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ABSTRACT

In this work, effects of constant and time-dependent vaccination rates on the Susceptible–Exposed–Infected–Recovered–Susceptible (SEIRS)
seasonal model are studied. Computing the Lyapunov exponent, we show that typical complex structures, such as shrimps, emerge for given
combinations of a constant vaccination rate and another model parameter. In some specific cases, the constant vaccination does not act
as a chaotic suppressor and chaotic bands can exist for high levels of vaccination (e.g., > 0.95). Moreover, we obtain linear and non-linear
relationships between one control parameter and constant vaccination to establish a disease-free solution. We also verify that the total infected
number does not change whether the dynamics is chaotic or periodic. The introduction of a time-dependent vaccine is made by the inclusion
of a periodic function with a defined amplitude and frequency. For this case, we investigate the effects of different amplitudes and frequencies
on chaotic attractors, yielding low, medium, and high seasonality degrees of contacts. Depending on the parameters of the time-dependent
vaccination function, chaotic structures can be controlled and become periodic structures. For a given set of parameters, these structures are
accessed mostly via crisis and, in some cases, via period-doubling. After that, we investigate how the time-dependent vaccine acts in bi-stable
dynamics when chaotic and periodic attractors coexist. We identify that this kind of vaccination acts as a control by destroying almost all the
periodic basins. We explain this by the fact that chaotic attractors exhibit more desirable characteristics for epidemics than periodic ones in a
bi-stable state.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0221150

Mathematical models are a powerful tool to study the spread of
diseases and strategies to control them. In the present contri-
bution, we examine the effects of constant and time-dependent
vaccination campaigns on the dynamical behavior of a seasonal
forced Susceptible–Exposed–Infected–Recovered–Susceptible
(SEIRS) model. The impacts of such strategies are investigated
through Lyapunov exponents for parameter planes. We discover

that typical complex structures emerge for constant vaccina-
tion and for a certain parametric configuration. The structures
observed in the parameters planes show very complex dynamics
in the model. Next, we use parameters for chaotic and bi-stable
solutions and explore the influence of a time-dependent immu-
nization program. We uncover that the time-dependent vacci-
nation campaign can control the chaotic bands, making them
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periodic under specific conditions. Using a parametric configu-
ration that generates bi-stable solutions where periodic–periodic
and chaotic–periodic attractors coexist, we investigate the effects
of a time-dependent immunization campaign on the dynam-
ics. For this, we develop a method to select one attractor over
another. Additionally, our results show that chaotic attractors
spend more time at low infection levels than periodic ones for the
same parametric configuration.

I. INTRODUCTION

Vaccination is one of the most efficient ways to control disease
spreading.1 For example, in the United Kingdom (UK), the reported
annual cases of measles in the pre-vaccination were around 100 000
to 800 000, but after the introduction of vaccination in 1968, the
reported cases decreased to 30 000 per year, from 1968 up to 1988.2

More recently, it has been estimated that COVID-19 vaccination
prevented around 14 × 106 deaths in 185 countries, from December
2020 to December 2021.3

Vaccine campaigns can be conducted by different strategies.
One is the mass vaccination campaign, which consists of vaccinating
a large number of people in a short time.4 Another is to vaccinate dif-
ferent groups in discrete time intervals, namely, pulsed vaccination.5

Moreover, some diseases are seasonal and are better controlled
by combining seasonal vaccination with routine campaigns,6 i.e.,
make them time-dependent. Such strategies have been shown use-
ful against certain diseases,7 especially seasonal ones.8 When they
are combined with routine programs, the time-dependent term
causes perturbations that can drive the system to a new equilibrium
situation.9

One form to decide the vaccination strategy is by means of
mathematical models,10 once these tools are powerful for modeling
and studying mitigation strategies for epidemic spread.11 In this way,
mathematical models bring very important insights for the elabora-
tion of campaigns. In a situation where two vaccine doses need to
be administrated, the models suggest that is better to discriminate
the population before applying the vaccine.12 With this procedure, a
smaller amount of doses is needed to reach the same effects as when
they are applied randomly. In addition, if the vaccine is applied in a
pulsed protocol, the number of wasted doses is drastically reduced.
When seasonal effects are taken into account in the contact rates,
pulsed vaccine combined with routine is more efficient than just
routine vaccine.13 Many works have been done in terms of vacci-
nation strategies.14–19 However, there are only a few works dedicated
to understand the dynamical behavior of such systems.

Under constant vaccination protocols, the Susceptible-Infected-
Recovered (SIR) model with logistic growth can produce complex
dynamics for a set of parameters.20 These solutions exhibit differ-
ent kinds of bifurcation such as Hopf, transcritical, Belyakov, and
saddle-node, depending on the basic reproduction number (R0) and
the proportion of vaccinated individuals. When pulses are incorpo-
rated into the vaccination strategy, solutions of disease-free (DFE)
can be obtained depending on the rates.21 Moreover, the system is
driven to chaotic solutions in the presence of seasonal variations.
The chaotic solutions generated due to the seasonal forcing can
be controlled to periodic motion when a seasonal component is

added to the vaccination strategy.22 For a general periodic vaccina-
tion rate, periodic DFE solutions are ensured when R0 < 1 and have
the same period as the vaccine function.23 DFE solutions are glob-
ally asymptotically stable for R0 < 1 in a situation where the period
of vaccination function is a multiple integer of the seasonal contact
rate. Nonetheless, this solution becomes unstable for R0 > 1.24 In a
SEIRS seasonal model, chaotic and bi-stable solutions can emerge
for constant and pulsed vaccination rates.25

In this work, we study the dynamical behavior of a seasonal
forced SEIRS model under constant and non-constant (seasonal)
vaccination rates. We explore the dynamical properties in a wide
range of parameters and present a control method for bi-stability. In
this way, this research is a strong generalization of a previous paper
about the effect of the constant and pulsed protocol of vaccination
rates.25 We investigate the effects of constant and time-dependent
vaccination rate into the dynamical behavior of a seasonal SEIRS
model, aiming to understand the following questions: (i) Could the
constant vaccination rate suppress chaotic dynamics? (ii) What are
the effects of vaccination types in the bi-stable range?

To explore these questions, we split this work into two parts.
In the first one, for a constant vaccination protocol, we verify that
chaotic solutions can be produced even for high vaccination rates
depending on the other parameters. Furthermore, we show that
under specific conditions, some typical complex structures such as
shrimps26 emerge. This typical complex structures were first named
by Gallas.26 In terms of bi-stability, we find that the seasonal vaccina-
tion can act as a control method. This control enables us to select the
attractors as a function of the vaccination parameters. In addition,
periodic basins can be destroyed due to high levels of infection.

We organize this work as follows: In Sec. II, we present the
model and discuss some aspects of its equilibrium. Section III is
dedicated to show the results related to constant vaccination. The
seasonal vaccination rate is described in Sec. IV, and its influence
on bi-stable solutions is discussed in Sec. V. Finally, we draw our
conclusions in Sec. VI.

II. MODEL

Given a population of size N, the SEIRS model splits the popu-
lation according to their infectious status, which are Susceptible (S),
Exposed (E), Infected (I), and Recovered (R).27 Healthy individuals
are stored in S, infected but not infectious in E, infectious in I, and
recovered in R.1 Originally, this model did not include vaccination.28

However, this can be done by transferring newborns and other
S individuals to R compartment,29 as schematically represented in
Fig. 1. The arrows indicate the flow between the compartments,
where the parameters are b birth rate; β contact rate of between S

FIG. 1. Representation of the SEIRS model with vaccination.
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and I individuals; 1/α latent period; γ recovery rate; 1/δ time to loss
the immunity; µ natural death rate; κ vaccine efficacy; p newborn
vaccination rate; and v0 rate at which S individuals are vaccinated.
Without the loss of generality, we use κ = 1 in this whole work.
Observe that the fraction bpN that is introduced in R came from the
vaccination in the S newborns.

The representation in Fig. 1 shows the compartments S, E, I,
and R in capital letters, which represent the number of individuals in
each compartment, from a given population N. From the modeling
point of view, we can work with the model independent of N. To do
that, we write the equations in terms of the fractions s, e, i, and r. A
complete discussion about the normalization is given in Ref. 30. The
normalized SEIRS is described by the following system of ordinary
differential equations:

ds

dt
= b(1 − p) − βsi + δ(1 − s − e − i) − µs − κv0s, (1)

de

dt
= βsi − (α + µ)e, (2)

di

dt
= αe − (γ + µ)i, (3)

where we assume b = µ, and then, r = 1 − s − e − i. For more
details about the equilibrium solutions and properties of Eqs. (1)–(3)
refer to Refs. 13.

We consider a time-dependent contact rate given by

β ≡ β(t) = β0 [1 + β1cos(ωt)] , (4)

where β0 is the average contagion rate, β1 ∈ [0, 1] is the seasonality
degree, and ω is the frequency. This formulation is taken to model
seasonal infectious disease transmission.31–33

The main novelty of this work is to explore the effects of a
seasonal vaccination, that is, modeled by the continuous function,

v(t) = v0 + ξcos
(

ωvt
)

, (5)

where ξ ∈ [0, v0] is the amplitude and ωv is the frequency of the
vaccination campaign. Observe that when ξ � 1 the vaccination
campaign is predominantly given by v0 but with a periodic pertur-
bation. The period of vaccination is given by Tv = 2π/ωv in years
unity.

The complete model is described by Eqs. (1)–(3) together to
Eqs. (4) and (5). For biological reasons, the initial conditions and
the parameters present in Eqs. (1)–(5) are ≥ 0. Then, the solu-
tions are bounded in the set: D = {(s, e, i) ∈ [0, 1]3} for every t ≥ 0
(Ref. 34). The solutions are numerically obtained by fourth-order
Runge–Kutta method35 with the integration step equal to 10−3.

Figure 2 displays the numerical solutions for b = 0.02,
p = 0.25, κ = 1, v0 = 0.2, β0 = 800, β1 = 0.20, ω = 2π , α = 40,
γ = 100, δ = 0.25, and ξ = 0. The blue, black, red, and green lines
show the respective solutions for s, e, i, and r variables. This result is
for the interval of 10 years, discarding the first 10 years of transient.
The solution is oscillatory with a period equal to 2π .

FIG. 2. Numerical solution for the SEIRS model. The blue, black, red, and
green lines are for s, e, i, and r , respectively. We consider b = 0.02, p = 0.25,
κ = 1, v0 = 0.2, β0 = 800, β1 = 0.20,ω = 2π , α = 40, γ = 100, δ = 0.25,
and ξ = 0.

III. DYNAMICAL BEHAVIOR FOR ξ = 0

First, we study the effects of a constant vaccination rate on the
dynamical system, i.e., ξ = 0 in Eq. (5).

The influence of v0 on the dynamical system behavior is mea-
sured by the associated Lyapunov exponents computed for each
pair v0 × [·], where [·] is one parameter from the model. In this
work, we display the Lyapunov exponents in color scale. When
the Lyapunov exponents are greater than zero, we plot the first
largest one, and when they are smaller than zero, we plot the second
largest. We follow this procedure due to the fact that the transforma-
tion from non-autonomous to autonomous systems gives us a null
exponent.30 We use the Wolf algorithm to compute the Lyapunov
exponents36 under initial conditions equal to s0 = 1 − e0 − i0,
i0 = 10−3, e0 = 0. The Lyapunov exponents showed in this research
are limited in the range [−0.4 : 0.4] to obtain a standard color code.
Nonetheless, it is important mentioning that the exponents can be
lower or higher than this range. The transient is fixed as 5 × 105

integration steps.
Figure 3 exhibits the results for the parameter planes v0 × α

and v0 × γ , in Figs. 3(a) and 3(b), respectively. The color scale
indicates the Lyapunov exponent (λ). DFE (disease-free) solutions
are separated from non-DFE ones by the dotted magenta curve.
To numerically verify the DFE, we compute the area under i
and e curves. When both are less than 10−6, we obtain a DFE
solution. Inspired by the minimal vaccination coverage obtained
by Gabrick et al.,13 we fit the numerical result for DFE using a
function v0(α) = a/(1 + bα−1) + c, obtaining a = 0.7089 ± 0.0001,
c = 0.2702 ± 0.0001, where b is the birth rate. Comparing with
Eq. (13) from Ref. 13, we get v0(α) = 0.715/(1 + 0.02α−1) − 0.27.
These results show that α has an influence on DFE only for small val-
ues. For a fixed α, variations in v0 can lead the system from a periodic
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FIG. 3. Influences of the constant vaccination rate (v0) and α, in (a) for γ = 100;
and v0 × γ , in (b) for α = 100, in the Lyapunov exponent (λ), in a color
scale. We consider b = 0.02, ω = 2π , δ = 0.25, β0 = 270, β1 = 0.28, and
p = 0.25. Green circles and gray squares highlight transitions by crisis and
period-doubling, respectively. The cyan square highlighted in (a) is magnified in
Fig. 4.

dynamics to chaotic via period-doubling, such as the points marked
by the gray squares. Additionally, v0 can lead the system back to
periodic behavior via crisis37 in some points, such as the points
delimited by the green circles. For a certain range of parameters,
we observe the coexistence between periodic and chaotic attractors.
When we compute the total number of infected individuals in the
periodic or chaotic regime in the same time window, our results
show that this number is practically the same for these parameter
configurations. These results lead us to conclude that the total num-
ber of infected individuals is independent whether the dynamics are
chaotic or periodic.

Fixing α = 100 and varying γ , we get the result shown
in Fig. 3(b). The DFE separation is given by a non-linear
expression equal to v0(γ ) = a/(γ + b) + c, with a = 70.47 ± 0.02,
c = 0.2699 ± 0.0002, and b is the natural birth. This relation

FIG. 4. Magnification of a shrimp highlighted by the cyan square in Fig. 3(a),
for constant vaccination. We consider b = 0.02, ω = 2π , δ = 0.25, β0 = 270,
β1 = 0.28, γ = 100, and p = 0.25.

establishes v0 ∝ γ −1 as a threshold for DFE. The power-law behav-
ior can be understood by the fact that as the measure γ increases
faster, the individuals go to R, which helps to obtain DFE once
the other parameters are not able to sustain an endemic state. On
the other hand, as γ decreases until γ = 56.56, more vaccination
is needed to obtain DFE. For values γ < 56.56 even with v0 = 1.0,
there is no DFE. Contrary to the result Fig. 3(a), the type of dynam-
ics is more stronger dependent on the combination of v0 and γ .
Nonetheless, for a fixed γ value, period-doubling bifurcations and
crisis also can be found, as marked by the gray squares and green cir-
cles, respectively. We also observe that the total number of infected
does not change whether the dynamics is chaotic or periodic.

As previously observed, combinations of v0 × α lead to rich
typical complex structures, such as shrimps, highlighted by the small
cyan square in Fig. 3(a). A magnification of this structure is dis-
played in Fig. 4. Shrimps are periodic structures immersed into
chaotic bands.38,39 As far we know, in epidemiological models, the
emergence of such structure was first reported in Ref. 30. Shrimps
are important features because in their vicinity, cascades of similar
periodic structures can happen, leading to a chaotic route.40 Close
to shrimps, small changes in the parameters can drastically alter the
dynamic.41 In our case, the main body of the structure has period 5.

Figure 5 exhibits the results for the combinations v0 × β0

[Fig. 5(a)] and v0 × δ [Fig. 5(b)] as a function of λ in the color
scale. These outcomes are for constant vaccination. For both pan-
els, the DFE solution is delimited by a linear relationship given
by v0(x) = ax + c. When x = β0, we obtain a = 0.002 ± 9 × 10−7,
c = −0.2701 ± 0.0003, and for x = δ: a = 1.6724 ± 0.0004 and
c = 0.1848 ± 0.0001. The parameters are very close to the ones
yielded directly from the theoretical result [Eq. (13) in Ref. 13]. The
apparent similarity of the results generated by varying β0 and δ also
occurs in the absence of vaccination.25,30 As in the previous results,
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FIG. 5. Influence of the constant vaccination rate (v0) and β0, in (a) for δ = 0.25;
and v0 × δ, in (b) for β0 = 270, in the Lyapunov exponent (λ), in the color
scale. We consider b = 0.02, ω = 2π , γ = 100, α = 100, β1 = 0.28, and
p = 0.25. Green circles and gray squares highlight the crisis and period-doubling
bifurcations, respectively.

some bifurcations via period-doubling and crisis also are highlighted
by gray squares and green circles. For β0 ≥ 488.5, only non-DFE
solutions occur even for v0 > 0.95 [Fig. 5(a)]. Additionally, chaos
is observed for v0 > 0.95 in the range β0 ∈ (560, 614). This result
shows that v0 does not act as controlling chaos. For β0 > 604, only
periodic solutions remain, independent of v0. In this case, a high
contact rate leads to periodic solutions. Fixing β0 = 270 and varying
δ, only periodic solutions exist for δ > 0.624 [Fig. 5(b)]. Therefore,
when the lost of immunity occurs for periods less than 1.6 years,
the dynamic is periodic. On the other hand, diseases with a lost of
immunity greater than 1.6 can generate chaotic dynamics.

Another constant relationship that separates DFE solutions
from endemics ones is obtained by varying ω [Fig. 6(a)]. In this case,
the threshold is independent of ω and is given by v0 = 0.44. For
v0 < 0.44 and ω ∈ (0.48, 3.26)π , the solutions can be periodic or
chaotic. Outside this range, there are only periodic solutions. For

FIG. 6. Effects of the constant vaccination rate (v0) and ω, in (a) for β1 = 0.28;
and v0 × β1, in (b) for ω = 2π , in the Lyapunov exponent (λ), in the color
scale. We consider b = 0.02, δ = 0.25, γ = 100, α = 100, β0 = 270, and
p = 0.25. Green circles and gray squares the highlight transitions by crisis and
period-doubling, respectively.

a given ω in the chaotic band, the increase of v0 can suppress
the chaotic behavior. After some transient, the total infected only
depends on v0. One important value of this parameter is 2π . We
observe some transitions in the dynamics induced by the crisis
(green circles) and period-doubling (gray square).

As our last analyses of the parameter plane, we fix ω = 2π
and vary β1, as shown in Fig. 6(b). For this result, the DFE is not
described by the relation obtained in Ref. 13. This is expected once
this minimum coverage is derived for the non-autonomous model.
Here, we give a contribution showing that for β1 > 0.5, a non-linear
contribution appears. Now the separation from DFE to endemic
can be described by v0(β1) = a + cβ1 + dβe

1 , with the parameters
a = 0.4398 ± 0.0003, c = 0.7103 ± 0.0006, d = −0.8114 ± 0.0006,
and e = 1.108 ± 0.001. In this sense, an analytical expression for
the minimum coverage for the forced model remains an open ques-
tion. The non-linear contribution appears because for high levels of
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β1 combined with v0, the DFE is reached earlier. Chaotic solutions
are found only for v0 < 0.38 and β1 > 0.12. Additionally, chaotic
orbits depend are strongly dependent on β1. Fixing β1 = 0.5 and
varying v0, we observe many chaotic bands that emerge from cri-
sis or period-doubling bifurcation and are marked by green circles
and gray squares, respectively.

IV. SEASONAL VACCINATION

Now, we consider the effects of a time-dependent vaccination
campaign, i.e., ξ and ωv 6= 0 in Eq. (5). However, to obtain the
chaotic and bi-stable solutions, we construct a bifurcation diagram
for a constant vaccination rate by recording i in the stroboscopic
section as a function of β1.

Figure 7 displays the bifurcation diagram for β1 and a con-
stant vaccination rate v0 = 0.1. The y-axis shows the i variable in
the stroboscopic section. We select these parametric configurations
because of the richness of the dynamical behavior. The red and blue
points are recorded in the forward and backward directions of β1,
showing a hysteresis curve.42 The gray background highlighted the
bi-stable regions, which will be investigated in Sec. V. In the absence
of vaccination, for β1 > 0.9, only chaotic solution is obtained.25,30

For the considered parametric configuration and for v0 = 0.1, a
periodic solution emerges for high levels of β1. It is worth men-
tioning that for other values of v0, chaotic orbits can be found in
this range [Fig. 6(b)]. To explore the effects of ξ and ωv 6= 0 in
the chaotic bands, we consider three levels of seasonality degree,
which we define by high β1 ∈ [0.7, 1], medium β1 ∈ (0.3, 0.7), and
low β1 ∈ [0, 0.3]. In Sec. A, we discuss in the following all of
them.

FIG. 7. Bifurcation diagram type hysteresis for β1 considering a constant vacci-
nation rate v0 = 0.1. The points are recording in the stroboscopic section. The red
points are in the forward and the blue points are in the backward direction of β1.
The gray background delimits the bi-stable solutions.We consider b = µ = 0.02,
α = 100, γ = 100, ω = 2π , δ = 0.25, β0 = 270, and p = 0.25.

A. Low seasonality degree

Considering a seasonal vaccination campaign [Eq. (5) with ξ

and ωv 6= 0], we investigate how the chaotic solution for low sea-
sonality (β1 = 0.15) is affected. Figure 8(a) displays the parameter
plane ξ × ωv as a function of λ in the color scale. It is important to
note that in Fig. 8(a), as well as in Figs. 9(a) and 10, the top x-axis
exhibits the period Tv in months, where we mark the points in which
periodic bands emerge. In Fig. 8(a), we observe the existence of four
periodic bands, namely, I, II, III, and IV. These bands occur for, and
near, ωv (Tv) = 2.094 (36.00), 2.512 (30.01), 3.139 (24.02), and 3.771
(20.00). We select these points to analyze because they represent a
richer dynamics than their neighbors. It is important to note that
some periodic bands are narrower than others. The first two bands,
I and II, are magnified in Fig. 8(b). Fixing Tv = 36.00, we increase ξ

FIG. 8. Impacts of seasonal vaccination in the chaotic attractor for β1 = 0.15.
(a) The parameter plane ξ × ωv where the color scale indicates the Lya-
punov exponents (λ). (b) and (c) The magnification of periodic bands from
(a). We consider b = 0.02, α = 100, γ = 100, ω = 2π , δ = 0.25, β0 = 270,
p = 0.25, and v0 = 0.1.
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from 0.02 up to 0.10, and then, a crisis is found at ξ ≈ 0.076, which
is marked by the green circle in Fig. 8(a). At this point, the chaotic
attractors coalesce in a periodic branch with period 1, for which the
amplitude of the i variable in the stroboscopic section decreases until
0.0056 in ξ = 0.1. Following ωv in the positive direction, we reach
the periodic band II [Fig. 8(a)]. It displays more complex dynam-
ics when compared to I. For Tv = 30.01 and increasing ξ in the
range from 0.02 to 0.1, a crisis occurs at ξ ≈ 0.027, and the chaotic
attractor becomes periodic with period 1. The attractor with period
1 doubles the period at ξ ≈ 0.042, which is denoted by a horizontal
white line in Fig. 8(a). The period 2 attractor suffers another period-
doubling bifurcation at ξ ≈ 0.055. The 4-period attractor ends in
ξ ≈ 0.06 and many subsequent period-doubling bifurcations occur,
which we denote by the three white dots in Fig. 8(a). For this value of
Tv, the chaotic attractor becomes periodic via a crisis (increasing ξ )
and then returns back to chaos via period-doubling bifurcation. The
return to chaos occurs in the range ξ ∈ (0.064, 0.1]. The i amplitude
in the stroboscopic section is higher in the chaotic regime than in
the periodic one. The bands III and IV are magnified in Fig. 8(c).
To explore the dynamic associated with the band III, we consider
Tv = 24.02 and vary ξ . The chaotic attractor disappears via a crisis
at ξ ≈ 0.056 giving rise to a 5-period attractor until ξ ≈ 0.067. For
ξ > 0.067, the period of the attractor changes to 3 and stays there for
the whole analyzed range. We analyze the last band, namely, IV, by
considering Tv = 20. A crisis occurs at ξ ≈ 0.039, and the chaotic
attractor changes to a periodic one with a period equal to 2. This
period does not change in the considered range. Bands III and IV
leave the system near to DFE. In ξ = 0.1, period 3 branch for III
oscillates among i = 0.0016, 0.000 009, and 0.006 842 in the stro-
boscopic section. For the same value of ξ and for IV, the dynamic
oscillates between i = 0.006 025 and 0.000 002.

B. Medium seasonality degree

To evaluate the seasonal vaccination campaign in a medium
seasonality degree, we fix β1 = 0.5. For this parameter, seven peri-
odic bands emerges in the range ωv ∈ [0.25, 1.70] (Tv ∈ [301.59,
43.084]), as shown in Fig. 9(a). Bands I’, II’, and III’ are magni-
fied in Fig. 9(b), while IV’, V’, VI’, and VII’ in Fig. 9(c). Each
band occupies a certain range in the ωv (Tv) parameter. Nonethe-
less, we select some values to locate each periodic branch. Focusing
in Fig. 9(b) and fixing ωv = 0.349 (Tv = 216.04), if we increase
ξ from 0 to 0.1 direction, we find a crisis point marked by the
green circle that gives the origin for band I’. The crisis occurs at
ξ ≈ 0.07 where the chaotic attractor coalesces in a periodic branch
with period 1 and remains there until the analyzed range (ξ = 0.1).
This periodic branch oscillates sinusoidal reaching a minimum value
in the stroboscopic section equal to i = 0.016. Thereafter, it starts
increasing again. Periodic band II’ can be obtained with ωv = 0.609
(Tv = 123.80) and varying ξ [Fig. 9(b)]. In this case, the chaotic
band goes to a 1-periodic attractor in ξ ≈ 0.058 and remains there
until ξ = 0.07. For values ξ > 0.07, this band returns to the chaotic
attractor. In the stroboscopic section, the periodic branch oscil-
lates sinusoidal in ξ ∈ (0.058, 0.07), having the first minimum local
point in the pair (ξ , i) ≈ (0.061, 0.008). After that, it increases until a
maximum in (ξ , i) ≈ (0.065, 0.037). From ξ > 0.065 until ξ = 0.07,

FIG. 9. Impact of seasonal immunization program in the chaotic attractor for
β1 = 0.5. (a) The parameter plane ξ × ωv as a function of Lyapunov exponent
(λ), in the color scale. The periodic bands present in (a) are magnified in (b) and
(c). We consider b = 0.02, α = 100, γ = 100, ω = 2π , δ = 0.25, β0 = 270,
p = 0.25, and v0 = 0.1.

the stroboscopic section in i decays and remains practically con-
stant for i ≈ 0.0003. To investigate the band III’, we set ωv = 0.698
(Tv = 108.02) [Fig. 9(b)]. It occurs a crisis at ξ ≈ 0.01 where the
chaotic attractor goes to 1-periodic attractor until ξ ≈ 0.031. At this
point, it occurs a bubble bifurcation and the attractor starts to have
period 2 until ξ ≈ 0.053. After that, the attractor returns to period 1.
The bifurcations are delimited in Fig. 9(b) by the white horizon-
tal line. Now, we analyze the range ωv ∈ [1.05, 1.6] (Tv ∈ [71.807,
47.123]), which is displayed in Fig. 9(c). Bands IV’, V’, VI’, and
VII’ are narrow in ωv (Tv) when compared to I’, II’, and III’. Con-
sidering ωv = 1.122 (Tv = 67.19), we get the band IV’, in which a
1-period attractor is created at ξ ≈ 0.085 via a crisis. It is impor-
tant to note that the 1-periodic attractor changes its amplitude for
ξ > 0.0894, which is delimited by the horizontal white line. More-
over, the attractor does not changes suddenly the amplitude. First, it
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occurs a period-doubling bifurcation in ξ = 0.0885 and a new bifur-
cation in ξ = 0.0887 for a periodic attractor with period 3. Just after,
ξ > 0.0894 that the attractor returns to period 1 with a different
amplitude. We do not mark these bifurcations in the figure because
it occupies a very short range in ξ . Following the 1-periodic attractor
in the stroboscopic section for i, its amplitude increases linearly in
the range ξ ∈ [0.0894, 0.1], from i ∈ [0.023, 0.027]. A small periodic
band, called V’, also exists for ωv = 1.254 (Tv = 60.12). The chaotic
attractor goes to a 1-periodic attractor in the range ξ ∈ (0.09, 0.1].
The structure VI’ exhibits an interest dynamics for ωv = 1.398
(Tv = 53.93). The chaotic attractor goes to a periodic attractor via a
bifurcation that starts in ξ ≈ 0.05. In the range ξ ∈ (0.05, 0.08), the
periodic band has period 1 and, at ξ ≈ 0.084, a bifurcation occurs
where the periodic attractor goes to period 2 and remains there.
Finally, the last band, namely, VII’ [Fig. 9(c)], shows the transition
from chaotic behavior to periodic via a bifurcation at ωv = 1.571
(Tv = 48). Our results show that the chaotic attractors go to periodic
ones via periodic doubling bifurcation. However, there is a periodic
branch that occupies the range ξ ∈ (0.06, 0.1], for i = 0.0004 in the
stroboscopic section. The chaotic attractor becomes periodic with
period 5 in ξ ∈ (0.082, 0.083), where for ξ ≈ 0.083 a new bifurca-
tion occurs, that is, marked in Fig. 9(c) by the white horizontal line,
and the periodic band becomes a 3-period until ξ ≈ 0.091. At this
point, a new bifurcation occurs and the attractor has period 2, one
branch for i = 0.04 and another for i = 0.0004.

C. High seasonality degree

Considering a high seasonality degree in the contact function,
e.g., β1 = 0.95, it is possible to obtain two periodic bands in the
range ωv ∈ [0.8, 2] (Tv ∈ [94.247, 37.699]), denoted by I” and II”
(Fig. 10). Band I” is wider (in ωv axis) and longer (in ξ axis) than II”.
Fixing ωv = 0.9 (Tv = 83.77), we observe that the chaotic attractor
changes to a 1-periodic attractor at ξ ≈ 0.02 (Fig. 10). The peri-
odic branch increases in its amplitude. For example, if we consider
ξ = 0.01 (chaotic regime), the maximum amplitude of the attrac-
tor is 0.01, in the stroboscopic section for i. However, when the
attractor changes the regime, the periodic attractor increases in the
amplitude reaching the maximum value (ξ , i) = (0.025, 0.062). For
ξ > 0.025, the i amplitude decreases until i = 0.001 in ξ = 0.1.
A different dynamics is generated by considering ωv = 1.796
(Tv = 41.98), which corresponds to a value inside the band II”
(Fig. 10). The chaotic attractor becomes periodic in ξ ≈ 0.07, but
the amplitude of the attractor decreases, in the i stroboscopic section
from 0.07 (in chaotic regime) to 0.000 04 (periodic behavior at
ξ = 0.071). Increasing ξ , the amplitude of the periodic branch also
increases and reaches the pair (ξ , i) = (0.1, 0.095).

In Figs. 8–10, some sparse points appear and the periodic bands
are not well defined. By increasing the transient time or the number
of iterations, we observe that the results remain unchanged. In this
way, there is no transient effect present in the results.

V. INFLUENCE OF SEASONAL VACCINATION IN

BI-STABILITY

In this section, we investigate the effects of a time-dependent
immunization program in the basin of a bi-stable solution. This is

FIG. 10. Impact of seasonal immunization campaign in the chaotic attractor
for β1 = 0.95. We consider b = 0.02, α = 100, γ = 100, ω = 2π , δ = 0.25,
β0 = 270, p = 0.25, and v0 = 0.1.

made by using ξ and ωv 6= 0 [Eq. (5)], and the basins are computed
in the bi-stable solution shown in Fig. 7.

First, let us consider ξ = ωv = 0. From the result in Fig. 7, we
observe three bi-stable regions that are highlighted by the gray back-
grounds. In our simulations, we consider ξ = ωv = 0 and v0 = 0.1.
These bi-stable regions show the richness of the considered dynam-
ical system.43 In this type of system, the evolution is extremely
dependent on the initial conditions.44,45 For more details about bi
and multi-stable system, we refer to Refs. 46–49. In Fig. 7, the first
highlighted background shows the coexistence between two differ-
ent periodic attractors in β1 ∈ (0.06, 0.09). After β1 ∈ (0.06, 0.083),
it occurs a bifurcation to period 2 in the red attractor. We compute
the basin of attractions considering the pair e0 ∈ [0, 1] × i0 ∈ [0, 1],
and s0 = 1 − e0 − i0, such that s0 + e0 + i0 ≤ 1. We discretized our
space in a grid of 100 × 100. The basin for β1 = 0.07 is displayed in
Fig. 11(a). Only in this basin, we do not follow the color code from
Fig. 7. Instead, we mark the basin correspondent to the period 2
attractor by the orange color and for period 1 by blue one. The white
color shows a prohibited region, where s0 + e0 + i0 + r0 > 1. Con-
sidering this mentioned discretization, we obtain 10 000 possible
initial conditions where 5050 evolve to one attractor or another. We
call these 5050 initial conditions by valid points. We use the notation
σ for the fraction that evolves to a period 1, 1 for the fraction that
goes to period 2, and 0 for chaotic orbits. The period of the orbits
is determined from the stroboscopic section. From the valid initial
condition, a fraction equal to σ = 0.23 evolves to the attractor with
period 1, while the remaining 1 = 0.77 evolves to period 2 attrac-
tor. The second bi-stable region is in β1 ∈ (0.17, 0.20) and exhibits
the coexistence of a chaotic attractor, in the red branch, and a peri-
odic one, in the blue branch. The basin for β1 = 0.18 is displayed
in Fig. 11(b). The red color shows the pair (e0, i0) that evolves to a
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FIG. 11. Basin of attraction for constant vaccination campaign (ξ = 0).
Each basin corresponds to a section in Fig. 7, where (a) is for β1 = 0.07, (b) is for
β1 = 0.18, and (c) is for β1 = 0.36. The blue color shows the points that evolve
to the periodic attractor with period 1, orange exhibits initial conditions that goes to
period 2, and the red part is relative to chaotic attractors. We consider b = 0.02,
α = 100, γ = 100, ω = 2π , δ = 0.25, β0 = 270, p = 0.25, and v0 = 0.1.

chaotic attractor, while the blue color displays the pair that goes to a
periodic regime. Considering the same procedure, the fractions are
0 = 0.75 and σ = 0.25. For ξ = ωv = 0, around 75% of the consid-
ered initial conditions evolve to the chaotic regime. The last bi-stable
range is in β1 ∈ (0.35, 0.365) where there is a coexistence between
chaotic and periodic attractors. Figure 11(c) displays the basin of
attraction for β1 = 0.36. In this case, σ = 0.26 and 0 = 0.74, i.e., the
chaotic attractor is preferable. However, we have an attractor with
period 1 in each basin, and it is important to observe that they are
different.

Having the fraction of valid initial conditions that goes to
period 1, 2, and chaos under constant immunization campaign, we
explore how these fractions change in relation to ξ and ωv 6= 0, i.e.,

a time-dependent campaign. To do this, we compute the basins by
each pair ξ × ωv and the fraction σ . Then, we verify how σ depends
on ξ and ωv by looking at the parameter planes. We use the fol-
lowing color code: σ ∈ [0, 0.05] in black; σ ∈ (0.05, 0.45] in yellow;
σ ∈ (0.45, 0.5] in white; σ ∈ (0.5, 0.55] in cyan; σ ∈ (0.55, 0.95] in
blue; and σ ∈ (0.95, 1] in purple. The intermediate colors show the
intermediate values.

First, let us consider β1 = 0.07, which corresponds to the basin
in Fig. 11(a). Figure 12(a) displays the parameter plane ωv × ξ where
the color scale represents σ . For a long period, i.e., Tv > 15.87, it
is possible to observe a significative purple range, i.e., more than
95% of the valid points evolve to period 1 in this section. On the
other hand, for Tv < 7.93, the initial conditions evolve, mostly, to
the 2-period attractor. It is worth mentioning that mostly part of
this parameter plane is marked by orange color, which means that
approximately 20% of valid points goes to period 1. Considering
β1 = 0.18, there is a bi-stable dynamics where chaotic and 1-period
attractors coexist. Employing the same methodology that used to
generate 11(a), we get Fig. 12(b). A significant part of the param-
eter plane is black, red, and orange. Meaning that σ < 0.5 for most
combinations of ξ and ωv. As previously observed, without seasonal
terms in the vaccination rate, almost 75% of the 5050 initial condi-
tions evolve to the chaotic attractor. The preference by the chaotic
attractor remains when we consider ξ and ωv > 0. Just small struc-
tures are in purple color for Tv > 15.87. Another bi-stable solution
exists for β1 = 0.36. A similar result is displayed in Fig. 12(c). In
this case, we do not observe purple tones, only cyan. The rest of
the parameter plane contain orange, black, and red colors, meaning
that σ < 0.5 for mostly part of ξ × ωv. The methodology employed
and the results show that seasonal vaccination works as a control of
bi-stability.50–52

A. Why the chaotic attractors are preferred?

Our results in Figs. 12(b) and 12(c) show that reaching the
chaotic attractor is more preferable for the vaccination campaign. At
this point, we need to understand the epidemics properties of peri-
odic and chaotic attractors in an attempt to clarify why the chaotic
attractors are preferred in these situations. As we observed in pre-
vious results, the total infected number is independent of chaotic
or periodic attractors. However, for a given set of parameters, it
is observed that chaotic attractors can have higher maxima values
of infected individuals when compared to the periodic regime in
the absence of vaccination.30 The same happens in the presence of
constant vaccination for some values of β1 in the bi-stable range
(Fig. 7). To understand which attractor is better in epidemic situ-
ations, we consider two bi-stable regions in β1 = 0.18 (bi-stability
2) and β1 = 0.36 (bi-stability 3), as displayed in Fig. 7.

One important characteristic in epidemic situations is the max-
imum point of infected individuals. In order to evaluate the local
maximum points for the chaotic time series, we evolve the system
during 2 × 105 iteration steps, discarding 106 as transient, over all
the chaotic initial conditions according to Figs. 11(b) and 11(c).
In total, we have 3803 and 3730 initial conditions for β1 = 0.18
and β1 = 0.36, respectively. Figure 13(a) shows the normalized fre-
quency of maxima values of i for β1 = 0.18. The red bar is related to
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FIG. 12. Parameter plane ξ × ωv. The color scale displays the fraction of valid
initial conditions that evolve to the period 1 attractor (σ ). (a) is for β1 = 0.07,
(b) is for β1 = 0.18, and (c) is for β1 = 0.36. We consider b = 0.02, α = 100,
γ = 100, ω = 2π , δ = 0.25, β0 = 270, p = 0.25, and v0 = 0.1.

chaotic time series while the blue is periodic. We normalize accord-
ing to the higher frequency value. From this result, we observe
that the maxima point for periodic orbit is always in 0.025, while
the chaotic are distributed in the interval (10−6, 0.017). The higher

FIG. 13. Distributions of maxima i values for chaotic orbits (red bars) and peri-
odic (blue bars) under constant vaccination (v0 = 0.1). (a) is for β1 = 0.18 and
(b) is for β1 = 0.36. We consider b = 0.02, α = 100, γ = 100, ω = 2π ,
δ = 0.25, β0 = 270, p = 0.25, and v0 = 0.1.

occurrence of maxima values of i for the chaotic attractor occurs
for imax < 10−5. Figure 13(b) displays a similar result for β1 = 0.36.
The values of imax for the chaotic initial conditions are distributed
in the interval (10−6, 0.041), with higher occurrence for imax < 10−5.
By computing imax for the periodic initial conditions, we obtain a
period 2, showing that the epidemic, in this case, is biannual, when
we consider the section by the maxima points. In this case, we
find imax = 0.0484 or imax = 2 × 10−6. From both of these results,
we observe that chaotic attractors have less maximum value than
periodic ones.

Another important measure is to know how long the attractor
stays within limits of fewer and higher infections. As our model has
the E compartment, it is important to evaluate i and e. Considering
the same transient and the same initial conditions as in the previous
case, we project the attractors in the plane e × i and establish thresh-
olds in relation to i and e maxima values in the projection. We select
the thresholds equal to 50% and 75% of these pairs. By means of the
thresholds, we compute how long the time series stays below (tB) and
above (tA) it. For the periodic case, the values are the same for every
initial condition. For the chaotic situation, we see differences among
the initial conditions, considering 3803 different initial conditions
for β1 = 0.18 [chaotic part of Fig. 11(b)] and 3730 for β1 = 0.36
[chaotic part of Fig. 11(c)]. Table I displays the results for tB and tA

for the periodic and chaotic attractor, for β1 = 0.18 and β1 = 0.36,
respectively. The times are calculated for a window time equal to
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TABLE I. Time in which the periodic and chaotic attractor stay below (tB) and above

(tA) the thresholds 50% and 75% set from the projection of the attractor in the plane

(i, e). For each chaotic attractor, we display the result 1/λ1 computed from 3803

and 3730 chaotic initial conditions, for β1 = 0.18 and β1 = 0.36, respectively. These

results are for constant vaccination (v0 = 0.1).

β1 = 0.18

Periodic Chaos

tB tA tB tA 1/λ1

50% 72.89 7.90 147.28 ± 1.99 6.55 ± 0.28 3.51 ± 0.15
75% 76.11 4.69 151.78 ± 2.20 2.43 ± 0.15 . . .

β1 = 0.36

Periodic Chaos

tB tA tB tA 1/λ1

50% 47.10 3.75 72.90 ± 2.67 2.61 ± 0.13 3.02 ± 0.13
75% 48.75 2.10 75.54 ± 2.62 0.51 ± 0.08 . . .

200 years. Nonetheless, we verify that tB + tA < 200. The relation
tB + tA = 200 does not occur because we are considering projec-
tions of the attractor. For both β1 values, we observe that the chaotic
attractor always spends more time below the threshold. For 50% and
75%, the chaotic attractor also spends less time in the upper part
of the attractor projection in e × i. Combined with the information
from Fig. 13, we show that, under specific conditions, the chaotic
attractor can present low levels of infection compared with periodic
orbits in some situations. Another important aspect when we are
dealing with chaotic orbits is to know the horizon of predictability,
which is ∝ 1/λ1. For β1 = 0.18 and β1 = 0.36, our simulations sug-
gest 3.51 ± 0.15 and 3.02 ± 0.13, respectively. Our results indicate
that proportionally to 3 years, we can predict our time series, after
that, we need more simulations. In terms of epidemic prediction,
this is a very reasonable forecast horizon.

VI. CONCLUSIONS

In this work, we study a SEIRS model with a periodic time-
dependent transmission rate. In the first part of the manuscript,
we consider a constant vaccination rate in the model. The vaccina-
tion is applied to the susceptible individuals at a rate v0 and in the
newborns at p. Then, we compute the Lyapunov exponents for the
combinations of v0 and another parameter from the model. We ver-
ify relationships between v0 and another parameters of the model
that lead the system to disease-free (DFE) solutions. In terms of
dynamical behavior, we show that the parameter planes exhibit a
very rich dynamics, showing chaotic and periodic structures, in par-
ticular shrimps. We discover that even for high values of v0 (> 0.95),
chaotic orbits exist.

In addition, the mentioned contributions, the main novelty
of the paper was given by extending the vaccination program by
including a time-dependent function. With this modification, we
obtain very important results. First, we discover that parameters
related to the time-dependent vaccination can drive the chaotic

attractors to a periodic one by generating periodic structures in the
parameter plane. In most cases, these structures are accessed via a
crisis or period-doubling bifurcation.

It is important to mention that we use the stroboscopic section
to build the bifurcation diagrams and obtain the bi-stable solutions.
Nonetheless, it is also possible to use the maxima infected num-
ber as a section. In this case, the bi-stability appears in the same
range of the bifurcation diagram and some periodic attractors can
have different periods. Furthermore, recording the maxima infected
number as a function of control parameter, periodic attractor mostly
has a higher amplitude in the infected individuals when compared
to chaotic attractors in the bi-stable windows.

By considering bi-stable solutions, between periodic–periodic
and periodic–chaotic attractors, we propose a method to control
these solutions based on the parameters of time-dependent immu-
nization program. This means that, with this methodology, we can
select one or other attractor as a function of vaccination parameters.
We demonstrate that when chaotic and periodic attractors coex-
ist, the basin of the periodic attractor is practically destroyed front
a time-dependent immunization campaign. This leads us to a new
result. Despite chaos seems a bad feature in epidemiological models
due to the unpredictability, we observe the opposite. For a consider-
able number of initial conditions, we show that in certain sections of
the bi-stable dynamics, the maximum point of infected individuals
is lower for the chaotic attractor. In addition, given a threshold in
the attractor projection in the plane e × i, we find that the chaotic
attractor spends more time in the inferior part and less time in the
superior part of projection than period orbits. Furthermore, typi-
cally, the inverse of the largest Lyapunov exponent is proportional
to 3 years.

The model discussed in this work shows very complex dynam-
ics. One very characteristic important is the existence of a chaotic
set in the multi-stable solution as an attractor and not as transient.
Typically, in multi-stable systems chaotic attractors are difficult to
be detected.53 In certain cases, the chaotic dynamics appear as long
transients. In our system, transient chaos also is possible for a given
parameter configuration. It is important to note that as our model
is an epidemiological model, long simulation times can be consid-
ered more than 100 years. For the bi-stable solutions discussed in
this work, we consider transients until 1000 years and the chaotic
attractor remains unchanged. A similar result was observed in the
same model without vaccination.25 The inclusion of a new forc-
ing increases the nonlinearity of the system, as a consequence we
observe an increase in the chaotic basin.

This work also addresses some new problems. As far as we
know, this is the second work that reports the emergence of shrimps
in epidemiological models (the first we refer to Ref. 30). In this way,
questions like whether this structure appears in other models or
for some specific diseases remain open. Additionally, the structures
reported in Fig. 12 need to be investigated more deeply.
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