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In this work we investigate how the behavior of the Shannon entropy can be used to measure the diffusion
exponent of a set of initial conditions in two systems: (i) standard map and (ii) the oval billiard. We are interested
in the diffusion near the main island in the phase space, where stickiness is observed. We calculate the diffusion
exponent for many values of the nonlinear parameter of the standard map where the size and shape of the main
island change as the parameter varies. We show that the changes of behavior in the diffusion exponent are
related with the changes in the area of the main island and show that when the area of the main island is abruptly
reduced, due to the destruction of invariant tori and, consequently, creation of hyperbolic and elliptic fixed points,
the diffusion exponent grows.
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I. INTRODUCTION

The diffusion problem in phase space for low-dimensional
classical Hamiltonian systems is now very important from a
theoretical point of view [1,2], where we care about the move-
ment of an ensemble of noninteracting particles subjected to
the dynamics described by the Hamiltonian. The presence of
regular and chaotic trajectories produces different kinds of
diffusion for densities of trajectories. Depending on the region
in the phase space the diffusion may be normal or anomalous.
The diffusion in phase space can be used in many problems as
the study of Fermi acceleration [3–5], where the diffusion is
along the energy axis or the study of transport properties from
one region of phase space to another region [6,7].

Usually the diffusion is studied as the growth over time of
the standard deviation of a generalized momentum variable
[1,8–10]; in those studies it is considered that the diffusion
along the generalized position, the anglelike variable, is fast.
The growth over time of the standard deviation is character-
ized by two variables, a diffusion coefficient and a diffusion
exponent, the most important being the exponent since it al-
lows us to distinguish between anomalous diffusion, when the
exponent is different from 1/2, and normal diffusion, when
the exponent is 1/2. Even though this method gives good
results in some cases, like in an almost completely chaotic sea
[11,12], it fails in some other cases, since it is difficult to find
the appropriate generalized momentum that it is better suited
to describe a particular behavior in phase space [13,14], like
around Kolmogorov-Arnold-Moser (KAM) islands [15–17].

A method that overcomes the standard-deviation problem
was proposed by Scafetta and Grigolini [18] to characterize
superdiffusive dynamics. We use their method, called diffu-
sion entropy analysis (DEA), to study diffusion of trajectories
with initial conditions around KAM islands, due the fact that
the entropy is invariant under certain types of variable trans-
formations, as changing from one set of canonical variables to
another. Other problems, like the stickiness phenomena, can
be addressed by this methodology.

It is known that stickiness plays an important role regarding
transport properties in several areas of physics, such as fluids
[19,20], plasma dynamics [21,22], and celestial mechanics
[23]. For the generic KAM scenario strong fluctuations are
observed due to the presence of Cantori [24] acting as a partial
barrier to the transport of particles.

In this paper we use the DEA method to characterize the
diffusion around KAM islands; we particularly focus in the
subdiffusive behavior produced by the stickiness phenomena
[25]. Thus we obtain a correlation between the diffusion expo-
nent and geometry properties of the main island. In particular,
we show that the diffusion exponent grows when the main
island’s area is abruptly reduced, due to the destruction of
invariant tori and, consequently, creation of hyperbolic and
elliptic fixed points.

The paper is organized as follows, Sec. II introduces the
models under study, Sec. III describes the methodology used
to find the diffusion exponent, in Sec. IV we show our numer-
ical results, and, finally, conclusions are drawn in Sec. V.

II. THE MODELS

In this work we are interested in two different billiardlike
models, such as the standard map (SM) and the oval billiard
(OB). However, to illustrate the validation of the diffusion
entropy analysis, the approach considered in this work, we are
analyzing initially the simplified Fermi-Ulam model (SFUM),
due to its phase-space properties.

The SFUM [4,26] consists of a classical particle suffering
successive elastic collisions in a confined region bounded by
two walls, separated by a distance equal to l , one of the walls
is fixed and the other capable of exchange energy with the
particle, affecting the particle’s velocity depending on which
phase of movement is the wall. The model has two unit di-
mensions, length and time, so we can choose that the distance
between the walls and the angular frequency of the walls’
phase change are equal to 1. The system is described by a two-
dimensional nonlinear map TSFUM(φn,Vn) = (φn+1,Vn+1),
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FIG. 1. Phase-space portrait of simplified Fermi-Ulam model for
ε = 0, 001.

where Vn represents the particles velocity after the nth colli-
sion with the moving wall and φn is the phase of movement of
the wall at the collision moment. The mapping that allows us
to calculate the velocity and phase of the (n + 1)th collision
is given by

TSFUM :

{
φn+1 = [

φn + 2
Vn

]
mod (2π )

Vn+1 = ‖Vn − 2ε sin(φn+1)‖ . (1)

The term 2
Vn

corresponds to the time between collisions and
−2ε sin(φn+1) gives the gain or loss of velocity or energy in
each collision. The absolute value in the velocity is to reinject
the particle in the correct direction after each collision, i.e.,
toward the fixed wall. Although this map is not written in
position-momentum variables, it is area preserving. We can
check this statement by taking the determinant of the Jacobian
of TSFUM(φn,Vn) = (φn+1,Vn+1) and seeing that the absolute
value always equals 1.

The characteristic phase space of the SFUM is composed
of a large chaotic sea for low-velocity values, and then, as
velocity grows, some KAM islands appear due to correlations
between the velocity and the phase. Figure 1 shows the SFUM
phase space.

The SFUM phase space is suitable to refine the method
that we are going to describe in the next section. It is known
that an ensemble of trajectories with initial small velocity
must diffuse with exponent 1/2 [11,12], and this is helpful
to define the best grid divisions for other systems, which is
very important to our approach.

On one hand, the standard map [27,28], describes the
motion of a particle constrained to move in a ring. The particle
is kicked periodically by an external field. This particular
system is equivalent to a freely moving particle in a one-
dimensional linear billiard, whose size is 2π , the particle
suffers elastic collisions at the boundary, and the kicks are an
external force changing the particle’s movement. The standard
map is described by the Hamiltonian

H (q, p, t ) = p2

2mr2
+ K cos (q)

∞∑
n=−∞

δ(t/T − n), (2)

FIG. 2. Phase-space portrait of standard map for k = 1.

where δ is the Dirac δ function, q is the angular coordinate,
and p is its conjugate momentum. It is worth noting that we
can consider that the particle’s mass m, the ring’s radius r,
and the period of kicks T are equal to 1; this due the fact
that we have three unit dimensions, length, time, and energy
(or mass). The mapping TSM(pn, qn) = (pn+1, qn+1) that gives
the position and momentum just before the (n + 1)th collision
is

TSM :

{
pn+1 = [pn + k sin(qn)] mod (2π )

qn+1 = [qn + pn+1] mod (2π )
, (3)

where the parameter k controls the intensity of the nonlinear-
ity of the mapping. This is also an area-preserving map. A
portrait of the phase space of SM is shown in Fig. 2.

For this value of parameter, k = 1, there is coexistence of
dynamics, chaotic trajectories around regular ones, and the
regions of regular motion are generally formed by invariant
curves arranged in complex structures called KAM islands
[15–17,25].

In the other hand, the oval billiard, introduced M. Berry in
Ref. [29], is now a well-studied billiard system. The radius of
the boundary, in polar coordinates, is given by

R(θ, ε, p) = 1 + ε cos (pθ ). (4)

The parameter ε ∈ [0, 1) controls the deformation of the cir-
cle, the nonlinearity, p, is an integer number, and θ ∈ [0, 2π )
is the polar angle.

After each collision of the particle with the wall we write
two variables, the angle θ of collision and the angle α, which
makes the trajectory with the tangent to the boundary. We
consider elastic collisions so the velocity component tangent
to the boundary is conserved while the normal component
changes sign. Between collisions the particle moves in straight
lines, free-moving particles, see the trajectories in red in
Fig. 3.

If we know the position (xn, yn) and velocity (vxn , vyn ) of
the particle immediately after a collision, iteration n, then
we want to know the position (xn+1, yn+1) and the velocity
(vxn+1, vyn+1 ) of the particle after the next collision, iteration
n + 1.
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FIG. 3. Trajectory of a particle inside an oval billiard with p = 1
and ε = 0.3.

For the case of p = 1 a procedure exists to find the exact
solution: Rewrite the boundary radius in the following way:

Rb = 1 + ε
xn+1

Rb
, (5)

where Rb is the radius of the boundary in collision n + 1.
Since the particle moves freely between collisions we

know that xn+1 = xn + vxnt , t is the time from collision n to
collision n + 1. After some algebra with Eq. (5) we arrive at

R2
b = [

R2
b − ε(xn + vxnt )

]2
. (6)

Then we use the following auxiliary variables: A = x2
n + y2

n,
B = 2(xnvxn + ynvyn ), and C = v2

xn
+ v2

yn
and the fact that

R2
b = (x2

n + vxnt )2 + (y2
n + vynt )2 in Eq. (6) to find

(−A + A2 − 2Aεxn + ε2x2
n

)
+ (−B + 2AB − 2Bεxn − 2εAvxn + 2ε2xnvxn

)
t

+ (
B2 − C + 2AC − 2Cεxn + ε2vxn − 2εBvxn

)
t2

+ (
2BC − 2εCvxn

)
t3 + Ct4 = 0. (7)

The first term is zero since the initial position is in the
boundary, and then we have to solve a third-degree polyno-
mial, which has an exact solution [30]. We use the algorithm
written by Skowron and Gould [31] to find the roots of the
polynomial, and then we choose the smallest real root bigger
than zero; this is our time between collision n and n + 1. With
this we can find the collision angle θn+1. We note that similar
procedures can be done for different values of p, although for
p > 2 the polynomial degree is 5 or more so approximated
solutions must be found.

We are interested now in the angle αn+1, and by means of
Fig. 3 we find the relation

αn+1 = φn+1 − (αn + φn), (8)

where the auxiliary angle φ is related to the tangent line to
the boundary at the point of collision. Namely φ is the angle
between the x axis and the tangent line, so it is given by

φ = arctan

(
dYb

dXb

)
. (9)

FIG. 4. Phase-space portrait of oval billiard for ε = 0.3.

Using the chain rule and the parametric description of the
boundary given by θ , we finally find that φ is

φn = arctan

[−pε sin(pθn) sin(θn) + R(θn) cos(θn)

−pε sin(pθn) cos(θn) − R(θn) sin(θn)

]
. (10)

The mapping TOB′ (θn, αn) = (θn+1, αn+1) is not area preserv-
ing, and we have to transform to Poincaré-Birkhoff coordi-
nates [32] to have an area-preserving map; these are given
by the arc-length, sn, and the tangential velocity, vn, to the
collision point.

The tangential velocity, vn, in the nth collision is given by

vn+1 = cos(αn+1). (11)

The arc-length, sn, at the nth iteration can be found by the
integral

sn =
∫ θn

0

√
R(θ )2 +

[
dR(θ )

dθ

]2

dθ, (12)

where the radius R(θ ) is parametrized by the angle θ , Eq. (4).
Considering p = 1 and after some algebra we arrive at

sn = 2

1 + ε

∫ θn
2

0

√
1 − 4ε

(1 + ε)2
sin2(u)du, (13)

which can be written in terms of the incomplete elliptic
integral of second type E (θ, k) [33]

E (θ, k) =
∫ θ

0

√
1 − k2 sin2(u)du, (14)

the numerical value can be computed efficiently using
the subroutines provided in Ref. [34]. The new mapping
TOB(sn, vn) = (sn+1, vn+1) is given by

TOB :

{
sn+1 = 2

1+ε
E

(
θn+1

2 ,
2
√

ε

1+ε

)
vn+1 = cos(αn+1)

. (15)

The characteristic phase space of the OB is shown in Fig. 4.
Analogously to the phase space of the SM, depicted in Fig. 2,
the phase space of the OB is composed of a chaotic sea and
KAM islands. Considering different values of the parameter
ε, geometric properties of the main islands, such area and
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FIG. 5. Plot of the entropy vs. iteration number for different
number of grid divisions. We use the simplified Fermi-Ulam model
with parameter ε = 0.001. We also show the value of δ in the
diffusive regime, i.e., logarithmic growth of the entropy.

perimeter, may suffer important changes that can be related
to transitions in the diffusion and transport properties for the
phase space.

III. THE METHOD

In order to calculate the diffusion exponent, Scafetta and
Grigolini proposed to study the growth of entropy over time
[18]. Assuming a scaling behavior for the probability density
function, ρ(x, n), it was proven that the Shannon entropy,
S = − ∫ ∞

−∞ ρ(x, n) ln [ρ(x, n)]dx, had the following relation
with time:

S = A + δ ln (n), (16)

where they define δ as the diffusion exponent, n is the iteration
number, i.e., the time, and A is a constant with no importance
for our present analysis. In our numerical experiments we
measure the Shannon entropy in the following way: (i) Choose
a regular two-dimensional grid with I (horizontal divisions)
×J (vertical divisions). (ii) Choose an ensemble of initial
conditions to apply the mapping. (iii) After each iteration
of the given mapping, we count how many points are inside
each box of the grid, and with this information we construct
a histogram [hi j]. The Shannon entropy [35] is numerically
given by:

S = −
I∑

i=1

J∑
j=1

hi j ln(hi j ), (17)

where the sum of all the elements of the histogram [hi j] is
1 [36]. To use Eq. (16) and Eq. (17) is important to use
area-preserving maps; otherwise, additional terms must be
considered to account for different box weights that change
from one position to another.

We use the SFUM. Eq. (1), as a first example to refine the
method. For this case we know that an ensemble of trajectories
with initial small velocity must diffuse with exponent 1/2
[11,12], and we perform numerical experiments with different

FIG. 6. Separation the sea of chaos (yellow) from the regular
islands (black) in the standard mapping for k = 1.31.

grid divisions I × J , shown in Fig. 5, to understand how to
choose the number of boxes.

In Fig. 5 we show the entropy behavior over time and
the diffusion exponent for the diffusive regime with different
number of boxes. Changing the number of divisions I × J in
the grid gives different behavior of entropy over time. We also
show the value of the diffusion exponent δ after performing a
fit with function S = A + δ ln (n) in the diffusive regime, i.e.,
where there is a logarithmic growth of the entropy. A final
plateau is reached by each entropy curve; this corresponds to
an ensemble of conditions uniformly distributed in the chaotic
region.

From Refs. [11,12] we know that the diffusion exponent
δ must be near 0.5 for this numerical experiment. Even
more, from Ref. [12], we know that the standard deviation
of the fluctuations is

√
2ε, and from Ref. [11] we know that

the diffusion range goes from Vmin = 0 to Vmax = 2
√

ε. The
division 2

√
ε√

2ε
, i.e., diffusion range over fluctuation size, gives

the value 44.72, we observe that this number is one order less
than the I, J value that gives the best approximation to the
diffusion exponent in Fig. 5. From this observation we arrive
to the following empirical relation:

10 × diffusion range

fluctuation size
∼ grid divisions. (18)

Having the empirical relation (18) we proceed to study the
diffusion behavior near the KAM islands, first we care about
the SM, Eq. (3). To get near the main island we use the
following procedure. We know that there is a hyperbolic
fixed point at coordinates q = 0, p = π in a chaotic region.
Choosing many initial conditions in this region we know that
they will expand all over the chaotic sea after many iterations
of the mapping. Then we separate the regions visited by the
points and the regions that were not visited, see Fig. 6, where
we divided the phase space in a grid of 4096 × 4096. We
choose 1 × 107 initial conditions near the point [0, π ]. For
each initial condition we discarded the first 1 × 103 iterations
of the map to give time to the points to get near the islands.
Then we iterated 1 × 107 times the mapping, and if any of the
points were inside a box of our grid, we assigned the yellow
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FIG. 7. The horizontal axis gives the orbit initial coordinate q0,
while p0 is always π . For each initial condition we calculate the
rotation number 1000 times at intervals of 1000 iterations and ana-
lyze its distribution. The vertical axis shows the standard deviation σ

and rotation number range rrange of those distributions; we also show
the horizontal cuts σ = 1 × 10−2 and rrange = 1 × 10−1. The model
under study is the standard map with k = 1.31.

color for that box; if after all iterations no point happened to
be inside a box, then it was assigned the black color. In this
way we had an approximation of the chaotic sea and islands
in the given grid.

The main island’s center is an elliptic fixed point of co-
ordinates q = π , p = π . It is inside a black box in Fig. 6.
Selecting all the black boxes that are connected, i.e., that
are first nearest neighbors, starting from that one, we are
able to find an approximation of the main island area by a
black region of simple connected boxes. An approximation
of the main island’s area is given by dividing the number of
black boxes that compound this region by 4096 × 4096 and
multiplying by (2π )2.

To get closer to the main island we investigate the rotation
number. We consider the center of the island as our reference
point and the ray q > π , p = π as our polar axis and calculate,
after each iteration n, the angle θn that an orbit has with the
polar axis. The rotation number is defined as:

r = lim
N→∞

∑N
n=0 θn

N
. (19)

In practice we choose N = 1000, but we analyze the statistical
behavior of 1000 rotations numbers calculated for the same
orbit at different times; if this is a quasiperiodic orbit, then
these rotation numbers must be almost equal, and we expect
that for a single quasiperiodic orbit these rotation numbers
have a Gaussian distribution with small standard deviation,
σ , and small range between the maximal and the minimal
rotation numbers found for the same orbit, rrange. On the other
hand, if the orbit is chaotic, then we expect the standard
deviation and the range to be big. To find the shore of the
main island, first we take the coordinate qi of the first yellow
box that has q > π and p = π in Fig. 6. Then we choose
initial conditions with p0 = π and different values of q0

around qi, and we take care that the minimal q0 is actually

FIG. 8. Phase-space portrait of the standard map for k = 1.31.
The red points are the initial coordinates that will spread in phase
space and will be used to calculate the diffusion exponent.

inside the island; this will be of use later. For each of these
initial conditions we analyze the rotation number statistics as
described in the last paragraph.

In Fig. 7 we show the rotation number statistical behavior
for different initial conditions. The horizontal axis gives the
orbit initial q0 coordinate, p0 is always π , and the vertical
axis shows the standard deviation and the range between
the maximal and the minimal rotation numbers. To separate
quasiperiodic and chaotic behaviors we perform the cuts in
σ = 1 × 10−2 and rrange = 1 × 10−1, meaning that any orbit
that has both statistical measures above the cuts is considered
chaotic; otherwise, it is considered quasiperiodic. From these
results we care about the chaotic orbit that has the minimum
q0 for the interval considered, and we call this value q0c

[37]. Once we have this coordinate we save the first 1000
iterations of the map starting from the point [q0c, π ], and

FIG. 9. Plot of the entropy vs. iteration number for k = 1.31.
The entropy has three growth regimes: (i) In the first 100 iterations
the distribution spreads along the main island, (ii) then for 3000
iterations slowly leaks out through the Cantori, and (iii) finally more
of the distribution is outside the Cantori and rapidly spreads in the
chaotic sea.
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FIG. 10. Plot of the diffusion exponent vs. parameter k of stan-
dard map. The black line represents the numerical data obtained after
the power-law fitting and the red line is a quintic spline smoothing
approximation to the numerical data.

then we add an small perturbation to each one of those 1000
iterations until we have an array of 1 × 106 points. This array
of coordinates will be our initial conditions that approach our
initial distribution ρ0, they will spread in the phase space, and
we will use them to calculate the diffusion exponent by means
of Eq. (16) and Eq. (17), see Fig. 8.

The next step to be taken before being able to measure
the diffusion exponent is to define the grid box size. For
this, we make use of the relation (18). We know that the
diffusion range is 2π for both q and p. To estimate the value
of fluctuation size we need to know how much our initial
distribution, ρ0, spreads with few mapping iterations, and
this can be done in the following way: (i) Perform a map
iteration on our initial conditions. Even if the ith point jumps

FIG. 11. In (a) and (b) we show, respectively, the plot of the
diffusion exponent (red line) and the plot of the normalized area
of the main island (blue line) vs. parameter k of the standard map.
The normalized area is the area of the main island divided by the
the area of the entire phase space. The region between dashed lines
corresponds to the interval k ∈ [1.45, 1.46].

FIG. 12. Separation in the sea of chaos (yellow) from the regular
islands (black) in the standard mapping for two values of the non-
linear parameter. Smaller islands are ejected from the main island
when we change the parameter value. Associated to this islands are
hyperbolic fixed points, and by the action of their stable and unstable
manifolds they provide channels to escape from the main island; this
yield to growth in the diffusion exponent.

far away from its starting position after one iteration, say,
xi,n → xi,n+1, some other point, say, the jth, will land near
the starting position of the ith point, x j,n+1 ∼ xi,n. (ii) For
each one of our initial points [xi,n=0] we search for the x j,n=1

points such that x j,n=1 ∼ xi,n=0. (iii) Define the fluctuation at
the n = 1 iteration as ξi,n=1 = x j,n=1 − xi,n=0; we do the same
for more iterations, 10 iterations in our case. (iv) After that we
can approximate the fluctuation size as the standard deviation
of the [ξi,n] fluctuations. Observe that this approximation is
valid for orbits that are near the main island as our initial
distribution is around its shore. In this case we find that
10 × diffusion range

fluctuation size = 4856.2, thus our space must be divided
into 4096 × 4096 boxes of equal size, and with this grid
choice we calculate the diffusion exponent.
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FIG. 13. Plot of the diffusion exponent vs. parameter ε of an oval
billiard. The black line represents the numerical data obtained after
the power-law fitting and the red line is an quintic spline smoothing
approximation to the numerical data.

We show in Fig. 9(a) the entropy behavior as time passes.
We can recognize three growth regimes: (i) First, the distribu-
tion quickly spreads along the shore of the main island. We
can appreciate this in Fig. 9(b), which shows in red how our
ensemble of trajectories is distributed after n = 100 iterations.
(ii) The second regime is a slow one; the distribution leaks
through the Cantori, see Fig. 9(c). This is a regime of subd-
iffusion, one where we measure the diffusion exponent, and
the numerical fit is shown with a blue line and the value of δ

is 0.2344. (iii) In the third regime more of the distribution is
outside the Cantori and rapidly spreads in the chaotic sea. A
fourth regime, not shown in Fig. 9, exists, where the ensemble
of trajectories is uniformly distributed in the chaotic sea, and,
similarly as in Fig. 5, the entropy reaches a plateau.

IV. NUMERICAL RESULTS

Considering initially the standard map to understand how
δ depends on the control parameter, we measure the diffusion
exponent for 101 different values of the parameter equally
spaced from k = 1.31 to k = 2.31. In Fig. 10 we see the
behavior of the diffusion exponent when the parameter k
changes. Since this behavior is very noisy, in part due the elec-
tion of initial probability distribution, we perform a quintic
spline smoothing approximation to the data [38]. This allows
us to see easily the tendency of the data, i.e., the growth and
decay of δ. Next we will shall relate the diffusion exponent to
some geometric property of the main island, and we choose to
measure the area of it for all the given values of k.

It is possible to see in Fig. 11 that whenever the area
decreases abruptly the diffusion exponent increases. Further-
more the area grows, while the exponent decreases, until a
critical value when the area abruptly decreases once more,
with its corresponding increase in the diffusion exponent. We
note two values of k, the region between the dashed lines
in Fig. 11. In this interval the largest decrease in the area is
shown for the values of k considered.

FIG. 14. In (a) and (b) we show, respectively, the plot of the
diffusion exponent (red line) and normalized area of the main island
(blue line) vs. parameter ε of an oval billiard.

We see in Fig. 12 the transition marked in Fig. 11. When
passing from k = 1.45 to k = 1.46 the main island ejects a
resonance of smaller islands, therefore reducing the area of
the main island. However, each ejected island has an elliptic
periodic point in the middle, and by the Poincaré-Birkhoff the-
orem [39,40] there exists their corresponding hyperbolic fixed
points pair. The action of the stable and unstable manifolds
of these hyperbolic points is responsible for the changes in
diffusion behavior since they provide large channels to escape
from the main island [41–43].

Finally, considering an even more complicated mapping,
the oval billiard, Eq. (15), we show similar results, see Fig. 13
and Fig. 14. Again, with these results we observe that changes
of behavior in the diffusion exponent are related to changes in
the area of the main island. In particular, we find that when the
area of the main island is abruptly reduced, due the destruction
of invariant tori and the creation of hyperbolic and elliptic
fixed points, the diffusion exponent grows.

V. CONCLUSION

We showed that the use of Shannon entropy allows us
to characterize the diffusion exponent in low-dimensional
Hamiltonian systems described by maps. The method pre-
sented used the diffusion entropy analysis technique, where a
relation between entropy and time exists, Eq. (16). To measure
the entropy, we must construct a histogram where the number
of bins is selected considering the diffusion range and the
fluctuation size of the ensemble of trajectories, Eq. (18). The
methodology proposed allowed us to calculate the diffusion
exponent both in regions where the diffusion is normal, as in
regions where the stickiness phenomenon is present, produc-
ing an anomalous diffusion.

We calculated the diffusion exponent for many values
of the control parameter of the standard map and the oval
billiard, where for each value the main island had a different
shape, and then we showed that the changes of behavior in
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the diffusion exponent were related with changes in the area
of the main island. In particular, we found that when the main
area of the main island is abruptly reduced, due the destruction
of invariant tori and creation of hyperbolic and elliptic fixed
points, the diffusion exponent grew. We believe this happened
due the fact that the hyperbolic points reduced the stickiness
by means of their unstable or stable manifold dynamics,
since they provide channels to escape from the main island’s
shore.
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