On the dynamical behaviour of a glucose-insulin model | Elsevier Enhanced Reader 12/30/21, 7:20 AM

Chaos, Solitons and Fractals 155 (2022) 111753

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

On the dynamical behaviour of a glucose-insulin model )

Check for
Updates

José Trobia?, Silvio L.T. de SouzaP® Margarete A. dos Santos?, José D. Szezech Jr.?,
Antonio M. Batista®* Rafael R. Borges¢, Leandro da S. Pereirad, Paulo R. Protachevicz®,
Iberé L. Caldas®, Kelly C. larosz "¢

2 Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, PR, Brazil

b Federal University of Sdo Jodo del-Rei, Campus Centro-Oeste, Divinépolis, MG, Brazil

¢ Department of Mathematics, Federal University of Technology-Parand, Ponta Grossa, PR, Brazil

d Department of Mathematics, Federal University of Technology-Parand, Apucarana, PR, Brazil

¢ [nstitute of Physics, University of Sdo Paulo, Sdo Paulo, SP, Brazil

fFaculdade de Telémaco Borba, FATEB, Telémaco Borba, PR, Brazil

2 Postgraduate Program in Chemical Engineering Federal Technological University of Parand, Ponta Grossa, PR, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 21 September 2021
Revised 18 December 2021
Accepted 20 December 2021

Insulin is a hormone that plays a crucial role in controlling the transport of glucose from the blood to
inside the cells. In the pancreas, the insulin is secreted by the 8 cells, according to the blood glucose con-
centration, and the interaction of insulin with the glucose is responsible for providing energy to the cells.
In this work, we study the dynamical behaviour of a mathematical model, validated by experimental data,
that considers the relationship between glucose and insulin concentrations, as well as the role of the 8
cells. Depending on the control parameters, the model can exhibit periodic and chaotic behaviours. Based
on these behaviours, we identify complex structures in the parameter space, namely shrimp-shaped pe-
Chaos . . riodic windows immersed in chaotic regions. Furthermore, a parametric perturbation in the parameter
Dynamical behaviour related to the rate increase of insulin level secreted by cells can suppress chaos, inducing either periodic
or quasi-periodic behaviour. We also investigate the structure of basins of periodic and chaotic attractors
in the glucose-insulin system under parametric perturbation; the boundaries between these basins have
fractal structures for some control parameters.
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1. Introduction levels. More recently, Shabestari et al. [11] proposed a model for

the glucose-insulin system. This model is based on a predator-

Insulin is a chemical messenger, a well-known hormone, that
allows the glucose to enter the cells from the blood stream and
be used for energy liberation [1]. In the pancreas, the insulin is
secreted by the B cells in response to the blood glucose concen-
tration [2]. Understanding how insulin works with glucose is im-
portant for the treatment of diabetes [3,4]. Many scientists carried
out research to understand mechanisms involving insulin, glucose,
and B cells [5,6].

Over the last 50 years, various studies have considered differ-
ent mathematical models to investigate the interaction between
insulin and glucose [7,8]. In 1972, Grodsky [9] proposed a model
to study the phases of insulin release during glucose stimula-
tion patterns. Bajaj et al. [10] developed a nonlinear mathemati-
cal model with B cell kinetics and a glucose-insulin feedback sys-
tem. They analysed the time variations of the insulin and glucose
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prey model and considers the interactions between glucose, in-
sulin, and B cells. It exhibits a route to chaos via period-doubling
bifurcations.

Chaos, namely sensitivity to initial conditions, has been found
in a large number of natural and man-made systems. It is a com-
mon dynamical behaviour that appears also in biological systems,
such as enzyme reactions [12], biodiversity of plankton [13], the
immune system [14], and neuronal networks [15,16]. Experimen-
tal data for glucose and insulin values from individual patients,
obtained by Kroll [17], showed evidence of a chaotic process. The
chaotic behaviour in glucose profiles has also been observed in ab-
normal conditions, such as disease [18]. Frandes et al. [19] reported
that analysis of chaotic features in the glucose dynamics can lead
to an understanding of type 1 diabetes mellitus; its understanding
can improve control strategies.

In this work, we study the dynamical model proposed by
Shabestari et al. [11] for the glucose-insulin regulatory system. We
show that the two parameter subspaces exhibit shrimp-shaped
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Fig. 1. Schematic representation of the insulin-glucose model, where the solid and dashed lines correspond to the positive and negative terms, respectively, according to

Eq. (1).

Fig. 2. (a) Bifurcation diagram and (b) Lyapunov exponents for a; from 1.4 to 2, where the three colours stand for the three exponents.

structures, which are periodic windows immersed in chaotic re-
gions [20-22]. We analyse the effects of a parametric perturba-
tion in the glucose-insulin model. Parameter perturbation is use-
ful for parameter sensitivity analysis in dynamical systems [23]. In
our simulations, we verify that the perturbation is able not only to
change the dynamical behaviour, but also to suppress chaos. De-
pending on the perturbation parameters and which parameter is
perturbed, we observe the existence of basin boundaries with frac-
tal structure, whose final state sensitivity is quantified by the un-
certainty exponent [24].

This paper is organised as follows. In Section 2, we introduce
the glucose-insulin model. In Section 3, we report some results to

https://reader.elsevier.com/reader/sd/pii/S0960077921011073?toke...08F0715D1F0&originRegion=us-east-1&originCreation=20211230091911

validate the model, including experimental data analysis for the
recognition and acceptance of the model. Section 4 presents our
results on the parameter space dynamics and the effects of the
parametric perturbation in the system. Concluding remarks are in
the final section.

2. The model

We study a glucose-insulin mathematical model proposed by
Shabestari et al. [11]. They added a cubic function of variables in
a prey-predator model [25] to obtain a nonlinear model that ex-
hibits dependence on the initial conditions. The nonlinear model

12/30/21, 7:20 AM
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Fig. 3. (a) The local scaling exponents (LSE) as a function of the distance r apart
and (b) the average mutual information (AMI) as a function of the time delay for
the parameters shown in Table 1.

Table 1
Description and values of a, [11].
Description Parameter Values
Natural reduction of h a 2.04
concentration in absence of g
Propagation rate of h a 0.1
in presence of g
Increase rate of h when as, ay 1.09, -1.08
there is an increase in g
Increase rate of h level as, ag, 07 0.03, -0.06, 2.01

secreted by B-cells

Effect of hon g ag 0.22
Reduction rate of g in ag, G19 -3.84,-1.2
response to h secretion

Growth rate of g in absence of h an 0.3

Reduction rate of g due to ayy, 013,014  1.37,-0.3,0.22
h secreted by B cells

Rate of increase of B cell activity ais, i, Q17 0.3,-1.35,0.5
Rate of decrease of B cell activity a5, a9 -0.42, -0.15
Growth constant rate of h and g ay0, Ay -0.19, -0.56

is a system of three nonlinear differential equations given by

dh
a - —aih + ahg + a3g* + asg® + asf + ag f?
+f17l33 + Gz,
dg
a= —aghg — agh? — aph® + a118(1 - 8) (1)

—af — a3f? — aup?® + ax,
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Fig. 4. Boxplot for the glucose-insulin model (yellow box) and experimental data
from 70 patients (green boxes) [36]. For the model, we consider the parameters
shown in Table 1. (For interpretation of the references to colour in this figure leg-
end, the reader is referred to the web version of this article.)

d
d_f = U158 + U168° + aprg — aigB — a108P,

where h, g, and B are the concentration of insulin, glucose, and
B cells, respectively. The description of the parameters and values
of an are given in Table 1 [11]. In Fig. 1, we present a schematic
representation of the glucose-insulin model and the parameters
an (n=1,.,21), where the solid lines correspond to the positive
terms and the dashed lines denote the negative terms, according
to Eq. (1).

Fig. 2(a) shows the bifurcation diagram obtained when the
maximal dynamic value of insulin (hpax) is plotted against a;,
with the latter varying from 14 to 2. The parameter a; is in-
dependent and helps determine the rate at which insulin secre-
tion increases with 8 cell activity. The diagram exhibits periodic
orbits and chaotic attractors, as well as period doubling bifurca-
tion. Shabestari et al. [11] also plotted bifurcation diagrams for aq,
a;, ag, and aqs. They observed diagrams displaying periodic and
chaotic behaviour. The parameters a;, a;, ag, and a;5 were used to
analyse hypoglycemia, hyperinsulinemia, type 2 diabetes, and type
1 diabetes, respectively.

We calculate the Lyapunov exponents by means of Wolf et al.
[26]

pi(t)

(2)
pi(0)’
where A; is the ith Lyapunov exponent and p; is the length of the
ellipsoidal principal axes. The system is chaotic when the value of

Ai= llm —log
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Fig. 5. (a) Parameter space a;5 x ag and (b) magnification (yellow rectangle in the panel (a)) showing periodic attractors (black), chaotic attractors (white), bifurcations
(blue), equilibrium points (green), and divergent points (red), where the gold dashed line is given by a5 = 0.32 — 0.04as — 0.03a2. We consider a; = 2.04 and a; = 2.01. (c)
Parameter space a; x a; and (d) magnification (yellow retangle in the panel (c)), where the gold dashed line is given by a; = —0.17 + 1.30a; — 0.10a3. We consider ag = 1.15
and a;5 = 0.24. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the largest Lyapunov exponent A; is positive [27-29]. In Fig. 2(b),
the chaotic regions (A; > 0) end abruptly when periodic windows
appear (A; < 0). For large values of a;, the system can be chaotic
[11]. Large a; values are associated with hyperinsulinemia, namely
the amount of insulin circulating in the blood is greater than nor-
mal. Hyperinsulinemia can lead to the type 2 diabetes [30].

3. Model validation
3.1. Local scaling exponents and average mutual information

Ginoux et al. [18] computed the Lyapunov exponent, the cor-
relation dimension, and the average mutual information (AMI) of
glucose for a database of ten type 1 diabetes patients. For each pa-
tient, the blood glucose continuous variations were recorded dur-
ing fourteen consecutive days. They observed positive a maximal
Lyapunov exponent. The values of the correlation dimension var-
ied between 1.20 and 2.61, and the AMI did not have a local mini-
mum. To compare the time series generated by the glucose-insulin
model with the database of glucose from ten patients, we compute
the correlation dimension and the AMI for the parameters shown
in Table 1. For these parameters, the maximal Lyapunov exponent
is positive. Fig. 3(a) shows the local scaling exponents (LSE) as a
function of the distance r apart, where we find the correlation di-

https://reader.elsevier.com/reader/sd/pii/S0960077921011073?toke...08F0715D1F0&originRegion=us-east-1&originCreation=20211230091911

mension equal to 1.42. The LSE is defined as the local slopes of the
correlation sum curves [31].

In Fig. 3(b), we plot the AMI as a function of the time de-
lay. The AMI quantifies the dependence between pairs of variables
[32]. We verify that the value of the correlation dimension com-
puted using the time series from the model is in the interval ob-
tained from the database of ten patients. We also observe that
the AMI has the same behaviour as the one reported from the
database [18]. To compute the LSE and AMI, we use the “nonlin-
earTseries” [33], which is a R package for nonlinear time series
analysis.

3.2. Boxplot of experimental data

The boxplot is a graphical technique that displays the distribu-
tion of quantitative data and allows the comparison among vari-
ables [34]. It gives information on how the values in a data are
spread out and about the skewness [35]. We compute the box-
plot for the diabetes data sets provided by Kahn [36]. The data are
from diabetes mellitus, in which the patients are insulin deficient.
We consider the data recorded for the pre-breakfast blood glucose
measurements.

In Fig. 4, the green boxes show the results from the experimen-
tal data of 70 patients, while the yellow boxes exhibit the results
for the glucose-insulin model. The red circles correspond to the av-

12/30/21, 7:20 AM
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erage glucose, the center black lines denote the median, and the
vertical box size is the interquartile range (IQR) given by the dif-
ference between the third Q3 and first Q; quartiles. The lower L,
and upper Ly limits (vertical dashed line) are calculated by

L =0Q; —1.5IQR (3)
and

v = Q3+ 1.5IQR, (4)

respectively. We observe that the yellow box not only present the
same behaviour as the green boxes, but it is also within the lower
and upper limits of the green boxes. Therefore, we verify an agree-
ment between the results from the glucose-insulin model with ex-
perimental data.

We consider the parameters shown in Table 1 to generate the
model data. For the comparasion between experimental data and
model, we multiply the data from the model by 170.8, which is
the average glucose of the experimental data.

4. Dynamical behaviour
4.1. Glucose-insulin model

We compute the largest Lyapunov exponent value to charac-
terise the dynamic behaviour of the model in the parameter spaces
a5 x ag (Fig. 5(a) and (b)) and a; x a7 (Fig. 5(c) and (d)). The pa-
rameters a;, a;, ag, and a;s are related to hypoglycemia, hyperin-
sulinemia, type 2 diabetes, and type 1 diabetes, respectively [11].

Fig. 5 displays the two dimensional parameter space showing
different dynamic behaviours: periodic attractors (black), chaotic
attractors (white), bifurcations (blue), equilibrium points (green),
and divergent points (red). Inside the periodic regions there are
period-doubling bifurcations. We find regions with points that di-
verge, namely, values of a;, a;, ag, and a5 in which the solution
goes to an attractor at infinity. In Fig. 5(b) and (d), the magnifi-
cations exhibit periodic windows, known as shrimps [37,38], im-
mersed in chaotic regions.

In Fig. 5(b) and (d), the equations of the gold dashed lines are
written as a5 = 0.32 — 0.04ag — 0.03aZ and a; = —0.17 + 1.30a; —
0.10a§, respectively. By means of these equations, we compute the
parameter space a; x ag, as shown in Fig. 6(a), in which is consid-
ered the simultaneous variation of four parameters. The parameter
space displays different dynamical behaviours, as well as shrimp
structures. We see in the magnification (Fig. 6(b)) that the shrimps
have different sizes and intersections among their structures. The
red cross corresponds to the point where it is observed the highest
Lyapunov exponent value.

In the shrimps, the periodic windows are organised along some
distinguished directions and exhibit self-similarity. The shrimp ori-
entation depends on the stability conditions of the model [39].
At the boundaries of a shrimp, small changes in the parameter
value are enough to induce relevant alterations in the dynamic
behaviour [40]. Due to the existence of shrimps, it is possible to
control chaotic behaviour by considering the values of parameters
within the periodic windows [41].

4.2. Parametric perturbation

Parametric perturbations can be used to analyse the paramet-
ric dependence of biological systems [42-44]. With this in mind,
we consider a parametric perturbation according to the alteration,
a; — a;(1 + ncos(K2t)), to study its effect on the dynamic changes
in the glucose-insulin model, where 7 and Q2 correspond to the
amplitude and frequency, respectively.

Fig. 7 displays the maximum insulin values (hyax) by varying n
from 0 to 0.2 and applying the parametric perturbation to different

https://reader.elsevier.com/reader/sd/pii/S0960077921011073?toke...08F0715D1F0&originRegion=us-east-1&originCreation=20211230091911
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(b)

ay

Fig. 6. (a) Parameter space a; x ag and (b) magnification (yellow rectangle in the
panel (a)) showing periodic attractors (black), chaotic attractors (white), bifurca-
tions (blue), and divergent points (red), where the red cross indicates the highest
Lyapunov exponent value. (For interpretation of the references to colour in this fig-
ure legend, the reader is referred to the web version of this article.)

parameters. We choose the parameters given by the red cross indi-
cated in Fig. 6(b). Considering the perturbation in a; (Fig. 7(a)) and
ay (Fig. 7(b)) for Q = 3 and 2 = 1.6, respectively, we conclude that
the chaotic behaviour can be suppressed for 7 greater than about
0.1. For the perturbation in the parameter ag with Q = 4.1, the in-
crease of n leads the system dynamics to undergo a change from
chaos to period-three, as shown in Fig. 7(c). The chaotic behaviour
is suppressed when the parametric perturbation is considered in
a5 for Q=1 and 7 greater than about 0.05. Therefore, the chaos
in the glucose-insulin system can be suppressed by means of para-
metric perturbations.

We compute examples of basins of attraction for the glucose-
insulin model. Fig. 8(a) and (b) display the basins of attractions
for initial conditions g(0) x h(0) without and with a parametric
perturbation applied in the parameter a;, respectively. We con-
sider a parametric perturbation with 7 =0.18 and © =1.6. The
black points correspond to the initial conditions of the trajec-
tories that converge toward periodic attractors, while the white
region corresponds to the initial conditions whose trajectories
asymptote to the chaotic attractors. The red points denote the
initial conditions of trajectories that asymptote to an attractor at
infinity.

To characterise the basin boundaries, we calculate the uncer-
tainty exponent &, which is related to the phase space dimension
D in the z-dimensional section through the equation § =D —d,
where d is the box-counting dimension of the boundary. To do

12/30/21, 7:20 AM
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Fig. 7. hmax versus n when applying a parametric perturbation in (a) a; for Q =3, (b) a; for = 1.6, (c) ag for 2 =4.1, and (d) a;s for 2 = 1. We consider a; = 2.04,

a; =2.01, ag = 1.15, and a;5 = 0.24, according to the red cross indicated in Fig. 6(b).

that, we compute the fraction of trajectories f(e) that are gen-
erated by uncertain initial conditions, where ¢ is the radius of a
circle of initial conditions. The values of f(g) scale as a power law
with & as [24]

HORT (5)

Fig. 8(c) shows f(e) as a function of ¢ for the same parameters
used in Fig. 8(b) (green square). The red line corresponds to the
linear fitting in the log-log plot with § = 0.134. As a result, we find
d =2 -6 = 1.866, indicating that the basin boundary has a fractal
structure.

5. Conclusions

Insulin is a hormone produced by the B cells in the pan-
creas and controls the glucose levels. Its main function is to al-
low glucose to enter the cells and to be used for energy. The
lack of insulin production or insulin resistance leads to type 1 or
type 2 diabetes, respectively. Experimental and analytical meth-
ods have been used to investigate how insulin and glucose work
together.

In this work, we study a glucose-insulin system proposed by
Shabestari et al. [11], in which cubic functions were added to a
prey-predator model. Due to these functions, the model is non-

https://reader.elsevier.com/reader/sd/pii/S0960077921011073?toke...08F0715D1F0&originRegion=us-east-1&originCreation=20211230091911

linear and can exhibit chaotic behaviour. The model has parame-
ters related to interactions between insulin, glucose, and 8 cells.
Depending on the parameters, it is possible to study different
disorders, for instance, hypoglycemia and hyperinsulinemia. With
regard to the parameters, we find domains with islands of pe-
riodicity within a chaotic sea, known as shrimp structures. We
observe shrimps of different size and intersections among their
structures. The parameter changes that, in the model, give tran-
sitions between different dynamic structures, may suggest phar-
macologic or other strategies for controlling insulin and glucose
dynamics.

We consider a periodic parametric perturbation to study the
parametric dependence of the glucose-insulin system. We verify
that the chaotic behaviour is suppressed for different amplitude
and frequency of the perturbation. In our simulations, we uncover
basins of attraction whose boundaries have fractal structures in the
glucose-insulin system under parametric perturbations.

The fractal structure provides us the knowledge about the
lack of predictability related to the dynamical system. More-
over, the fractal basin boundaries are responsible for the emer-
gence of long chaotic transients, as well as the death of
chaotic attractors [45]. In future works, we plan to propose a
new mathematical model using as a base the observed fractal
structures.

12/30/21, 7:20 AM
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Fig. 8. Basin of attraction g(0) x h(0) for the chaotic glucose-insulin model, where
we consider (a) without parametric perturbation and (b) a perturbation with n =
0.18 and € = 1.6 in the parameter a;. We use B(0) =1.03, a; =2.04, a; =2.01,
ag =1.15, and a;5 = 0.24. The trajectories can asymptote to periodic attractors
(black), chaotic attractors (white), or an attractor at infinity (red). (c) Fraction of tra-
jectories f(g) as a function of the uncertainty ¢ for the basin of attraction shown in
the panel (b) (green square). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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