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ABSTRACT

The E x B drift motion of particles in tokamaks provides valuable information on the turbulence-driven anomalous transport. One of the
characteristic features of the drift motion dynamics is the presence of chaotic orbits for which the guiding center can experience large-scale
drifts. If one or more exits are placed so that they intercept chaotic orbits, the corresponding escape basins structure is complicated and,
indeed, exhibits fractal structures. We investigate those structures through a number of numerical diagnostics, tailored to quantify the final-
state uncertainty related to the fractal escape basins. We estimate the escape basin boundary dimension through the uncertainty exponent
method and quantify final-state uncertainty by the basin entropy and the basin boundary entropy. Finally, we recall the Wada property for
the case of three or more escape basins. This property is verified both qualitatively and quantitatively using a grid approach.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147679

In magnetically confined plasmas, the presence of impurities is
unavoidable, with a great impact on the confinement. In the
plasma edge, their presence helps the distribution of the power
loss, while in the core, it can cause disruptions on the plasma.
So, understanding and predicting their behavior is necessary for
obtaining controlled thermonuclear fusion. The escape of these
particles in the plasma edge is directly related to the chaotic
transport that arises, in particular, from electrostatic fluctua-
tions. The trajectories of impurities can be described by the E x B
drift motion, which is a Hamiltonian dynamics where particle
space coordinates are canonically conjugate variables, and chaotic
orbits will be able to escape by passing through some exit in this
phase space. The set of points with orbits escaping via this exit
defines the basin of escape of this exit. In the case of two or more
exits, the boundary of basins is usually fractal. Thus, fractality is
directly related to the chaotic saddle, the invariant non-attractive
set of points, formed by the tangle of stable and unstable invariant
manifolds, as the unstable manifold represents the escape chan-
nels of particles, and the stable manifold traces the boundary of
basins. For the case of three exits, the boundary may be shared by
three basins, having the topological property called Wada. In this

case, the points of different basins are so mixed that the future
state of the system is unpredictable. In this work, we explore
the escape basin structures in a two-dimensional symplectic map
model for the E x B drift motion, and we quantify the fractality
and the uncertainty associated with it using different methods to
understand the transport of these particles.

. INTRODUCTION

The understanding of anomalous transport is one of the most
important theoretical issues in the quest for controlled thermonu-
clear fusion.' In particular, we are concerned with the chaotic trans-
port of charged particles advected by a turbulent electric field in a
magnetized plasma.’ In the context of the guiding center motion
approximation, with the E x B drift velocity, this becomes an advec-
tion problem described by a low-dimensional Hamiltonian.’

Electrostatic fluctuations are thought to be responsible for
turbulent transport in magnetically confined plasmas. Such a
mechanism has been found to agree with experimental evidence
for low plasma pressure.” We limit ourselves to the anomalous
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transport of trace impurities that are diluted so that their presence
does not alter the electric field. The problem becomes analogous to
the Lagrangian description of passive scalar advection due to a given
stream function, for a two-dimensional incompressible fluid flow.*”
Under these assumptions, the E x B drift motion of test particles is
an exact model for the anomalous transport.® Moreover, the E x B
drift motion is observed in many magnetized plasma devices,” like
magnetrons for material processing; many fusion devices; and Hall
thrusters in which this term plays a major role in the anomalous
transport of particles.”’

One of the remarkable features of models of E x B drift motion
is that chaotic particle motion is possible even for regular spa-
tial configurations of the electric field provided the corresponding
Hamiltonian system is time-dependent and, thus, non-integrable.”*
If the flow is time dependent, the advection is chaotic,” leading to
a complex and intricate pattern of advection. Such a chaotic motion
becomes a non-collisional source of enhanced cross field particle dif-
fusion and has been found to yield results many orders of magnitude
larger than neoclassical transport.'’~'*

Particle escape in the plasma edge region is an issue directly
related to chaotic cross field transport. For example, if a chaotic
orbit connects the plasma outer region and the tokamak inner wall,
all particles with initial conditions therein will eventually escape
the plasma and hit the tokamak wall. This phenomenon can be
harnessed in order to divert particles from the plasma edge into
carefully placed collecting plates called divertors."”

A further complication is that the distribution of heat and par-
ticle loadings is highly nonuniform when the particle trajectories
related to escape are chaotic. This nonuniformity can be attributed
to a geometrical structure underlying chaotic orbits, called homo-
clinic and heteroclinic tangles, formed by the infinite number
of intersections between stable and unstable invariant manifolds
emanating from unstable periodic orbits embedded in the chaotic
orbit.">” Recently, it was shown that mode-coupling is enhanced in
phase space regions occupied by homoclinic tangles.'® The unstable
manifolds, in particular, represent escape channels for particles in a
chaotic orbit, and their geometry influences the spatial distribution
of escape patterns.'”'* This mechanism is capable to explain qualita-
tively experimental observations of heat fluxes deposited on divertor
plates of tokamaks."’

In this paper, we explore these ideas to investigate the pres-
ence of fractal structures related to particle escape in toroidal devices
undergoing chaotic trajectories. Our numerical simulations will be
performed using a particle E x B drift model in presence of electro-
static fluctuations proposed by Horton et al..” The spectrum of elec-
trostatic fluctuations is chosen so as to reduce the dynamics to a two-
dimensional, area-preserving map characterizing a non-integrable
Hamiltonian system. For values of the physical parameters taken
from the Brazilian tokamak TCABR, and using the intensity of the
fluctuating electrostatic potential as the tunable parameter, we typi-
cally obtain large chaotic orbits extending from the outer portion of
the plasma to the tokamak inner wall. As the results can be extended
to other machines using an appropriate normalization,”’ we present
a conceptual investigation rather than detailed comparisons with
experiments performed in any tokamak.

The phase space of non-integrable Hamiltonian systems is
neither entirely regular nor entirely chaotic. The regular dynamics
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consists of quasiperiodic orbits lying on tori and periodic orbits,
while chaotic orbits fill densely other parts of the energy surface.”' In
order to characterize the phase space, we use the weighted Birkhoff
average method” to determine whether an initial condition was
inside an island or in chaotic sea.

The most fundamental structure to be studied, in the context
of particle escape in chaotic area-filling orbits, is the set of escape
basins, which are the sets of particle positions leading to escape
through a certain exit. The escape basin boundary coincides with the
stable manifold of the chaotic saddle and, thus, has the same geomet-
rical properties. As a consequence of fractality, we have a sensitive
dependence on the initial condition, with respect to what region will
the chaotic trajectory escape through. Recently, Mathias et al.” stud-
ied the structures related to the escape of particles through different
exits in the boundary of the plasma, caused by two E x B drift waves.

We use a number of quantitative diagnostics for characterizing
the fractality of these structures, namely, the uncertainty exponent
(related to the box-counting dimension) and the corresponding
information entropy. Both quantify the final-state uncertainty of
the system, i.e, how much an improvement of the precision in
the determination of an initial condition is reflected in the uncer-
tainty of finding what exit will the corresponding trajectory escape
through. We also identify the Wada property, which is typical for
three or more escape regions, and characterizing an extreme form of
fractal behavior. A natural question is how particle collisions affect
these fractal structures. To answer these questions, we use a sim-
ple numerical model where collisions can be regarded as a noisy
component in the E x B drift equations.

The rest of this article is organized as follows: in Sec. I1, we out-
line the symplectic (area-preserving) map describing chaotic advec-
tion of test particles in the E x B drift motion caused by a radial
equilibrium electric field plus electrostatic fluctuations. Section IIT
is devoted to a detailed discussion of the radial profiles of the equi-
librium safety factor of the magnetic field, the electric field, and
the toroidal velocity of the plasma. Section IV uses the concept
of weighted Birkhoff averages and their long-time convergence as
a diagnostic of chaotic motion. Section V discusses escape basins
and their underlying mathematical structure. Section VI deals with
the numerical characterization of fractal structures using the uncer-
tainty exponents and basin entropies. The Wada property and its
quantitative characterization are discussed in Sec. VII. In Sec. VIIJ,
we discuss the effect of collisions on the fractal structures. The last
section is devoted to our conclusions.

Il. SYMPLECTIC MAP FOR DRIFT MOTION

Let us denote by 4 and R, the minor and major plasma radius,
respectively, in a tokamak. In the following, we will describe the par-
ticle position using local coordinates (r, 6, ¢), where r is measured
from the minor axis, 6 is the poloidal angle, and ¢ is the toroidal
angle. We assume a large aspect ratio approximation, (¢ =a/
Ry < 1), such that the equilibrium magnetic field is B = (0, By (1),
Bw), where B, and By are the toroidal and poloidal components,
respectively.

Moreover, since By ~ €B,, we have B~ B, > By and, thus,
consider B as a uniform field. In this approximation, the magnetic
(flux) surfaces are nested tori with circular cross sections, with a
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radial profile for the corresponding safety factor

1)

In this work, we consider two kinds of electrostatic fields: (i) an
external and time-independent electric field in the radial direction
and (ii) the time-dependent field related to the drift instabilities, in
the form

E= E,(T')f' - Vd;(rre) [ t)) (2)

where ¢ is the electric potential of the drift instabilities. Under these
conditions, the guiding-center motion can be thought as a super-
position of a passive advection along the magnetic field lines, with
velocity v, and an E x B drift velocity. The resulting equation of
motion for the guiding-center is, thus,

dr B n ExB 3)

T oy 2422

dt— 'B B

which gives the components

dr 1 Ry
dé _ won E@® 193¢
dar Roq(r) rB + B dr’ ®)
d_(p _ V”(T’)
dt ~ Ry ©

The functions v, E,, and g will be given in Sec. III. The elec-
tric potential related to the drift instabilities is assumed to exhibit a
broad spectrum of frequencies w, = nw, and wave vectors, charac-
terized by a Fourier expansion in the general form”’

G(10,058) = Y Guea(r) cos(md — Lo — nent + vra)s  (7)

m,l,n

where the coefficients ¢, depend, in general, on the radius r and
time but, for simplicity, we assume them constant over the plasma
region of interest in this work and following Horton et al,” we
take v,,,, = 0 for all waves. Moreover, we retain only the dominant
Fourier mode in Eq. (7), with harmonics of the lowest frequency w,,
and fixed poloidal and toroidal mode numbers m = M and ¢ = L,
respectively, with the same amplitude ¢y, = ¢ for all harmonics,
such that

(0, ¢ 1) = 27 ¢h cos (MO — Lgp) Z S(wot — 27 n), (8)
where we used the formulas

+o00

Z cos(nwyt) = 21 Z S§(wot — 27 n), 9)

n=—0o0

+00

Z sin(nwyt) = 0. (10)

n=—oo

pubs.aip.org/aip/cha

The drift motion of guiding centers is a Hamiltonian system,
with canonical equations

d__oH v oM

dt v’ dt — dI

where we define action and angle variables by I = (r/a)* and ¥

= M0 — Ly, respectively. Making this transformation and using
Eq. (1) reduces systems (4)-(6) to the form

, (11)

dl  4mrM¢ .

a = aZ—B sm\I/Xn:(S(a)ot— 277:")) (12)
dw vi(D ME(D

e, M —q(DL) — . 13
&~ Roq(D (M —g(DL) Bl (13)

We define discrete variables by considering a stroboscopic
sampling of the action-angle variables at integer multiples of the
characteristic period

. 2mn
I, =limI|{t=— -1, (14)
n\0 (O
2mrn
\IJ,,=‘IJ<t=—), (15)
o
leading to the two-dimensional Poincaré map
4T M¢ .
Ly =1+ 22Bo sin ¥,
2w v (1, M — Lq(1,
W, =W, + Vn( 1) q( 1)
@Ry q(L11)
_ 2r M Er(In-H)

aBwy T1

We applied a normalization to the quantities B, a, wy, E, ¢, Ry,
the minor plasma radius is divided by ay, = 0.18 cm, so that the
normalized value is @’ = 1, in the same manner the toroidal mag-
netic field is divided by B, = 1.1 T, giving the normalized value
B’ = 1.0. We chose a normalization for the electric field, in order
for the normalized value to be equal to unity in the plasma edge,
E, = E,/E,. The normalization factors for the other quantities are
given in terms of ao, By and E,, namely, velocity vy = Ey/Bj,
time ty = ag/vo, SO @ = wyty, electrical potential ¢y = aoEoy, and R}
= Ry/a,. The normalized map equations are

47 M¢

Lin=1,+ sin W,,, (16)
2 I,.1) M— Lg(I,
W, =W, + 7 agVy (Lug1) q(Iny1)
wRy qLu41)
2 M Er(In+l)

w Y% In+1

11l. RADIAL PROFILES

The map defined by (16) and (17) is area-preserving in the
phase plane (I, ¥) corresponding to the Poincaré surface of section

8€:01:21 €202 1NBny G|
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TABLE I. Main parameters of the TCABR tokamak.”*

Parameter Symbol Value
Minor radius a 0.180 m
Major radius Ry 0.615m
Toroidal field B, 11T
Plasma current I, 100 kA
Central electron temperature T, 400eV
Central electron density Moo 3.0 x 10¥ m™3
Pulse duration 7, 120 ms

obtained by using (14) and (15). It is important to emphasize that
the Poincaré surface of section we deal with is in fact a stroboscopic
sampling of the action and angle variables, rather than a fixed plane
in space, like at ¢ = const. Such a description would be possible by
numerically solving the differential equations of motion (4)-(6) and
considering the intersections of the particle trajectory with a fixed
plane. Hence, in the present work, we will be interested in analyzing
the escape in the phase plane of action-angle variables.

In order to investigate the dynamics generated by iterating
the map (16) and (17), we have to first give analytical expres-
sions for three radial profiles: the safety factor q(I), the radial
electric field E,(I), and the toroidal velocity v, (I). In this work, we
use parameters’’ of the TCABR tokamak, operating at the Physics
Institute of Sdo Paulo University (Brazil), listed in Table 1.

We used M = 15 and L = 6 as the main poloidal and toroidal
modes,” typical numbers in the wave spectrum at the tokamak
plasma edge.”” The normalized fundamental angular frequency is
w = 16.36.

Non-monotonic safety factors generate negative shear regions
in the plasma, which improves the plasma confinement quality.
There is a significant reduction of turbulent transport by using this
type of safety factor.”*”” The radial safety factor we considered, in
terms of the action variable I = r*/a?, is

q() =50—-63F+63F, (18)

so that g(I = 1) = 5.0 at the plasma edge, which is consistent with
measurements of plasma current, electron density and temperature
in TCABR tokamak [Fig. 1(a)].

Turbulent particle fluxes in H-mode tokamak discharges are
reduced by the presence of a radial electric field with negative
shear,”” generating a shearless transport barrier’>* that is com-
patible with the reduction of the turbulent fluxes. We adopt the
profile

E () = 10.71 — 15.8 /1 + 4.13 (19)

so as to yield a local minimum in the desired plasma region*
[Fig. 1(b)]. It should be noted that the model functions (18) and
(19) may result in ill-defined physics at the singularity of polar coor-
dinates where I = 0. Nevertheless, it is worth mentioning that the
numerical trajectories we will be computing always remain in the
range of I > 0.2, rendering the actual model irrelevant near I = 0.
We take into account the plasma rotation by considering a non-
monotonic profile for the toroidal plasma velocity, which is related
to shearless barriers.”’ Spectroscopic techniques have been used to
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measure toroidal plasma rotation velocities in TCABR discharges,
giving values about 4.0 km/s at the plasma edge.”* A normalized par-
allel velocity profile, used in this work and consistent with TCABR
observations, is given’ [Fig. 1(c)] by

vy (I) = —9.867 + 17.47 tanh(10.11 — 9.00). (20)

In our numerical simulations, we integrate the map (16) and
(17) using the profiles for the equilibrium safety factor, radial electric
field, and toroidal velocities given by Eqs. (18)-(20), respectively.
We keep all parameters fixed and choose the amplitude of the main
electrostatic mode ¢ as the variable parameter. Proceeding in this
way, we can evaluate the qualitative effects of increasing perturba-
tion strength on the orbit structure generated by the map (16) and
(17).

Figure 2 depicts some phase portraits of the map, using rectan-
gular coordinates for I, and W, /(21), for ease of visualization. For
a relatively small value of ¢, we have a divided phase space consist-
ing of an outer large chaotic sea, with remnants of periodic islands
embedded in it, and an inner structure of invariant tori and island
chains comprising the plasma core. The large chaotic sea intercepts
the plasma boundary at the radial distance corresponding to I = 1.0,
in such a way that an initial condition placed within the chaotic orbit
will eventually escape the plasma through that boundary. This is,
thus, an open Hamiltonian system. On the other hand, those ini-
tial conditions placed in the inner region are not expected to escape
due to the invariant tori which act as dikes, preventing large-scale
chaotic transport [Fig. 2(a)]. As the perturbation strength increases,
the outer chaotic region is enlarged by engulfing some of the nearby
invariant tori and island chains [Figs. 2(b) and 2(c)]. For large ¢,
the chaotic region encompasses virtually all the region formerly
occupied by the plasma column [Fig. 2(d)].

IV. WEIGHTED BIRKHOFF AVERAGES

The phase space of a non-integrable Hamiltonian system
exhibits basically three types of trajectories: chaotic orbits, peri-
odic island chains, and invariant tori. Although, in principle, these
types of trajectories could be straightforwardly identified by known
methods (Lyapunov exponents, rotation numbers, etc.), in practice,
there is a complication introduced by the self-similar hierarchical
structure, in which islands and chaotic orbits are mixed together in
arbitrarily fine scales. This hierarchical structure is the ultimate rea-
son why it is difficult to estimate with accuracy the destruction of
a given spanning invariant torus (a curve, in two dimensions). A
major advance in this direction has been the concept of weighted
Birkhoff averages.”>">**

Let M represent our two-dimensional symplectic map describ-
ing drift trajectories of passive particles in a E x B-flow. For brevity,
let us denote the two-dimensional phase space vector at discrete time
n: v, = (I,, ¥,), in such a way that (16) and (17) are written in the
compact form

Viy1 = M(vn))
which can be iterated n times, from an initial condition vy,

v, = M"(vp).
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FIG. 1. Radial profiles in terms of the action variable | = r?/a? for the quantities: (a) safety factor, (b) equilibrium electric field, and (c) toroidal plasma velocity.

The Birkhoff average of some function f(v) along this trajectory in
phase space is defined as

1 N-1
BN(D(o) = 1 D _fo M"(¥). @1
n=0

According to the Birkhoff ergodic theorem, time averages of
the function f along the trajectory (i.e., Birkhoff averages) converge
to the phase space averages as N — 00,

N-1
%Z foM"(v) — / fdu, (22)
n=0

where @ is an invariant probability measure. A noteworthy fact
about Birkhoffs ergodic theorem is that the convergence to the
phase space average can be very slow. For example, for a quasiperi-
odic orbit in an invariant torus the convergence rate of (22) scales as
N~!, whereas for chaotic orbits this rate varies as N~/ The reason

for this slow convergence is the lack of smoothness caused by the
two ends of a finite orbit segment, also called edge effect.

In order to circumvent this smoothness problem there has been
proposed a weighted Birkhoff average

N—-1
WBN((Vo) = ) wanfo M"(¥o), (23)
n=0
where we define weights
n
L (24)
Zn:O g(l’l/N)

where an exponential bump function

exp{—[z0 —2)]"} ifo<z<1

25
0 otherwise (25

g(2) =

was chosen to smooth the behavior at the ends of a finite-time trajec-
tory. Indeed, Eq. (25) converges to zero with infinite smoothness at
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0.0

(d) . . v/ (2m)

FIG. 2. Phase portraits of the map (16) and (17) for the following values of the perturbation amplitude ¢: (a) 4.92 x 10=2, (b) 7.65 x 10~2, (c) 8.74 x 10~%, and (d)

10.38 x 1072,

z = 0 and z = 1. Since the weights vanish flatly at these end points,
the smoothness of the original orbit is preserved.

It has been proved™ that if the functions g, f, and the map M are
infinitely differentiable then the convergence in the Birkhoff ergodic
theory is super-polynomial, i.e., for all m > 1, there exists C,, such
that

‘WBchva) - f fdu‘ <CNT (26)

This weight method does not improve the convergence of
Birkhoff’s average for chaotic orbits. Interestingly enough, even
though the constant C,, depends generally on the function f, the
speed, and accuracy of the convergence of the weighted Birkhoff
averages are independent on the choice of f.° Hence, we can use
a simple function like f = cos W.

Given the difference of convergence for chaotic and quasiperi-
odic orbits, weighted Birkhoff averages can be used to distinguish
among chaotic and regular orbits in the following way: we compute
the first 2N iterations of the map M. Then, we compare the value
of WBy(f)(vy) along the first N map iterations with WBy(f) (V1)
along the next N iterations. In the limit N — oo, these values are
equal and we determine the convergence rate by computing the
number of zeroes after the decimal point of the difference between
both weighted averages, namely,

dig = — log,, | WBx(f) (Vo) — WBN(f) (Vn41)| - (27)

If dig is a large number, the convergence is fast enough and the orbit
is regular. Otherwise (small dig), the orbit is chaotic. Care must be
taken, however, since the weighted Birkhoff averages are not likely to
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FIG. 3. (a) The number of zeros dig after the decimal point for the map (16) and (17), and control parameter ¢ = 7.65 x 10~3; (b) frequency histogram (semi-log scale) of

dig. The color palette of the histograms matches the color bar of (a).

improve the convergence of chaotic orbits. Hence, we cannot com-
pare the values of dig of two chaotic orbits to say what is more
chaotic (in the Lyapunov exponent sense).

We show, in Fig. 3(a), the values of dig for a grid of 1000 x 1000
initial conditions superimposed in a phase space rectangle with sides
0.375 < I < 1.0 and —0.5 < ¥/(27) < 0.5. Each initial condition
at the center of grid cells was iterated 2 x 10° times. We used a
color palette such that bluish regions correspond to chaotic orbits,
whereas reddish region to quasiperiodic orbits. The stronger shades
of blue, however, indicate that the density of chaotic points is higher.
In the region around I ~ 0.4, there are quasiperiodic orbits (KAM
curves) that acts as barriers and the chaotic regions (bluish regions)
do not reach the plasma core. Therefore, the region of interest to
study the escape through leaks in the plasma edge is 0.3 < I < 1.0.
The frequency histogram, Fig. 3(b), shows that the regular orbits
correspond to the distribution centered around dig ~ 13 while the
chaotic orbits are centered around dig ~ 2.8.

V. ESCAPE BASINS

In this work, we focus on the dynamics of test particles, i.e.,
charged particles which are passively advected by the drift flow
generated by the combined effects of crossed electric and mag-
netic fields. Such a particle can escape the tokamak by hitting some
boundary surface, like that of a divertor plate, similar to those
used to mitigate the plasma-wall interactions through exhaustion
of particles escaping along a chaotic orbit near a plasma separatrix.”

Instead of investigating directly this type of escape, we will open
the dynamical system given by the map equations (16) and (17) by
considering that the particles are able to escape by one or more exits
in the I x W phase plane.””** Accordingly, we will consider two exits

placed at the position I = 1.0: one from —7 < ¥ < 0.0, denoted by
L, and the second exit 0.0 < W < 7, denoted by R.

Let us consider an initial condition (I, W,). For each iteration
of the map (16) and (17), we make the following test: if I, < 1.0,
we continue iterating, otherwise we stop iterating and consider the
value of ¥,,. IfI,, > 1.0 forsomen > 1and —7 < ¥, < 0.0, we con-
sider an escape through exit L, otherwise through R. The sets of
initial conditions, for which there is a value of I, > 1.0 (n > 1) indi-
cating an escape through exits L and R, form their corresponding
basins of escape, denoted B(L) and B(R), respectively.

In Figs. 4(a)-4(d), we show the basins of escape of a region
of the Poincaré surface of section, for different values of the per-
turbation strength ¢. Points belonging to the basin L are painted
green, whereas points of basin R are depicted in red. The white
region mostly indicates initial conditions that do not escape within
a pre-specified large time #* (in this case n* = 10°).

There are regions of white points in the plasma core, which
correspond to initial conditions that do not escape (after a maxi-
mum time n*) because their trajectories in the phase plane remain
on invariant curves, outside the chaotic region. Other white points
are inside islands, thus do not escape either.

The mixing of the escape basins B(L) and B(R) is clearly seen
at most points in the chaotic region. Moreover, the green escape
basin, B(L), is significantly larger than the red escape basin, B(R),
for all values we considered for the perturbation amplitude strength
¢, indicating a preferential escape through the L-exit. This asymmet-
ric feature can be understood by considering the fractal structures
that underlie chaotic dynamics in this region, as we describe later
on.

The mixing between the two escape basins is non-uniform, as
can be seen in Figs. 5(a) and 5(b), where we show two consecutive
magnifications of the escape basins depicted in Fig. 4(c): there is a
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FIG. 4. Escape basins for the exits at L : (I = 1.0, —0.5 < W/(27) < 0.0) (green pixels) and R : (/ = 1.0,0.0 < W/(27) < 0.5) (red pixels). Those points that do not
escape within a maximum allowed time, n* = 10%, are represented by white pixels. The amplitude ¢ of the electrostatic fluctuations is (a) 4.92 x 10=2, (b) 7.65 x 10=3, (c)
8.74 x 10~3, and (d) 10.38 x 10~23. The green and red lines in / = 1.0 represent the exits L and R, respectively.
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FIG. 5. Two consecutive magnifications of a region of the escape basins obtained for ¢ = 8.74 x 10~°. (a) The rectangular region of Fig. 4(c), and in (b), we have a further
magnification.
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finger-like structure of red basin filaments embedded in the green
basin.

Not only the escape basins are intertwined at arbitrarily fine
scales but also the escape time 7,, i.e., the number of map iterations
that an orbit takes to hit one of the exits, has a complicated distribu-
tion in the phase space. Figure 6(a), for example, depicts the escape
time (in a color bar) as a function of the initial condition (I, ¥ /(27))
for the same parameters as the escape basins shown in Fig. 4(a). In
the chaotic region, the escape time is found to be as finely inter-
mixed as the escape basins themselves. The white points, as before,
correspond to points for which the escape time exceeds a specified
maximum time n*.

The chaotic saddle underlying the escaping orbits can be used
to understand the complicated structure of escape basins. Let us
consider an unstable periodic orbit embedded in the chaotic region
of any phase space shown in Fig. 2. The stable (unstable) mani-
fold at this point is the set of points whose forward (backward)
iterates of the map (16) and (17) asymptotically approach each
other. The intersections of the stable and unstable manifolds form
a non-attracting invariant chaotic set called chaotic saddle.””

If an initial condition (I, ¥,) could be placed exactly on
an invariant manifold, it would remain on this manifold for
arbitrarily large time. However, if this point is off but very close to
a given invariant manifold, it would remain so for some time until
escape through some of the exits. This property can be used to gen-
erate numerical approximations of the invariant manifolds using
the so-called sprinkler algorithm.* Other algorithms for obtaining
invariant manifolds are available, but this particular one is easier
to apply since one does not need to consider inverse images of the
points.”!

Let us consider a bounded region R of the phase space I x ¥
containing a chaotic orbit, and cover it with a fine grid of points.
Each mesh point corresponds to an initial condition (Ip, W), and it
is iterated m times using the map (16) and (17). After m iterates,
if the value of (I, V,,) remains inside R, the corresponding initial
conditions are numerical approximations of a branch of the stable
manifold W*(P), which emanates from an unstable periodic orbit P
embedded in the chaotic orbit in the region R. Moreover, the mth
iterates themselves, (I,,, ¥,,), are numerical approximations of the
unstable manifold W*(P). Analogously, the corresponding m/2th
iterate constitutes a numerical approximation of the chaotic sad-
dle itself.”” The underlying chaotic behavior of the system can be
explained by the chaotic saddle, whose topological properties are
similar to the Smale horseshoe.*

In Fig. 7, we show numerical approximations of stable and
unstable manifolds, for ¢ = 8.74 x 1073, obtained by the sprin-
kler method. We used a grid of 1000 x 1000 initial conditions with
m = 10 iterations for our simulations. The boundary of the escape
basins coincides with the stable manifold of the chaotic saddle as can
be seen in Figs. 5(a) and 7(a), as explained by Lai and Tél."*

The unstable manifold shown in Fig. 7(b) indicates the path fol-
lowed by map iterations before they escape, i.e., the escape channels
by which particles pass toward the tokamak wall. If an initial condi-
tion (Ip, W) is off but arbitrarily near the unstable manifold, it will
remain near it for an arbitrarily long time.

ARTICLE pubs.aip.org/aip/cha

VI. CHARACTERIZATION OF FRACTAL STRUCTURES
A. Uncertainty exponent

In order to characterize the fractality of escape basins, we first
calculated the uncertainty dimension according to the algorithm
introduced by MacDonald et al.** Any initial condition in the
phase space is known with some uncertainty that we can repre-
sent by a disk of radius ¢ centered at (I, Wy). If the disk intercepts
the boundary of the escape basins, we call that initial condition &-
uncertain, i.e., it is impossible to predict with total confidence by
which exit that initial condition will escape through, if it is specified
with uncertainty e. This impossibility is called final-state uncer-
tainty, and it is directly related to the fractal nature of the escape
basin boundary.

We consider a grid of initial conditions (I, ¥p) in a given phase
space region R containing a significant portion of the escape basin
boundary. The points belonging to this grid are taken to be the
centers of small disks of radius ¢, and are iterated until the ensu-
ing orbit escapes through L or R exits (if the orbit does not escape
at all, it is discarded from the computation). For each grid point,
two other initial conditions are randomly chosen inside the corre-
sponding e—disk and they are iterated again until reaching one of
the two exits. If one of the three points, for a given e—disk, fails to
escape through the same exit, the center of this disk is considered
g&—uncertain.

The uncertain fraction f(¢) is the number of e —uncertain con-
ditions divided by the total number of initial conditions. It is known
that f scales with & as a power law f(g) ~ &, where £ is called the
uncertainty exponent. Let d be the box-counting dimension of the
escape basin boundary in the two-dimensional phase plane. In order
to cover the boundary with boxes of length 8, it takes N(8) ~ 8¢ of
them, so that the box-counting dimension is given by

= lim M (28)
5—0 In(1/8)

Now, we set § equal to the initial condition uncertainty ¢, and
thus, the area of the uncertain region of the phase space will be of
the order of the total area of all N(§) boxes used to cover the escape
basin boundary. Given that the area of each box is €2, the uncertain
area is of the order

fle) ~ &2N(g) = 6% = ¢f,

so that the escape basin boundary dimension is d = 2 — &. If the
escape basin boundary is a smooth curve (d = 1), then £ = 1. How-
ever, if the basin boundary is fractal, then 0 < £ < 1, so that its
dimensionis 1 < d < 2.

In our simulations, we used a grid of 10* x 10* initial con-
ditions placed in the chaotic region of the phase plane I x ¥ and
iterated 10° times. If the initial condition does not escape after this
number of iterations, it is removed from the computation. For each
value of &, we repeat ten times the computation of the uncertainty
fraction, the local error being the standard deviation of the results.
Ten values of €, namely, 107% (1 < k < 10) are used to make a dia-
gram of logf(¢) vs ¢, the uncertainty dimension is determined by
least-square fits. The global error is the average local error for each
. Our results, for different values of ¢, are summarized in Table II.
The uncertainty dimension varies very little with ¢ and is very close
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TABLE II. Uncertainty exponents and box-counting dimensions for the escape basin
boundary for different values of the perturbation amplitude.

¢ (1073) £ d Error
4.92 0.001 1.999 0.001
7.65 0.001 1.999 0.001
8.74 0.003 1.997 0.002
10.38 0.020 1.980 0.030

to 2.0, which is the limiting case of an area-filling curve. In all those
cases, the basin boundary is extremely mixed. These results point to
an extreme fractal escape basin structure.

B. Basin entropy

We used the concept of basin entropy’® to quantify the final-
state uncertainty produced by the fractality, using ideas of informa-
tion theory. We considered a bounded area R in the chaotic region
of the phase space in Fig. 2, characterized by the presence of Ny exits.
We divided R in a fine mesh of N boxes, each of which containing a
grid of ¢ x ¢ sample initial conditions. The map associates with each

10°

10*
10°
10°
10!
0.4
10°
—0.5 =03 0.0 0.3 0.5
(a) U/ (2m)

5 —03 0.0 03 05
(c) U /(2m)
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initial condition on the grid a single variable (called a color) labeled
from 1 to N4. The basin entropy can be obtained from computing
the information entropy for the boxes.

The color in each grid point represents the value of an integer
(pseudo-)random variable j. Let p;; denote the probability that the jth
color is assigned to the ith box, i.e., the frequency of color j among
the ¢? initial conditions in box i. Treating the chaotic orbits of our
map as statistically independent, the basin entropy of the ith box is
defined as

Ny
j=1

with 0log0 = 0 by convention. The total basin entropy for the
region R is then

S =~ > s (30)

In the case of only one exit, S, = 0 and there is no uncer-
tainty in the final state caused by fractality. Moreover, if there are N
equiprobable exits, the basin entropy assumes the maximum value
Sy = log N4, completely characterizing the escape basin structure.
We also adapt this entropy calculation to evaluate the uncertainty

1.0

10°
I
10?
10
| 10(]
k —0.3 0.0 0.3 0.5
(b) U/(2m)
10°
10
10:3
10°
10
! | 10°
—0.5 —0.3 0.0 0.3 0.5
(d) U/ (2m)

FIG. 6. Escape times (indicated by a colorbar) for different values of the perturbation amplitude ¢: (a) 4.92 x 10=2, (b) 7.65 x 1072, () 8.74 x 103, and (d) 10.38 x 10-3.
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FIG. 7. Numerical approximations of the (a) stable and (b) unstable invariant manifolds for an unstable fixed point embedded in the chaotic region when ¢ = 8.74 x 10=3.
The points in (c) are numerical approximations of the corresponding chaotic saddle. The calculation was done with a grid of 1000 x 1000 initial conditions with m = 10

iterations.
1.0 0.92
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I
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FIG. 9. (a) Basins of escape for the case of three exits. Points belonging to the basins of exits L, C, and R are painted red, blue, and green, respectively. The green, blue,
and red lines in | = 1.0 represent the exits L, C, and R, respectively. (b) A magnification of the black rectangle drawn in (a). The yellow points are a numerical approximation
of the invariant unstable manifold crossing all escape basins.
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FIG. 8. Escape basin entropy (blue), basin boundary entropy (black), and relative
area A of the red escape basin B(R) (red) as a function of the perturbation
strength ¢.

related to the escape basin boundary. In order to do this, we repeat
the same calculation described above, but considering only the N,
boxes that contain more that one color, i.e., if a box i contains only
one color, we disregard i in the calculation of the entropy. In this
way, noting also that S; = 0 for single-color boxes, we compute the
basin boundary entropy as Sy, = (1/N;) D, Si = N'S,/N,.

In our case, there are two exits L and R, and the region R is the
rectangle 0.3 <1< 1.0, —0.5 < ¥/(2m) < 0.5 covered with a grid
of 1000 x 1000 initial conditions, distributed inside 4 x 10* boxes,
¢ = 5. For each box, we computed a maximum of 10° iterations of
the map for a number of initial conditions therein, the orbits that do
not escape up to this time being excluded from the statistics. Let n;,
and ng denote the number of points in each grid cell that escape to
exits L and R, respectively. The probability for the ith box is

ny ng
> pir = >
ng + ng np + ng

pir = (31)
so that the entropy for that grid cell is S; = —p; log p, — prlog pr.
Summing up over the entropy of all boxes and dividing by the num-
ber of boxes, we obtain the basin entropy S,. The basin boundary
entropy is obtained, excluding from the summation those boxes for
which either p; = 0 or pr = 0. Since there are two exits, S, and S,
vary between 0 and log 2 A 0.69.

In Fig. 8, we show our results for the basin and boundary
entropies as a function of the amplitude of the drift waves ¢. As
a trend, the entropies increase with ¢, this means that the red and
green basins become progressively more mixed and involved. More-
over, we see that both S, and Sy, follow the increase of the occupied
area of the red basin as depicted in Fig. 8. Inspecting Fig. 4, we
see that the green is predominant over the red basin, but with the
increase of ¢ the red area becomes larger. The entropies increase as
the red basin expands and becomes comparable to the green basin.
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VIl. WADA PROPERTY

The fractal structures we have discussed so far are related to
boundaries between two different exit basins. However, it is inter-
esting to investigate the case of three or more basins. Extending the
previous reasoning, one would expect to find fractal structures in the
corresponding boundaries, but for three or more basins an impor-
tant question to be answered is: Are almost all boundaries separating
points of just two basins? If the answer is negative, conceptual prob-
lems may appear since the basins are restricted to a limited phase
space domain. As we will see, not all boundary points separate
just two basins, and there is a considerable number of boundary
points that separate simultaneously three or more basins, which is
a non-trivial topological concept called Wada property.”’

In order to discuss this result, some preliminary definitions
are needed. Let the system have more than one escape basin. If a
given point has a neighborhood consisting just of points belonging
to a single escape basin, it is called an interior point. A point P is a
boundary point of the basin 13 if every open neighborhood of P inter-
sects both basin B and at least another basin ' # B. If the point P
is a boundary point of at least three different basins, then we say that
P is a Wada point. If the escape basin boundary is a fractal curve,
then a fraction of its points can be Wada points, so that we say the
boundary has the Wada property (partially or totally).

Boundaries possessing the Wada property have important
physical consequences, given that a boundary point turns to be arbi-
trarily close to points of at least three basins of escape.”” Since an
initial condition is always known up to a given uncertainty, in a sys-
tem with the Wada property, it is not possible to say with certainty
to which exit a particle will escape. Hence, the Wada property is an
extreme form of final-state sensitivity.

We considered three exits by dividing the tokamak wall I = 1.0
into three congruent segments denoted by L : —7 < W < —m/3,C:
—m/3 < W <m/3,and R: /3 < ¥ < . We evaluated the corre-
sponding escape basin for these exits using the same procedures
already described for two exits. Our results are shown in Fig. 9(a),
for a perturbation amplitude ¢ = 9.84 x 107>. Points belonging to
the basins of L, C, and R are painted red, blue, and green, respec-
tively. The corresponding escape basins have a similar shape as those
described before, with a fingerlike structure, and they also seem to be
densely intertwined, but it is difficult (if not impossible) to discern
the Wada property just by a cursory inspection.

In order to test the Wada property, in the escape basins pro-
duced by the map (16) and (17), we have to prove that the unstable
manifold of a periodic orbit intersects all the escape basins. This is
a necessary but not sufficient condition to have the Wada property
fulfilled.” Since the rigorous demonstration of this property is not
feasible for the map we are dealing with, we rely on numerical sig-
natures of such behavior. In Fig. 9(b), we indicate that the unstable
manifold emanating from an unstable fixed point, embedded in the
chaotic region, intersects the three escape basins, what strongly sug-
gests that the escape basins fulfill the Wada property. However, such
evidence does not inform what is the fraction of boundary points
that are Wada points.

In order to characterize which boundary points have the Wada
property, we used the so-called grid approach.” Let R be a bounded
region of the phase space (mostly, in the chaotic region near the
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FIG. 10. (a) Basin structure of Fig. 9(a), showing points belonging to the G, set (interior points, black), points of the G, set (boundary points between two basins, red), and
points of the G5 set (boundary points between three basins, green), after ¢ = 20 refinement steps. (b) Values of the quantities W, (blue) and W5 (orange) as a function of
the refinement step. (c) Histogram (semilog) showing the number of reclassified points for various numbers of refinement steps.

tokamak wall) containing N, > 3 exits, and let us denote by 5;,
j=1,2,...N,, the corresponding basins of escape. Using a fine
rectangular mesh, the region R is divided into a set of non-
overlapping boxes by, b,,. .., br. We iterate each point (x,y) of R
in order to find which exit the particle escapes through, so as to
determine the corresponding escape basin 13;.

We defined C(x,y) =j if j € B; and C(x,y) = 0 if (x,y) is in
none of the sets, the value of C is the color of the box. For any rect-
angular box, we define C(b) = C(x, y) where x, y is the point at the
center of box. We define P(b;) the collection of grid boxes consisting
of bj and all boxes that have at least one point in common with bj, in
the two-dimensional case P(b;) is a 3 x 3 collections of boxes with
b; as the central box. The number of different C(b;) (colors) in P(b;)
for each b; is M(b;). Provided M(b;) # 1, N, for a given b;, we take
the two closest boxes in P(b;) with different colors and draw a line
segment between them, calculating the color of the midpoint of this

line. If the color of the segment midpoint is such that we have all the
possible colors inside P(b;), then M(b;) = N, and we stop the proce-
dure. Otherwise, we choose intermediate points in this line segment
and repeat this procedure until M(b;) = N, unless the number of
points exceeds a specified limit.

After having obtained the values of M(b;) for all grid points, we
determine the set G, of those original boxes such that M(b;) = m,
for a given integer m. If m = 1, we have the set G, containing points
belonging to the interior of the jth escape basin (interior points).
Analogously, the set G, contains points belonging to the boundary
between two escape basins, that is, there are two different colors
inside the set C(b;) (boundary points). In the same way, G; con-
sists of points that belong to the boundary between three basins,
i.e., the set G; contains Wada points (points satisfying the Wada

property).
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Since the procedure outlined involves a number of refinements,
let us denote by G}, the set G,, obtained at the gth procedure step. We
expect that, as g goes to infinity, the sequence of refinements con-
verge to a final set G,,, in such a way that we compute the following
quantity:

N(Gr)

W, = lim —————— | (m=23,...Ny), (32)
=0 Y NG

where N (Gf) is the number of points of the set G; at the gth
refinement step.

In the case of W, =0, the system has (almost) no grid
boxes that belong to the boundary separating m escape basins. If
W, = 1, then (almost) all the boxes belong to the common bound-
ary of m escape basins. The system is said to have the Wada property
if Wy, = 1, given that it is always possible to find any color arbi-
trarily close to the boundary between two other colors. The system
is said to be partially Wada when 0 < W,, < 1, withm > 3.

In our problem, with N, = 3 escape basins, we calculated W,
and Wj for an increasing number g of procedure steps of computing
colors at the intermediate points between adjacent boxes, namely,

N(Gy)
Wy= ——— 33
27 N(Gy) + N(Gy) (33)
N(Gs)
Wy=—"—. 34
T N(G) + N(Gy) (34)

We checked, for each gth iteration of the procedure, whether or not
points of G, may belong to G; by testing 2(q — 2) initial conditions
which are intermediate between the central box and a neighbor box
with different colors. If some of these initial conditions present the
missing color, the central box is reclassified as Gj.

Our results, after 20 refinement steps, are show by Fig. 10(a),
where we plot the points classified as G; (black points), G, (red
points), and G; (green points). We observe a predominance of Wada
points belonging to the set G, in agreement with the complex basin
structure displayed by Fig. 9. Curiously, the number of interior
points is relatively small, as well as those belonging to a bound-
ary between only two escape basins. This suggests that the Wada
property holds in quite a large degree for our system.

The values of W, and Wj are shown in Fig. 10(b) as a function
of g. We observe a fast convergence after just g = 4 iterations, yield-
ing W, = 0.0424 and W3 ~ 0.9576. Hence, the basins of escape are
partially Wada but, since ca. 96% of the boundary points are Wada
points, the system is close to being totally Wada. The fast conver-
gence can be also appreciated in Fig. 10(c), which shows a histogram
for the number of points initially classified as belonging to the set G,
but which are reclassified to the G; set at each refinement step, after
a large number of evaluations of the quantities W, and W3. We see
that most of the convergence is obtained after three to five steps, and
the number of reclassified points decreases exponentially to zero as
q increases.

VIll. COLLISIONAL MAP

In the theoretical model that we used to describe the drift
motion of impurity particles, we neglected their mutual interaction
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FIG. 11. Numerical approximation of the (a) the stable and (b) the unstable,
manifolds. The blue is for the collisionless map, and in red is for the collision case.

through collisions and others processes involving the particles inter-
action with the plasma, an approximation valid if the collisional
frequency is low enough. However, in cases where this assumption
may be not entirely true, some kind of collisional effect should be
taken into account. However, since our description is limited to
the dynamics in the Poincaré surface of section, a detailed treat-
ment of collisions is not feasible (using, e.g., scattering functions
for a given cross-section). We consider instead a phenomenological
model in which the essential feature of collisions is implemented as
random perturbations of the particle position in the Poincaré surface
of section.”

Random perturbations in the particle motion can lead to the
escape of particles, otherwise trapped.”’”* However, in scattering
systems noise can enhance the trapping of trajectories.”” To under-
stand how the escape of particle is affected by collisions, we consider
a simple noise model in which we introduced a noise component in
our map M(v,). The collisional effects are included in the map by
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adding, with a probability P, a displacement of size
P =Vur1 = M(v,) + CP(ﬁ)) (35)

where C? = psin(I") and C, = p cos(I"), Pis the collision probabil-
ity from a given distribution function, and I' is the angle. For each
initial condition and at each given instant in time 7, a new value
of I' is randomly generated within the range of —7 < I" < 7. With
this, the map is non-autonomous as it fully depends of the snapshot
(value of n). Furthermore, it is no longer exactly area preserving.
Figure 11 shows the stable (a) and unstable manifolds (b) for the col-
lisionless and collisional map, with P =1 and p = 1073, calculated
using the sprinkler method with 1000 x 1000 initial conditions and
m = 10. In the collision map, the particles do not trace the unstable
manifold, rather they disperse about it. The fractal structures can be
destroyed in the presence of collisions.

In other words, the main effect of collisions, in terms of particle
escape, is the blurring of the stable and unstable invariant mani-
folds. Instead of Cantor-like sets of filaments, they become a spread
of points.

IX. CONCLUSIONS

Chaotic particle transport in magnetized plasmas is a subject of
utmost interest in view of its applications in the diffusion of impuri-
ties in tokamaks, for example. Charged impurities can be treated as
passive tracers advected by a time-dependent E x B flow. From this
point of view, particle dynamics can be cast into a Hamiltonian sys-
tem with one-and-a-half degrees of freedom. As long as we consider
the evolution of a limited number of particle impurities, our model
would be preferable to a kinetic description, for example. In addi-
tion, the Hamiltonian nature of the equations is useful to explain
the formation and evolution of a chaotic region near the peripheral
region of the tokamak.

In this work, we investigated the escape of chaotic particle
orbits using an area-preserving Poincaré map obtained from a drift
Hamiltonian, using realistic profiles and parameters. While many
related works focus on statistical properties of particle diffusion,
we rather concentrate on the particle dynamics itself, identifying
those sets of initial conditions leading to particle escape through
exits placed at the tokamak boundary. Those exits can be adapted to
include scenarios where divertor plates are suitably placed so as to
reduce particle fluxes on sensitive parts of the tokamak inner wall.

Due to the underlying dynamical structure of the chaotic orbit,
which leads to particle escape, the escape basins and their bound-
aries have fractal characteristics, which have been identified and,
whenever possible, quantified so as to measure the amount of
final-state uncertainty.

First, we divided the wall into two exits through which the
particles in the chaotic region (in phase space) can escape. The cor-
responding escape basins and their common boundary are fractal.
The structure of the escape basins features an infinite number of
fingers, which follow the intersection of a basin boundary segment
with the stable manifold of an unstable periodic orbit, embedded
in the chaotic region. We verified this fact from direct numerical
calculation of the invariant manifolds.

In addition, we quantified the fractality with the box-counting
dimension of the escape basin boundary by using the uncertainty
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exponent method. Our numerical results show a dimension close
to the dimension of the phase space itself (equal to two) for a wide
interval of the perturbation strength values, indicating a high degree
of fractal behavior. This has important consequences on the pre-
dictability of the final state of the system: even if we achieve a great
improvement in the uncertainty of the initial condition, this will
have nearly no effect on the predictability of the final state of the sys-
tem. In other words, it is practically impossible to predict by which
exit the particle will escape.

Since the values of the box-counting dimension are poorly
affected by the intensity of perturbation, we used other quantita-
tive diagnostics of fractal behavior. Accordingly, we calculated the
corresponding basin entropy and basin boundary entropy. These
quantities may vary between zero, when there is no uncertainty in
the final state, and a maximum value of log2 (in the case of two
exits). In the latter case, the basins are so intertwined that, for a
randomly chosen particle, the probability of escaping through either
exit is the same (equiprobable escape). We found that both entropies
increase with the amplitude of the fluctuations, in the same way as
the relative area occupied by one of the escape basins. Hence, we
conclude that this would be a better characterization of fractality
than the dimension itself.

A non-trivial and challenging topological property of fractal
basins is the Wada property for the case of three or more escapes. In
our work, we divided the tokamak wall into three exits of the same
size in order to investigate the Wada property, i.e., boundary points
having in their neighborhood points belonging to all three basins. A
qualitative way to suggest the existence of Wada property is to show
that the unstable manifold stemming from an unstable periodic orbit
intersects all basins, which we numerically verified.

Moreover, a quantitative way to assess the degree to which the
Woada property is fulfilled is the grid approach. Using this method
of successive refinements, we found that, for a given value of the
perturbation strength, 4.0% of the boundary points separate two
escape basins, whereas for 96% of the boundary points separate
three basins, thus displaying the Wada property so that the system is
partially but almost completely Wada.

The physical consequences of the Wada property are essentially
the same as those deriving from the fractal nature of the escape basin
boundaries. The difference, in the former case, is that the concept of
fractal boundary for three or more exits acquires a more deep and
precise meaning from the mathematical point of view.

In order to investigate the influence of collisions on the fractal
structures of the particle escape, we added a collisional term to the
map, assuming that collisions can be regarded as a noisy component.
Within this procedure, we found that collisions make the particles
disperse around the invariant manifold rather, which trace as the
collisionless case.

The theoretical model we used to describe the E x B drift flow,
influenced by electrostatic fluctuations, has some evident draw-
backs. First, we only considered one resonant mode, which is clearly
a simplification, given the broadband nature of the measured spec-
tra of electrostatic fluctuations in tokamaks. However, the addition
of more resonant modes, while more realistic, would not mod-
ify the chaotic region in a way that would affect our main con-
clusions. Our results are similar to the two drift waves model,”
given that the structures studied are consequences of the dynamics
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underlying chaotic orbits in non-integrable area-preserving systems.
Finally, since the theoretical and computational analyses shown in
this paper has been applied to E x B flows, we speculate that our
results may be of interest in other plasma configurations displaying
these features, like Hall thrusters™'****> and magnetron discharges
such as those used for High Power Impulse Magnetron Sputtering
(HiPIMS),”® Penning sources,”” and cusped-field thrusters.

SUPPLEMENTARY MATERIAL

The codes that support the findings of this study are openly
available in the supplementary material of this article and also on
GitHub at https://github.com/leonardo-cSouza/fractal_basin_of_
escape, Ref. 58.
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