’s oscillators lead to the best performance of the RC. Therefore, an appropriate balance of irregularity and order in the
oscillator’s dynamics leads to better performances.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175001

This work uses modified coupled Kuramoto oscillators to model
a physical reservoir computer (PRC). Our main goal is to analyze
the characteristics underlying the nonlinear dynamical proper-
ties of the PRC when it is capable of learning a specific task. In
other words, what happens inside the PRC when its learning per-
formance is acceptable and trustworthy? The nonlinear dynamic
of the PRC is examined by the degree of synchronization of the
oscillators, hyperchaoticity, Lyapunov spectra, and dimension.
We show that better performance of the PRC to reproduce dis-
tributions of classical and quantum time series is obtained for
the hyperchaotic cases with certain degrees of synchronization.
Furthermore, the performances are shown to be proportional
to the Shannon entropy of the distributions. Consequently, an
order-hyperchaos mixing in the oscillator’s dynamics provides
improved performances.

I. INTRODUCTION

Over the last few decades, artificial intelligence (AI) has found
widespread application in scientific and societal activities. More-
over, technological progress, as well as the growing number of
applications, has been contributing significantly to the promotion
of several sub-areas within AI, of which stand out computer vision,1

natural language processing,2 and the one we are going to approach
in the present paper, machine learning (ML).3

In ML, several techniques can be used to solve tasks with appli-
cations in Physics,4–11 Chemistry,12–14 Biology,15,16 Medicine,17,18 and
Economics,19–21 among others. While the goal when performing
such tasks is often to obtain optimal performance, i.e., a balance
between the quality of the result and the incurring costs, in the
present work, we focus on the underlying dynamics adopted by the
machine when performing some tasks. Among the most broadly
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used and efficient information processing techniques within ML,
artificial neural networks (ANNs) stand out. They consist of a set of
information processing units, i.e., mathematical models inspired by
biological neurons. As the real ones, the artificial neurons commu-
nicate through synaptic connections. They receive stimuli through
their input nodes and, in response, produce one or more outputs,
whereas activation functions are responsible for this conversion
according to the specific network architecture.22,23 There are two
main ways to connect those neurons: feedforward neural networks
(FNNs) and recurrent neural Networks (RNNs). An FNN depends
necessarily on the presence of an input to make a decision and
cannot maintain self-sustaining dynamics. Since in this study we
want to build a network with its own dynamics, independent of
some input, only an RNN presents the desired characteristics for this
study.

The RNN’s main characteristic is the existence of cycles in
its topology, leading to temporal dynamics of the network, self-
sustained in its connections, even without the presence of an exter-
nal input signal. This renders an RNN a dynamical system. If there is
an input signal, an RNN preserves a non-linear transformation of its
history in the internal states, thus being able to process information
with temporal dependence.24,25

A clear disadvantage of RNNs is the high computational cost
in the training stage due to their cyclic connections. A distinct
approach, called reservoir computing (RC),26 aims at overcoming
this deficiency. Its two main variants, echo state networks (ESN)27

and liquid state machines (LSMs),28 have similar structures as con-
ventional RNNs, but with the difference and advantage of having
trained only the connections between the output and the neural
units. Keeping the internal connections between the neurons and
with the input signal unchanged facilitates not only the training
stage but also allows one to use real physical systems as reservoirs,
dubbed physical reservoir computing (PRC). Physical systems of
diverse nature have been efficient as PRCs, such as mechanical,29,30

biological31,32 and quantum systems33,34 as well as analog circuits.35,36

One can obtain the neural states directly from the physical sys-
tems within an experimental approach or through computational
simulations.

In this paper, the reservoir comprises Kuramoto oscillators,37

which are widely used to investigate the synchronization effects in
real biological networks.38 The simplicity of Kuramotos’s oscillator
model supports a deeper understanding of the reservoir dynam-
ics regarding its computational AI performance, our main task. To
select the parameter values in the model, we have used the meta-
heuristic technique named genetic algorithm (GA).39,40 This method
is usually preferred when there are a lot of parameters involved
and/or computational limitations in performing particular tasks.
The model and the selection of parameters are described in Sec. II.
Specifically, we investigate the relationship between the dynamics
of the Kuramoto oscillator reservoir and its ability to learn the dis-
tribution of randomly generated binary series and series with a
Gaussian distribution, as described in Sec. III. With learning, we
refer to the ability of the PRC to generate an output with the same
distribution as the reference series without necessarily making exact
predictions at each step. As it will turn out, for the performance of
the PRC, an important element is the information gain measured by
the Shannon entropy.41 Further relevant elements are contributed

through the dynamical point of view of the reservoir, namely, the
synchronization between Kuramoto oscillators, quantified by the
order parameter,42–44 as well as the hyperchaoticity, using the spec-
trum of Lyapunov exponents (and its dimension) and the upper
bound for the Kolmogorov–Sinai entropy,45,46 namely, the sum of all
positive Lyapunov exponents. We emphasize that we do not intend
to present a more efficient method for generating pseudorandom
sequences, and we are interested in studying the dynamics inside
the PCR.

As an application, we analyze a series based on the result of
a quantum jump experiment involving shelved states47 in Sec. IV.
Quantum jumps have been studied for decades because their
dynamics enable a better understanding of fundamental quantum
theory related to the question of quantum measurement and tran-
sition between states. In these studies, in general, shelved quantum
systems are used to describe the system, as it represents the quan-
tum jump to a metastable state. In other words, the shelved level is a
metastable state that can retain its energy for a prolonged period.48–50

Such a system has attracted significant attention in quantum infor-
mation processing due to its potential applications in quantum com-
puting and quantum communication. The existence of the shelved
level enables long coherence times, which is essential for the imple-
mentation of quantum algorithms. Additionally, this system can be
used as a quantum memory, a superconducting qubit or a trapped-
ion qubit, providing a platform for studying quantum coherence and
entanglement.51–54 In Sec. V, we summarize our findings.

II. KURAMOTO’S RESERVOIR COMPUTER AND

METHODOLOGY

We start by describing the nonlinear dynamical system used to
model the reservoir computer, followed by a detailed description of
the learning processes used in this work.

A. The modified Kuramoto oscillators reservoir

computer

The original Kuramoto system is composed of N all-to-all
coupled oscillators.37 In the present work, we used the K-nearest-
neighbors coupling for which the oscillator states are described
as

θ̇i = ωi +
κ

2K

N
∑

j=1

Aij sin (θj − θi), i = 1, 2, . . . , N, (1)

where θi is the phase and ωi is the natural frequency of oscillation of
the ith oscillator, κ is the coupling strength, j is the index that indi-
cates which oscillator will couple, and A represents the adjacency
matrix, which holds the information about the connections. In our
study, Aij = 1 if |i − j| ≤ K, and 0 otherwise.

To increase diversity in the output values, we added to Eq. (1) a
periodic term depending on the difference between the phase of the
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specific oscillator and a mean-field element according to

θ̇i = ωi +
κ

2K

N
∑

j=1

Aij sin(θj − θi)

+ β cos



ζ



θi −

N
∑

j=1

θj

N



 − γ



 ,

(2)

i = 1, 2, . . . , N,

where β , ζ , and γ are parameters of the system. While β quantifies
the intensity of the mean-field, ζ provides the oscillation frequency
of each phase deviation around the mean phase, and γ is a phase
shift. The above added term aims to perturb the network, causing
oscillators whose phases are close to the mean field to suffer a larger
perturbation than those that are in complete anti-phase. The pur-
pose is to avoid total synchronization of the network, ensuring the
existence of oscillators in different phases.55 Inside the black box in
Fig. 1, we show a sketch representing the connections of the neural
units to each other and with the output signal. Equation (2) are the
modified Kuramoto’s oscillators used in the present work.

B. About the learning

In this section, we present some technical and relevant details
about the numerical simulations, reference series, and the learn-
ing procedure. In general, to select a set of parameters that lead
the system to a good performance, we use the well-known GA. It
is a technique inspired by evolutionary biology and presents some
characteristics, such as hereditary, mutation, natural selection, and
recombination.39,40,56 The number of oscillators and neighbors were
kept fixed at N = 250 and K = 8, respectively. Empirically, we tested
different values for N and K and observed that the above numbers
are the smallest necessary to mimic the proposed random distribu-
tions. Details about the GA are presented in Appendix A, and a flow
chart of the learning procedure is provided in Appendix B.

1. Numerical integration

For the numerical integration of Eq. (2), we used the fourth-
order Runge–Kutta integrator (RK4) with a stepsize of 10−2 and
discarded a transient of 104 steps.57 The phases θi of the oscillators,
which represent the neural states, are recorded at every eighth step,
rendering the changes larger and, therefore, making the learning
process more effective. A few checks were done using steps larger
than 8, but no significant improvement in efficiency was observed.
The output y is the result of an activation function ϕ applied to a
weighted sum of these phases and the bias (see the magnification
of Fig. 1). Throughout this paper, we refer iterations to each time
we record the phases and not to the step’s integrator. For the natu-
ral frequencies ωi, we adopt the Lorentzian distribution, as typically
done in dealing with Kuramoto oscillators. In contrast to usual stud-
ies with neural networks, there are no activation functions for each
reservoir unit since the phases of the oscillators representing the
system states are already restricted to values between 0 and 2π .

FIG. 1. Graph of the signal flow between the nodes (units) of the RNN within
the reservoir. The link between the N network units in the reservoir is given by
K-nearest-neighbours, with K = 2. The magnification highlights that the output y
results from an activation function ϕ applied to a weighted sum of the states θi
of the reservoir units and the bias. The connection weights between the reservoir
units and the output are represented by wi . The bias is always θ0 = 1.

2. Treating the reference series

For the output signal, we have chosen the Heaviside function
ϕ(·) as activation,

y(τ ) = ϕ(Wout
Eθ(τ )), (3)

with

ϕ(Wout
Eθ(τ )) =

{

1, if Wout
Eθ(τ ) ≥ 0

0, otherwise,
(4)

where Wout is the matrix containing the weights connecting the
reservoir units and the output. Although the system dynamics evolve
continuously, we address time as a discrete variable τ = 1, 2, . . .,
corresponding to the iterations defined above.

When the reference series has more than two values, we break
the interval into equally spaced sub-intervals or segments. An inte-
ger labels the segments, and after representing them in binary
numbers, we do the learning bit by bit. To update the weights

Chaos 34, 043120 (2024); doi: 10.1063/5.0175001 34, 043120-3

Published under an exclusive license by AIP Publishing

 06 Septem
ber 2024 23:35:32

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

w0, w1, w2, . . . , wN, components of the matrix Wout, we use the gra-
dient descendent method. Thus, at each iteration, we compute the
cost function

J(τ , w0, w1, . . . , wN) =
1

2

[

d(τ ) − y(τ )
]2

, (5)

where d(τ ) is the target obtained from the reference series and y(τ )

is the output generated by the model. The weights were updated
by summing the cost function’s partial derivative with respect to
themselves,

wi(τ + 1) = wi(τ ) + α
[

d(τ ) − y(τ )
]

θi(τ ), (6)

where

∂

∂wi

J(τ , Wout) =
[

d(τ ) − y(τ )
]

θi(τ ), (7)

and α is the convergence constant of the gradient, which we have
kept fixed at α = 1 for all simulations.

3. The considered reference series

We tested the performance of our model and its relation to the
underlying dynamics of Kuramoto’s oscillators using three different
series. The first one is a binary Random series (A). This function
provides a sequence of pseudorandom numbers within the interval
[0, 1[. We break the interval into two segments and assign 1 to val-
ues greater or equal to a number we chose between 0 and 1, and 0
otherwise. We note that even though the random series appears to
be too simple, a complete aleatory series, in general, is not possible
to replicate with ML techniques. Second, we generate a Gaussian
series (B). To this end, we use the above function again but feed it to
the Box–Muller transform to generate three series with approximate
Gaussian distributions with different widths. However, this time,
instead of dividing into two intervals, we broke their range of values
into 16 equally spaced segments. Finally, for the Quantum jumps
(C), we generate a numerical series that simulates experimental light
bursts generated by quantum jumps.

From the reference series, we take Ttraining = 200 samples for
the random and Gaussian series and Ttraining = 309 samples for the
quantum jumps series. The Ttraining values are used to update the
weights ωi between the reservoir nodes. If, after the Ttraining samples,
the result is not satisfactory, we repeat the training process for the
Ttraining samples, updating again the weights ωi. Every time we repeat
this procedure with the same sample set, we name it an epoch (E).
The maximally allowed epochs are Emax = 200. After the learning
stage, we use the data validation set of V elements to verify if there
is an agreement between the extrapolation of our program and the
reference series. All values analyzed after the validation belong to the
test interval Ttest.

Larger and smaller values than Ttraining = 200 were tested. For
smaller values, the amount of data from the time series is not enough
for the learning procedure. For larger values, the increasing com-
puter time does not compensate the small gain in the learning
process.

FIG. 2. Time series with approximated distributions of 20% (blue) in panel (a),
50% (red) in panel (b), and 80% (green) in panel (c). Dashed lines represent the
reference series, and filled lines represent the PRC’s output.

4. Evaluation method and errors

Conventionally, in studies of this field, it is expected that the
machine learns the reference series in a way that is capable of faith-
fully reproducing it at each step. However, because we are dealing
with randomly generated series whose signals are irreproducible
step by step, we propose an evaluation method based on the pro-
gram’s ability to reproduce more general aspects of the reference
series, namely, their distribution.

Our method evaluates three aspects: (i) the first one deals with
the sufficient number of epochs to emulate the series in the same
way as previous methods; (ii) the second one measures the model’s
ability to maintain the number of values within each segment of the
reference series, in the training segment; (iii) the third one is similar
to the previous aspect, but it looks at the sequences of two consec-
utive values (this prevents, for example, that the model presents a
binary series with half of the consecutive points equal to 0, and the
other half consecutive points equal to 1, while the reference series
contains the same values, but arranged alternately, and obtain a good
performance). We have done a weighted and normalized sum over
the errors corresponding to the three aspects, assigning 10% for (i),
60% for (ii), and 30% for (iii).

To quantify the agreement between extrapolations and
reference series, our performance, we calculate the error (E) as
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follows:

E =

√

Etraining + E1 + E2
√

W2
training + W2

predic1 + W2
predic2

, (8)

where

Etraining =

(

Wtraining ·
Etraining

Emax

)2

,

E1 =
(

Wpredic1 · Epredic1

)2
,

E2 =
(

Wpredic2 · Epredic2

)2
,

(9)

and Wtraining = 0.1, Wpredic1 = 0.6, and Wpredic2 = 0.3 are the weights
for the first, second, and third terms in the weighted sum. The
number of epochs the PRC uses for complete learning of the train-
ing interval from the reference series is given by Etraining. To define
Epredic1, we count the number of elements in each class, both in the
reference series (range from 0 to 200) and in the output of the PRC
(range from 201 to 400), take the difference between these counts,
and divide it by the number of elements compared. Similarly, we
define the term Epredic2, but instead of counting the number of ele-
ments in each class, we count the sequences of two consecutive
values. The numbers 1 and 2 at the end of Epredic1 and Epredic2 refer
to one value and two values, respectively.

C. Physical properties characterizing the dynamics of

Kuramoto’s oscillators

The synchronization of the oscillators, quantified by the order
parameter r,42–44 the Lyapunov spectrum {λi},58,59 and the associated
upper bound of the Kolmogorov–Sinai (KS) entropy hu

KS =
∑

λi>0 λi

(the sum of positive Lyapunov exponents λi
60) are typical proper-

ties to characterize quantitatively a complex system, such as the
Kuramoto model (2). We will determine the combination of their
values that optimizes the performance of the Kuramoto oscillators as
a PRC by varying the parameters β , γ , ζ , and κ in (2). When the sum
of all Lyapunov exponents J =

∑

λi
λi is zero, the reservoir dynamics

is conservative. For J < 0, it is dissipative. The Lyapunov spectrum
is obtained using the standard Gram–Schmidt orthogonalization
procedure.60 The quantity hu

KS is, therefore, obtained directly from
the Lyapunov exponents, obtained from the tangent space associ-
ated with the equations of motion. No numerical estimator61 was
used to determine hu

KS. Furthermore, it is possible to determine the
Lyapunov dimension,62,63

D = k +

∑k
i=1 λi

|λk+1|
, with k = max

{ n
∑

i=1

λi ≥ 0

}

. (10)

FIG. 3. Distributions along the time series. Purple dashed lines correspond to
the distribution of the reference series (number of times the value 1 appears) in
the training interval (first 200 samples). Solid lines are related to the distribution
of the PRC’s output considering only a block of 200 previous samples to each
iteration. The colors blue, red, and green are related to distributions 20%, 50%,
and 80%, respectively.

It has been argued63 that D is the dimension of the highest dimen-
sional infinitesimal hypersphere, which is deformed in time with the
volume preserved on average.

To observe the network synchronization, we followed the tem-
poral evolution of the oscillators, at every iteration, during 100
iterations. Then, the order parameter is obtained from

rei8 =
1

N

N
∑

m=1

eiθm , (11)

where 8 is the average phase, θm is the phase of the mth oscil-
lator, and r, known as the order parameter, represents the phase-
coherence of the population of oscillators. When the oscillators are
fully coupled, the value of r tends to 1, and 0 when the distribution
of the phases is uniform.

III. RESULTS FOR RANDOM AND GAUSSIAN SERIES

In this section, we apply the above-described methodology for
specific times series, namely, the random and Gaussian series, con-
sidered from now on as the reference series. Since this involves two
strands of optimization (finding the optimal reservoir in terms of

TABLE I. Parameters selected by the GA, the resulting errors (E), the order parameter (r), the upper bound of the KS-entropy (huKS), the dissipation (−J), the approximated

partial Shannon-entropy (Spi
) obtained directly from the random series, and the Lyapunov dimension (D). Related to Figs. 2–4.

Dist κ β γ ζ E r hu
KS −J Spi

D

20% 0.8103 1.2552 4.7674 0.3588 0.008 408 0.81 16.1 75.36 0.464 113.7
50% 0.3866 1.7340 5.0040 0.4485 0.015 399 0.84 24.4 9.800 0.502 225.1
80% 1.4674 1.5198 4.3417 0.6502 0.006 997 0.85 11.8 329.6 0.269 56.34
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FIG. 4. The points on the outer circles of panels (a)–(c) are a representation of the phases of the oscillators at a given iteration. The point in the inner circle represents the
average of the phases. The outer circle is unitary, while the inner circle has a radius equal to the order parameter r . Panels (a)–(c) are related to distributions of 20%, 50%,
and 80%, respectively. Panel (d) shows the Lyapunov spectra of the Kuramoto system, in descending order, with the parameters (see Table I) selected for the reference series
with distributions of 20% (blue points), 50% (red points), and 80% (green points).

the parameters β , γ , κ , ζ by a genetic algorithm and training the net-
work), we provide a schematic summary of the procedure in Fig. 15
in Appendix B.

A. Random series

Initially, we generate binary series for numbers between 0 and
1. These numbers are divided into two segments: 1 if the number
given by the function is greater or equal to a threshold and 0 oth-
erwise. According to the chosen threshold, we determine the series
distribution. For example, if we choose the threshold 0.2, approxi-
mately 80% of the series is 1. If we choose 0.4, approximately 60% is
1 and so on.

Figure 2 presents the time series whose thresholds are 0.8, 0.5,
and 0.2, from the top to the bottom, respectively. According to the
previous explanation, it corresponds to the approximated distribu-
tions of 20%, 50%, and 80% of values 1. In dashed lines (first 200
points), we have the reference series, and in filled lines, the output
is generated by our model. Since this is a binary series, the segments
were represented only by 0 and 1. As we can see, in Fig. 2(a), the
series remains longer at 0 than at 1 since its distribution (of values
equal to 1) is expected to be somewhere around 20%. The opposite
behavior occurs in Fig. 2(c), while in Fig. 2(b), there is a balance
between numbers 0 and 1. For each of the three cases, we apply the
GA procedure to select a set of parameters that lead the system to
a good performance. Table I shows the selected parameter sets for
each reference series, along with the measured errors, described in
Subsection. II B.

The errors are generally very small, with the most signifi-
cant error occurring for the case 50%. The errors in the cases
20% and 80% become consecutively smaller compared to the 50%
case. Such errors can be explained using the Shannon-entropy,41

S(X) =
∑N

i Spi
= −

∑N
i pi(x) log2 pi(x), which quantifies the aver-

age gain of information, surprise, or uncertainty of the possible
outcomes of the random variable X. pi is the probability of obtain-
ing the specific outcome xi and Spi

= −pi(xi) log2 pi(xi) we define as
the partial Shannon-entropy, which is the information gain of the
specific outcome xi. Returning to our random series, if the prob-
ability of obtaining the number 1 is p = 1/5 = 0.2 (20%), then

the partial Shannon-entropy is S1/5 = −0.2 log2(0.2) = 0.464. For
the other cases, we obtain S1/2 = 0.5 for 50%, and S4/5 = 0.257
for 80%. Compared to the performance (see Table I), there is an
explicit relation between the errors made by the RC and the par-
tial Shannon-entropy. Table I also presents the approximated partial
Shannon-entropy (Spi

) obtained directly from the random series and
is in good agreement with the above values of S1/5, S1/2, and S4/5.
We mention that the usual Shannon-entropy is S = −0.2 log2(0.2)
− 0.8 log2(0.8) = 0.723 for 20% and 80% and S = 1.0 for 50%,
which are not directly related to the performance of the RC.

Figure 3 shows the model’s ability to maintain the distribution
of the training segment of the reference series. The blue, red, and
green lines are related to the output and correspond, respectively,
to the approximate distributions (how often the value 1 is observed)
of 20%, 50%, and 80%, considering a block of 200 previous samples
to each iteration. For example, iteration 210 shows the proportion
of elements in segment 1 compared to the total number of elements
starting from iteration 11. For reference, the dashed lines, in purple,
correspond to the distribution that the reference series presents in
its first 200 samples. The background colors highlight the intervals:
salmon, referring to the validation interval, and cyan, referring to
the test interval, that is, the interval where there is neither network
training nor validation of the choice of parameters. The latter is the
RC forecasting of the distribution. We observed that, in all cases, our
model efficiently maintained the distribution of the reference series.

Regarding synchronization of Kuramoto’s oscillators, we ana-
lyzed the space–time evolution of the oscillator. We observe a large
interchange between phases oscillating mainly close and around 0◦

and 360◦. A significantly smaller amount of oscillators have 180◦. In
all three cases, we notice a similar behavior. The oscillators that have
ωi close to 0 keep their phases close to 0◦, apparently being more
coupled than those with larger ωi, in absolute value, which presents
more heterogeneous dynamics.

To quantify the synchronization between the oscillators, we
reckon the order parameter r using the parameters selected for each
distribution. In Figs. 4(a)–4(c), we observe the phases of the oscil-
lators at a given iteration, represented by points on the outer unit
circle, while the average of all phases is shown by the point in
the inner circle whose radius is the order parameter r. As we have
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FIG. 5. Histogramswith the number of elements in each segment of the reference
series (purple) and of the PRC’s outputs in the training (green), validation (blue),
and test (orange) intervals. The three rows of Table II are related, respectively, to
the panels (a)–(c).

seen, most oscillators are close to 0◦ and 360◦. The panels 4(a)–4(c),
respectively, are associated with the parameters selected by the
GA for the three distributions (20%, 50%, and 80%). The order
parameters for the three cases are r = 0.81 in panel 4(a), r = 0.84

in panel 4(b), and r = 0.85 in panel 4(c), summarized in Table I.
It demonstrates that although the oscillators are not fully coupled
(r = 1.00), the network presents a high degree of synchronization.

The last panel on the right of Fig. 4 presents the spectra of Lya-
punov exponents (λi) for the three rows of Table I, respectively,
related to the blue, red, and green points. In all three cases, we
have more than one positive Lyapunov exponent, characterizing
the dynamics of the network of oscillators as hyperchaotic. Table I
shows the KS-entropy upper bound, according to the definition
provided in Sec. II C. The sum of all Lyapunov exponents J is neg-
ative, demonstrating that the PRC dynamics is dissipative. Only a
few Lyapunov exponents are close to zero, while most are nega-
tive. We notice that the prediction errors are larger (smaller) when
more (fewer) oscillators have positive Lyapunov exponents. Thus, in
this case, the performance of the PRC is proportional to the upper
bound of the KS-entropy, the Shannon-entropy, and the Lyapunov
dimension, as can be checked in Table I.

B. Gaussian series

Here, we use the random function again but manipulate it
inside the Box–Muller function64 to generate three series with
approximately Gaussian distributions and distinct shapes from each
other. After generating the series, we divided them into 16 segments.
As previously mentioned, we represented the output in binary num-
bers and performed the learning bit by bit as if they were b indepen-
dent outputs for each series value, where b is the minimum number
of bits sufficient to represent the number of segments. In the case of
16 segments, we have b = 4.

In Fig. 5, we present in histograms the normalized proportion
of elements in each segment of the reference series (purple columns)
and PRC’s outputs until the iterations 200, 400, and 600, repre-
sented by the green, blue, and orange columns, respectively. Indeed,
we notice that all columns approximate Gaussian distributions with
different shapes. Table II shows the sets of parameters selected by
GA and also contains the errors evaluated by the model’s ability
to maintain the distribution of the reference series, as described in
Subsection. III A.

Simulations demonstrate that the network synchronization is
similar to the case described in Subsection. III A, where the perfor-
mance was measured similarly. These similarities are demonstrated
quantitatively with the order parameters shown in Fig. 6(a) for
r = 0.80, Fig. 6(b) for r = 0.80, and Fig. 6(c) for r = 0.75, which are
close to those presented in Subsection. III A. In Fig. 6, r is assigned to
the radius of the inner circles positioned at the average of the oscil-
lator phases, which are represented individually by the points in the
outer unit circle. Furthermore, we can observe again the clustering
of the phases, for the most part, close to 0◦ and 360◦.

Finally, the panel on the right of Fig. 6 displays the Lyapunov
spectra. For the three cases, the reservoir shows hyperchaotic behav-
ior since more than one Lyapunov exponent is positive. As in Fig. 4,
only a few Lyapunov exponents are close to zero, while most are
negative. Table II provides the values of the upper bound of the
KS-entropy, Shannon-entropy, dissipation, and Lyapunov dimen-
sion. In this case, we observe again that a larger Shannon-entropy
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FIG. 6. The points on the outer circles of panels (a)–(c) are a representation of the phases of the oscillators at a given iteration. The average is represented by the point in
the inner circle. The outer circle is unitary, while the inner circle has a radius equal to the order parameter r . The three rows of Table II are related, respectively, to panels
(a)–(c). Panel (d) displays the corresponding Lyapunov spectra.

is related to the lower performance of the PRC. However, in distinc-
tion to the case discussed before, better performance is related to a
higher Lyapunov dimension.

C. Performance and dynamics of the reservoir

The present section aims to analyze the dynamics of the com-
puter reservoir when the parameters chosen by the GA are not
optimal. The performance was measured based on the PRC’s ability
to maintain the distribution of elements in each segment of the ref-
erence series. We observed above that for the three series used, the
parameters selected by the GA led the reservoir to exhibit similar
dynamics. Therefore, we restrict ourselves to the first of the Gaus-
sian series for this section. The parameters selected by the GA are
presented in Table II. The two panels in Fig. 7 display the param-
eter spaces plot with the coupling strength κ vs β , the coefficient
of the mean-field term. The color bars on the right represent in
Fig. 7(a) the error presented by the PRC and in Fig. 7(b) the syn-
chronization. We highlighted the parameters pair selected by the GA
(κ = 0.1526 and β = 1.3421) and chose two other points, P1 and
P2 (see Table III), to investigate the reservoir dynamics and eval-
uate the PRC performance. We observe in Fig. 7(a) that there are
no well-defined regions for which the PRC’s performance is larger.
The parameters with the best performances (yellow to white points)
appear to be random. However, the pair of parameters correspond-
ing to the GA point has led the PRC to the best performance among
all points in the parameter space. Overall, the best performances are
presented by the parameter pairs in which the value of β predomi-
nates over κ . That is, as κ increases, the error tends to increase, as

observed in the upper left corner of the parameter space. However,
with the increase of β , the error tends to decrease again.

To investigate the relationship between the performance and
parameters, and consequently, with the reservoir dynamics, we
chose two other points from Fig. 7 where we kept β = 0.25 con-
stant and increased the coupling strength κ . Table III contains the
parameter pairs GA, P1, and P2, along with the errors associated
with the PRC’s performance under these configurations. We notice
that, in this case, the best performance is obtained with a parameter
pair where β predominates.

As mentioned before, the determining factor for performance
evaluation, in this case, is not the emulation of the reference series
iteration by iteration but rather the maintenance of its distribution.
Therefore, in Fig. 8, we present the proportions of elements in each
segment. The purple columns are related to the reference series,
while the distributions of the segments from the PRC output, up to
iterations 200, 400, and 600, are represented by the blue, green, and
orange columns, respectively. The loss of performance in Figs. 8(a)
and 8(b), compared to Fig. 5(a), is not as evident as it is in Table III.
However, by carefully observing the green and orange columns, it
becomes apparent that there is a greater distortion of the reference
series’ distribution (purple columns), especially in the columns at
the edges, where there are fewer elements, and these differences
become more visible.

Regarding synchronization, for the parameters selected by the
GA point, the network’s order parameter is r = 0.80 [see Fig. 4(a)].
When setting the coefficient of the mean-field term equal to 0.25
(point P1 in Fig. 7), the synchronization level is reduced to r = 0.35
[Fig. 10(a)]. In this configuration, as observed in Table III and

TABLE II. Parameters selected by the GA, the resulting errors (E), the order parameter (r), the upper bound of the KS-entropy (huKS), the dissipation (−J), the Shannon entropy

(S), and the Lyapunov dimension (D). Related to Figs. 5–6.

κ β γ ζ E r hu
KS −J S D

0.1526 1.3421 4.2427 0.6387 0.179 962 0.80 17.3 69.78 0.904 110.2
0.5442 1.5851 3.9802 0.6282 0.228 920 0.80 14.8 148.2 0.975 77.79
0.1942 1.0105 4.8636 0.4782 0.170 048 0.75 9.63 34.31 0.816 123.9
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TABLE III. Parameters of the model, the resulting errors (E), the order parameter (r),

the upper bound of the KS-entropy (huKS), the dissipation (−J), the Shannon entropy

(S), and the Lyapunov dimension (D). Related to Figs. 7–10.

Points κ β E r hu
KS −J S D

GA 0.1526 1.3421 0.179 962 0.80 17.3 69.78 0.904 110.2
P1 0.1526 0.2500 0.331 862 0.35 4.27 7.718 0.944 209.8
P2 1.5000 0.2500 0.349 928 0.64 2.88 182.1 0.906 81.16

Panel 8(a), there is a loss of PRC performance. Keeping β = 0.25
and setting κ = 1.5 (point P2 in Fig. 7), the homogeneity in the
network increases, as quantified by the order parameter r = 0.65
[Fig. 10(b)]. However, this parameter pair led the PRC to exhibit

FIG. 7. Parameter space for (a) PRC errors and (b) sycnhronization represented
by colors, as we vary the values of the coupling strength (κ) and the coefficient of
the mean-field term (β), ranging from 0.000 to 2.000, with steps of size 5 × 10−3.
The location of points P1, P2, and GA is presented in Table III.

FIG. 8. Histogramswith the number of elements in each segment of the reference
series (purple) and of the PRC’s outputs in the training (green), validation (blue),
and test (orange) intervals. The panels are associated with the parameter pairs
P1 in (a) and P2 in (b).

the worst performance among the investigated points [Table III and
Fig. 8(b)]. To provide a more general possible relation between E

and synchronization, we determine the latter in the whole analyzed
parameter space, as shown in Fig. 7(b). Results demonstrate that the
synchronization increases with β and that this effect is stronger for
larger values of κ . However, no apparent relation is seen between
results from Figs. 7(a) and 7(b). To check this, Fig. 9(a) combines
data from Figs. 7(a) and 7(b) and displays the error E obtained for
each value of the synchronization. The red line in Fig. 9(a) is the lin-
ear regression given by E ∼ −0.09 r + 0.36, showing that the error
slowly diminishes for larger synchronization. The main observation
is that the most probable points are those with smaller errors (∼0.27)
and higher synchronization.

Furthermore, the distribution of errors is shown in Fig. 9(b),
showing that the tail on the right is non-Gaussian, and the decay
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FIG. 9. Plotted is (a) the error (E) vs the synchronization (r) and (b) the distribution of E..

FIG. 10. The points on the outer circles of panels (a) and (b) are a representation of the phases of the oscillators at a given iteration. The average is represented by the point
in the inner circle. The outer circle is unitary, while the inner circle has a radius equal to the order parameter r . In (a), the system parameters describing the dynamics were
those represented by the P1 point and in (b) by the P2 point. See Table III and Fig. 7. Panel (c) displays the corresponding Lyapunov spectra with the blue points repeating
the Lyapunov spectrum from Fig. 6.

FIG. 11. Level structure of Ba+. The metastable level is 52D 5
2
. The bold lines

show the excitations by the lasers. The thin solid line represents the excitation
caused by the hollow cathode lamp, while the subsequent decay to the 52D 5

2

level is indicated by the dashed line.

FIG. 12. Emission of photons by the Ba+ ion obtained by solving the Schrödinger
equation with the Hamiltonian given by Eq. (12). Themetastable is the 52D 5

2
state.
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is slower than a Gaussian. Such heavy-tailed distribution pos-
sesses a higher probability for rare events than a similar Gaussian
distribution.65 Thus, larger errors become less probable (rare) events
and tend to occur for smaller synchronizations, as can be checked in
Fig. 9(a).

We also analyzed the behavior of the Lyapunov spectra, dis-
played on the right panel of Fig. 10. Blue points for the GA point,
red for P1, and green for P2. It becomes evident that the number
of positive Lyapunov exponents is crucial for the performance. For
the red points, a very small number of positive Lyapunov expo-
nents exist. Finally, and in distinction to previous results, comparing
cases P1 and P2, the worst performance is related to a smaller
Shannon-entropy and Lyapunov dimension.

IV. APPLICATION: SERIES GENERATED BY QUANTUM

JUMPS

In Ref. 47, the authors demonstrate a direct observation of
quantum jumps between the 62S 1

2
and 52D 5

2
levels of a single

Ba+ ion confined in a radio-frequency trap. In this experiment, an
individual ion (Ba+) with two excited states is trapped in a radio-
frequency trap. Two lasers drive the ion to one of these excited states
(62P 1

2
), in which the ion tends to remain for an average of 1 s. Each

time the ion returned, it emitted enough photons to be detected
by the experimental apparatus approximately every 1 s, making the
detected signal approximately constant. To take the ion to the other
excited state (62P 3

2
), a hollow cathode lamp with a filter for the

desired frequency was used. Upon returning to the ground state,
in the case of this second excited state, the ion occasionally went
to a metastable state 52D 5

2
, which had the peculiarity of having a

longer dwell time (on average 30 s) than the other states involved
in the experiment. While the ion was in this state, no photon emis-
sion occurred, which is a direct observation of the phenomenon. A
visual model of these Ba+ level structures is presented schematically
in Fig. 11.

The main interest in this context is to analyze how many times
and for how long the system stays in the shelved state with no pho-
ton emission. For this, the authors in Ref. 47 counted the dwell
times in the metastable state for 203 consecutive times and pre-
sented them in a histogram, along with a theoretical exponential
model. They observed that the distribution of these dwell times tends
to be a negative exponential. Therefore, we aim to reproduce such
decay in the distribution of dwell times. To obtain results similar
to those obtained in Ref. 47, we calculate the probability of photon
emission in the archived state by defining the five-level quantum sys-
tem, as shown schematically in Fig. 11. We can write the effective

TABLE IV. Parameters selected by the GA, the resulting errors (E), the the upper bound of the KS-entropy (huKS), the dissipation (−J), Shannon entropy (S), and the dimensionality

of the attractor (D). Related to Figs. 11–14.

κ β γ ζ E r hu
KS −J S D

1.2066 1.4989 4.4838 0.5731 0.062 347 0.86 13.5 244.4 0.596 60.58

FIG. 13. Histograms with the number of elements in each segment of the ref-
erence series (purple) and the PRC’s outputs in the training (green), validation
(blue), and test (orange) intervals.

Hamiltonian of the system as50

Heff =

5
∑

i=1

~ωi|i〉〈i| +
∑

i 6=j

(

~gij|i〉〈j| + h.c.

)

+

2
∑

i=1

~�i,i+1

(

|i〉〈i + 1| + |i + 1〉〈i|
)

+ ~�b

(

|1〉〈2| + |2〉〈1|
)

, (12)

where ωi are the states energies, gij is the coupling constant between
the states |i〉 and |j〉, h.c. represents the conjugate Hermitian term,
�ij is the laser term, and �b is the lamp excitation term. For the
numerical simulations, we use energy states defined by |1〉 as ground
state 62S1/2, |2〉 excited state 62P1/2, |3〉 excited state 62P3/2, |4〉
intermediate state 52D3/2, and |5〉 metastable state 52D5/2. The con-
stants are �12 = 0.5, �23 = 0.05, and �b = 1. By solving the time-
dependent Schrödinger equation, we evolved the system, observed
the emission of photons as a function of time, and generated the
reference series, as shown in Fig. 12, with 3 × 104 points in the
dwell state. Then, we divided this set of values into eight equally
spaced segments, meaning that smaller times belong to segment 1,
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FIG. 14. In panel (a), points on the outer circle are a representation of the phases
of the oscillators at a given iteration. The average is represented by the point in
the inner circle. The outer circle is unitary, while the inner circle has a radius equal
to the order parameter r . Panel (b) shows the corresponding Lyapunov spectrum.

and larger times belong to segment 8. That was the reference series
used for the learning process.

Figure 13 presents the counting of consecutive dwell times in
the metastable state, divided into eight segments as described ear-
lier, both from the reference series in the training interval, which
in this case goes up to sample 309 (purple column), and from the
output of the PRC in the same interval (green column), up to sam-
ple 618 (blue column), and up to sample 927 (orange column). We
observed that the PRC satisfactorily generated an output whose dis-
tribution in each segment closely resembles the reference series.
Larger and smaller numbers of segments than 8 were checked, but
the distributions obtained were inadequate.

The performance is evaluated based on the PRC’s ability to
maintain the distribution that the reference series presents in the
training segment. Both the error and the parameters selected by the
GA are shown in Table IV.

For the order parameter, we found r = 0.86 (see left panel from
Fig. 14), a value close to those presented in Secs. III A and III B. For
the spectrum of Lyapunov exponents (right panel from Fig. 14), it
can be observed that the network composing the reservoir exhibits
hyperchaotic behavior. A few exponents are near zero, several are
positive, and the majority are negative. The Shannon-entropy and
the Lyapunov dimension are small and comparable to the random
series (see Table I).

V. CONCLUDING REMARKS

In this paper, we aimed for an improved understanding of
the intermediate processes of machine learning, which leads to the
best performance in specific tasks. To achieve this, we propose a
physical reservoir computing model, where the units of the neural
network forming the reservoir are modified Kuramoto oscillators,
and their phases represent the values that sum up to form the output.
We investigated the behavior of the reservoir with the parameters
of Kuramoto’s model that led the PRC to exhibit the best perfor-
mances in the learning reference series. Additionally, we changed
the parameters of Kuramoto’s model and analyzed the dynamics of
the reservoir when the performance was unsatisfactory, aiming to
identify characteristics that relate the dynamics to the performance.

It is common in reservoir computing publications to choose
reference series that resemble external inputs. However, we chose
not to propose external inputs, maintaining the reservoir with the
same configuration for all tasks. Therefore, we adjusted only the
connection weights between the units of the reservoir and the out-
put as well as the parameter values, which were selected for each task
using the genetic algorithm.

We proposed a new method of evaluating performance, which
measures how much it can maintain the distribution of the series
(number of elements in each segment). Regarding the relationship
between the ability of the PRC to maintain the distributions and its
underlying nonlinear dynamics, we found the following:

(i) For equally distributed random series, the performance (mea-
sured by the error) is proportional to the upper bound of the
KS-entropy of the Kuramoto oscillators, the partial Shannon-
entropy, and the Lyapunov dimension D (see Table I).

(ii) For Gaussian distributed random series, the performance is pro-
portional to the Shannon-entropy and inversely proportional
to the Lyapunov dimension (see Table II). Best performances
present a high degree of synchronization of Kuramoto’s oscilla-
tor, around r ∼ 0.8.

(iii) The above results are compared to PRC’s performance for two
cases (points P1 and P2 in Fig. 7) where the GA algorithm
did not choose the parameters. In both cases, the performance
decreases together with a substantial decrease in the upper
bound of the KS-entropy and the amount of synchronization
but an increase in the Shannon-entropy (see Table III). There-
fore, hyperchaotic motion, high degrees of synchronization,
and smaller Shannon-entropy are directly related to the best
performance of the PRC.

(iv) In the quantum application, good performance of the PRC is
obtained in maintaining the time distribution of shelved states.
This is also a consequence of the hyperchaotic dynamics of
Kuramoto’s oscillators, their high degree of synchronization,
and small Shannon-entropy (see Table IV).

To summarize, our results demonstrate that a balance of certain
nonlinearity and synchronization between elements of the network
in a computer reservoir is necessary to obtain a good performance.
The coexistence of regular and chaotic motions in the same dynam-
ical systems is known as mixed dynamics and is characteristic of,
for example, typical Hamiltonian systems,66–72 which may contain
memory effects, sticky motion, anomalous transport, and fractional
derivates among other properties. Furthermore, smaller amounts of
information gain of the series, measured by the (partial) Shannon-
entropy, are directly related to a better performance of the RC.
Future developments may consider, in more detail, and within a
more general context, the relation between the performance of other
PRCs and the upper bound of the KS-entropy, the Shannon-entropy,
the dissipation, and the Lyapunov dimension.

We would like to mention a possible generalization of our
results. We may intuitively argue that completely hyperchaotic
dynamics, with zero time correlation and vanishing synchroniza-
tion, cannot reproduce or mimic a given signal. The dynamic is too
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irregular to provide information on the signal. On the other hand,
the limit of a completely regular dynamics cannot mimic a random
signal, since the regular dynamics cannot change and adequately
react to external signals. Therefore, in agreement with our results, we
conjecture that the mixture of regular and hyperchaotic dynamics
is most likely capable of reacting for adequate predictions of com-
plex signals. However, we emphasize that such conjecture is based
on our study model, and more studies are necessary to propose gen-
eralization. From the machine learning methodology point of view,
our results suggest that it is possible to model an efficient computer
reservoir without any input signal.
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APPENDIX A: GENETIC ALGORITHM

In our model, we use the GA to choose the parameters κ , β , ζ ,
and γ from Eq. (2). First, we randomly generated 10 sets of param-
eters, named specimens, and performed the learning process. The
parameters β , κ , γ , and ζ were generated randomly with a uniform
distribution. The lower and upper bounds were, respectively, 0 and
2 for β and κ and 0 and 2π for γ and ζ . To spawn 40 more speci-
mens, we raffle pairs of the four parameters from the 10 specimens
and combine them. These pairs are called genitors since their combi-
nation creates a new specimen. To combine parameters, we convert
them from real type with double precision to integers, within the
range from 0 to 215 − 1, in binary numbers. Then, we raffle a value
between 2 and 15 to be the bit where the parameter cut will occur,
i.e., until that bit, one genitor gives his values, after that bit, the other
genitor is the donor. Next, we ranked the 50 specimens by perfor-
mance, selected the best 10, and repeated the procedure for G = 50
generations. After this, to avoid some local minima, to each parame-
ter, there is a 50% chance for a mutation to occur, i.e., one of the bits
that compose the parameter has its value changed (if it was zero, it
becomes one and vice versa). We repeated this entire procedure in
every generation.

We have also used GA to select the initial conditions and the
natural frequency of oscillation of the new specimens but with a
slight difference in the recombination process. In this case, we opted
to raffle a number within 2 and the number of oscillators N to do
the cut. Until that point, one of the genitors gives his values, and
from it, the other. In the first generation, the initial conditions of the
250 oscillators of the initial 10 specimens were randomly generated
from a uniform distribution, with values limited between 0 and 2π .
The natural frequencies of these oscillators were also randomly gen-
erated, but we opted for a Lorentzian distribution based on what is
usual in the literature when working with Kuramoto systems. The
lower and upper bounds were 10−2 and 102, respectively. After the
50th generation, we selected the parameters of the best specimen
obtained by the genetic algorithm, i.e., the parameters that led our
model to present the best performance in these first 50 generations.

Since every time we initialize the code again, the random num-
ber function generates new values, and we have run the same code
50 times for each task. In Sec. III, we have studied the reservoir
dynamics with the parameter sets that led our model to get the best
performances.

APPENDIX B: FLOW CHART

To outline the steps used in this article, we present in Fig. 15 a
scheme that summarizes all the stages of our study. The red blocks,
rectangles with rounded edges, correspond to the beginning and end
of the procedure for each chosen reference series. The blue trape-
zoids indicate the initial information and the final results of the
cycles, the orange rectangles are the intermediate processes, and the
green diamonds are the decisions that guide us through the sequence
of processes. The blocks on the left, surrounded by dashed blue
lines, summarize the analysis performed for each reference series,
while the blocks on the right, painted with less intense colors and
surrounded by dashed orange lines, are a flow chart of the genetic
algorithm.
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FIG. 15. On the left, inside the blue dashed
rectangle, a summary of the analysis performed
for each reference series. On the right, inside
the orange frame, is a flow chart of the proce-
dure adopted by the genetic algorithm.
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