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Low-dimensional chaos in the single wave model
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ABSTRACT

We analyze nonlinear aspects of the self-consistent wave–particle interaction using Hamiltonian dynamics in the single wave model, where
the wave is modified due to the particle dynamics. This interaction plays an important role in the emergence of plasma instabilities and
turbulence. The simplest case, where one particle (N = 1) is coupled with one wave (M = 1), is completely integrable, and the nonlinear
effects reduce to the wave potential pulsating while the particle either remains trapped or circulates forever. On increasing the number of
particles (N = 2, M = 1), integrability is lost and chaos develops. Our analyses identify the two standard ways for chaos to appear and grow
(the homoclinic tangle born from a separatrix, and the resonance overlap near an elliptic fixed point). Moreover, a strong form of chaos
occurs when the energy is high enough for the wave amplitude to vanish occasionally.
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Wave–particle interaction plays an important role in plasma
dynamics both in the laboratory and in space. The processes
resulting from the interaction between charged particles and
waves are related to the emergence of instability and turbulence
in plasmas. In phase space, this interaction can generate both reg-
ular trajectories, which may lead to coherent particle acceleration,
and chaotic trajectories, which are responsible for particle heating
and escape. Low-dimensional approximations often shed light on
the dynamics of systems with many degrees of freedom, as chaotic
motion arises as one increases the number of degrees of freedom.
In the simplest case, one particle (N = 1) is coupled to one wave
(M = 1) in a self-consistent way so that the wave is also modified
due to the particle motion. This case is completely integrable so
that all trajectories are regular and the nonlinear effects degen-
erate to particle trapping or circulating while the wave potential
pulsates. The bifurcation diagram of this simple system displays
a saddle-center coalescence and a special trajectory for which the
wave intensity goes through zero. On increasing the number of
particles (N = 2, M = 1), chaos arises as this Hamiltonian system

is not integrable. For low energy, chaos appears due to nonlin-
ear resonances near the elliptic fixed point. For moderate energy,
chaos appears and becomes more intense in the homoclinic tan-
gle associated with the hyperbolic fixed points. For high enough
energy, the wave phasor can pulsate through zero, and the sudden
jump in its phase induces large-scale chaos.

I. INTRODUCTION

Wave–particle interaction is one of the characteristic phenom-
ena that occur naturally in plasma physics and play an essential
role in their dynamics.1,2 Plasmas are naturally conducive to the
amplification and propagation of waves due to their intrinsic ten-
dency to restore balance in the local distribution of charges when
the system is exposed to disturbances.3 Attempts to make plasmas
return to equilibrium can excite a diversity of wave modes, which
are able to propagate in the plasma and interact with particles whose
velocities are close to their phase velocity.4 Hamiltonian systems
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provide a rich description of this interaction, where the regular and
chaotic behavior of the particles trajectories in their phase space are
directly related to the amplitude of the disturbance applied to the
system.5,6

The exchange of energy and momentum through wave–particle
interaction is especially important in rarefied plasmas where the
collision time between charged particles is generally very long com-
pared to the characteristic time scales of the system, and, therefore,
those plasmas can be treated as non-collisional.7 At first, this implies
that, in practice, there is no energy dissipation in low-density plas-
mas since collisions are rare. However, the presence of waves can
induce finite dissipation even in non-collisional plasmas:8,9 plasma
particles are scattered by the wave fields, and their energies and
momenta change through such processes.

In general terms, effective finite dissipation in collisionless
plasmas occurs via resonance and can give rise, for example, to
the growth/damping of waves and heating/acceleration of particles,
as well as to the transport of charged particles.2,10,11 The interac-
tion becomes stronger when the streaming velocity of the par-
ticles is such that the particle couples with the Doppler-shifted
wave at its cyclotron frequency or its harmonics. This is the so-
called cyclotron resonance interaction.12 The special case of the
Doppler-shifted wave frequency being zero (i.e., zero harmonic of
the cyclotron frequency) corresponds to the well-known Landau
resonance.13

In practice, Landau damping (respectively, growth) can be
understood as follows: as observed experimentally,14 particles with
velocities slightly lower (larger) than the phase velocity of a wave are
accelerated (decelerated) by the wave’s electric field. Thus, particles
that move a little slower (faster) than the phase velocity gain (lose)
energy from (to) the wave.15

The main concepts described by Landau are widely used in
particle accelerators to avoid instabilities in the coherent oscillation
of the beams.16 Besides, aspects of this interaction are notoriously
important in space plasma physics, such as in the suprathermal elec-
tron acceleration at the solar wind,17 in the interaction of charged
particles with the Earth’s magnetic field,18 etc. For this reason, even
many decades after its discovery,19 there is high interest in the
fundamental aspects related to Landau damping.20,21

An important feature of this type of interaction is that ions,
being much more massive than electrons, are assumed to be fixed
and their role is limited to providing charge neutrality for the sys-
tem. The collective vibration of electrons with respect to ions is
called Langmuir waves.4 The usual description of the interaction of
Langmuir waves with electrons whose velocities are close to their
phase velocity involves the kinetic set of Vlasov–Poisson equations
for the electron distribution function.22

In order to describe the interaction between charged particles
and electrostatic waves, it is natural to use Hamiltonian models for
which the particle dynamics in phase space generates both regu-
lar and chaotic trajectories.5,6 The predominance of either type of
trajectory depends mainly on the amplitude of the perturbation in
the system that directly influences the particles motion.23,24 In gen-
eral, regions where regular trajectories prevail are more favorable to
coherent particle acceleration, while chaotic regions are associated
with particle heating and escape.25

Wave–particle interactions have often been described by
Hamiltonian models in which particle motion is affected by the wave
field, whereas the wave itself is not influenced by particle motion.5,6

However, proper treatment of the problem would require also the
addition of the wave response to the particle motion, which leads
to so-called self-consistent Hamiltonians.1,26 In this framework, the
dynamics of Langmuir waves is described as M harmonic oscilla-
tors coupled to N quasi-resonant particles. Considering the single
wave model (SWM) introduced by Onishchenko et al.27 and O’Neil
et al.,28 it is possible to study the chaotic dynamics of wave–particle
self-consistent interaction in terms of a few degrees of freedom.
Indeed, this model can even be reduced to a four degrees of freedom
system to describe its saturation regime,29,30 and the model with a
single particle was already considered by Adam et al.31 with a view
at its integrability and at the generation of sideband modes of the
Langmuir waves.

The SWM originates from the description of the beam-plasma
instability and has the advantage of behaving smoothly when the
number of particles tends to infinity.29,32 Since its introduction, this
model has proven to be relevant in a variety of physical situations
in which the dynamics is effectively dominated by a single mode
as in the confinement of charged particles in tokamaks,33 Landau
damping,34,35 free-electron lasers,30,36 in the relationship between
self-consistent chaos and phase space coherent structures,37 and in
kinetic instabilities of the Alfvén wave–particle interaction obtained
experimentally in tokamak JET.38

In the present work, we revisit the dynamics of the single wave
model with one particle (N = 1), which is integrable so that the
phase portrait comprises only regular trajectories. The bifurcation
diagram, in this case, shows a saddle-center coalescence that occurs
for a specific value of total momentum P and divides the phase por-
trait topologies. Moreover, we stress the role of the trajectory for
which the wave intensity I passes through zero, and we find a spe-
cific value of total momentum for which this trajectory coincides
with a branch of the separatrix.

For two particles (N = 2), we study the emergence of low-
dimensional chaos. We observe that the intensification of chaotic
activity occurs both in the domains close to the elliptic fixed point
and close to the separatrix associated with a hyperbolic fixed point.
Fourier analysis shows that the nonlinear evolution of the par-
ticles motion, close to the elliptic fixed point, gives rise to the
appearance and intensification of resonances. At higher energy,
for which a hyperbolic point exists, the system is significantly
chaotic. Moreover, for a still larger energy, the wave intensity
can pass through zero, and the system exhibits chaos on a larger
scale.

Our numerical computations were performed using a leap-frog
symplectic integrator, which conserves the geometry of the sys-
tem exactly and its energy quite accurately for long time.39 For the
non-integrable case with two particles, we studied the dynamics by
intercepting the trajectories with a Poincaré section.40

This article is organized as follows: in Sec. II, we present the
single wave Hamiltonian. The dynamics for one particle (N = 1) is
revisited in Sec. III. General aspects of the two-particle model are
discussed in Sec. IV. Fixed points and special trajectories are ana-
lyzed in Sec. V, while Sec. VI presents Poincaré sections and the
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time evolution of typical trajectories. Section VII is devoted to our
conclusions and prospects.

II. THE SINGLE WAVE HAMILTONIAN

The self-consistent dynamics of N identical particles moving on
the interval of length L with periodic boundary conditions, interact-
ing with M longitudinal waves with wave numbers kj = j2π/L and
natural frequencies ω0j, is described by the reference Hamiltonian1,9

HN,M
sc =

N
∑

r=1

p2
r

2mr

+
M
∑

j=1

ω0j

X2
j + Y2

j

2

+ ε

N
∑

r=1

M
∑

j=1

k−1
j βj(Yj sin kjxr − Xj cos kjxr), (1)

HN,M
sc =

N
∑

r=1

p2
r

2mr

+
M
∑

j=1

ω0jIj

− ε

N
∑

r=1

M
∑

j=1

k−1
j βj

√

2Ij cos(kjxr − θj), (2)

where βj is the coupling constant of wave j and ε is the overall cou-
pling parameter. Here, Zj = Xj + iYj =

√

2Ij e−iθj , the generalized
coordinates are the particles positions xr and waves phases θj, and
their conjugate momenta are the particles momenta pr and waves
intensities Ij. In phasor formulation, wave j has Xj as generalized
coordinate with conjugate momentum Yj.

Hamiltonian HN,M
sc comprises three contributions: the free

motion (kinetic energy) of the particles, the (harmonic) oscillation
of the waves, and the coupling between particles and waves. Besides
that, Hamiltonian HN,M

sc is invariant under translation in time and
in space so that the total energy E = HN,M

sc and the total momentum
P =

∑N
r=1 pr +

∑M
j=1 kjIj are conserved. The latter constant reveals

that the growth or decay of a wave is directly balanced with the
slowing down or acceleration of particles.

We focus on a single special case, where all particles have the
same mass, and we rescale time and energy to set the coupling con-
stant εβ1 and the particle mass m equal to unity in Eq. (3). In the
single wave model (M = 1), we omit the subscript j and set the
length unit to k−1 and the spatial period to L = 2π , which reduces
the Hamiltonian to

HN
sc =

N
∑

r=1

p2
r

2
+ ω0I −

√
2I

N
∑

r=1

cos(xr − θ). (3)

A Galileo transformation enables us to put the system in
the reference frame of the wave. With the generating function
F1(x, θ , p̄, Ī, t) =

∑N
r=1(xr − ω0t)(p̄r + ω0) + (θ − ω0t)Ī

− Nω2
0 t/2, Hamiltonian (3) becomes

H̄(p̄, Ī, x̄, θ̄ ) = HN
sc +

∂F1

∂t
,

=
N
∑

r=1

p̄2
r

2
−
√

2Ī

N
∑

r=1

cos(x̄r − θ̄ ). (4)

The total momentum

P̄ =
N
∑

r=1

p̄r + Ī (5)

is conserved by the dynamics obtained from Eq. (4). This
enables us to define a new generating function F2(x̄, θ̄ , p′, I′) = I′θ̄

+
∑N

r=1 p′
r(x̄r − θ̄ ): the new coordinate conjugate to p′

r = p̄r is
x′

r = ∂F2/∂p′
r = (x̄r − θ̄ ), which we denote as yr = x′

r, and the new
momentum conjugate to θ ′ = θ̄ is I′ = P̄. The latter is a constant
of motion so that the new angle θ ′ = θ̄ is a cyclic coordinate. The
final Hamiltonian, emphasizing that only N degrees of freedom are
effective, is obtained in the compact form

H(p, y) =
N
∑

r=1

p2
r

2
−

√
2I

N
∑

r=1

cos yr, (6)

where, for short, we dropped the prime from p′
r and the overbars

from Ī = P̄ −
∑

r p′
r and from H̄.

Wave–particle interaction is typical in many physical systems,
and we investigate in this paper how this particular form of coupling
given by Hamiltonian (6) affects the particle dynamics as we increase
the number of degrees of freedom. This single wave Hamiltonian
was first formulated as a simplified model to treat the instability
due to a weak cold electron beam in a plasma, assuming a fixed
ionic neutralizing background.27,28 More recently, different studies
extended the application of the single wave model to a much larger
class of instabilities,41 derived it in a generic manner from different
contexts, and proved it could model various phenomena in fluids
and plasmas,37 and Compton free-electron laser amplification.42

III. THE SINGLE WAVE WITH ONE PARTICLE

In order to understand this system, we start with a few
degrees of freedom. Following Adam, Laval, Mendonça, Tennyson,
Meiss, Morrison, and del Castillo-Negrete and recalling results from
Refs 29, 31, and 43, we first study the simplest, integrable case for
this model where the self-consistency couples one particle and one
wave, M = N = 1. As we will see in Sec. IV, the dynamics for N = 2
incorporates most of the basic phenomena that we will discuss in
Secs. III A and III B. Moreover, the dynamics with N = 1 bears fun-
damental importance in the description of phenomena for the case
with many particles,29,31 where the macroparticle is used to describe
the dynamics of an electron beam so that the beam electrons oscillate
bunched at the bottom of the wave potential well during the trapping
process.27–30

A. Preliminary analysis of the dynamics for N =M =1

The single wave Hamiltonian for this case reads

H =
p2

2
+ (Y sin x − X cos x) =

p2

2
−

√
2I cos(x − θ), (7)

and the conserved total momentum is P = p + I. The evolution
equations
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ẋ = p, (8a)

ṗ = −X sin x − Y cos x = −
√

2I sin(x − θ), (8b)

Ẋ = sin x, (8c)

Ẏ = cos x (8d)

imply that Ẋ2 + Ẏ2 = 1 so that the wave never remains still. Besides,
p̈ = −1 + (Y sin x − X cos x)p.

For this simple case with only one particle, the single wave
Hamiltonian has two degrees of freedom, one for the particle and
one for the wave. As the Hamiltonian is invariant under space trans-
lations, the momentum conservation law reduces the problem to
one degree of freedom. To express this, we introduce y = x − θ and
write the Hamiltonian in the form

H =
p2

2
−
√

2(P − p) cos y, (9)

with I expressed in terms of the particle momentum. As this Hamil-
tonian is time-independent, the system is completely integrable.
In particular, particle orbits in phase portrait follow the constant
energy contours (H = constant).

The equations of motion of Hamiltonian (9) read

ẏ = p +
1

√

2(P − p)
cos y, (10a)

ṗ = −
√

2(P − p) sin y. (10b)

The fixed points of the system are defined by the conditions

ẏ = ∂pH = 0, ṗ = −∂yH = 0. (11)

Solving these conditions for Hamiltonian (9), we obtain the coordi-
nates (y∗

i , p∗
i ) of the fixed points C∗

i

C∗
1 :
(

0, p∗
1

√

2(P − p∗
1) = −1

)

, (12a)

C∗
2,3 :

(

π , p∗
2,3

√

2(P − p∗
2,3) = 1

)

, (12b)

with p∗
1 < 0, 0 < p∗

2 < 1, p∗
3 > 1, and the wave intensity at the fixed

points given by I∗i = P − p∗
i .

The stability of C∗
i is determined from the eigenvalues λi of the

Jacobian matrix by linearizing the equations of motion (10a) and
(10b) in the vicinity of each fixed point. Doing so, we find that the
eigenvalues for C∗

1 and C∗
2,3 are, respectively,

λ1 = ±
(

−
√

2I∗1 −
1

2I∗1

)1/2

, (13a)

λ2,3 = ±
(

√

2I∗2,3 −
1

2I∗2,3

)1/2

. (13b)

The eigenvalue λ1 is imaginary for any value of I∗1 , which means
that the fixed point y∗

1 = 0 has elliptic stability. In addition, since

p∗
1 < 0, the physical condition I∗1 = P − p∗

1 implies that I∗1 > P for
any value of P.

When I∗2 = I∗3 = 1/2, the eigenvalues λ2,3 = 0, indicating a
bifurcation point at y∗

2,3 = π that occurs for P = 3/2 and p∗
2 = p∗

3

= 1. For I∗2 > 1/2, the eigenvalue λ2 is real so that in y∗
2 = π the

system has hyperbolic stability for any P > 3/2 with 0 < p∗
2 < 1.

Finally, for 0 < I∗3 < 1/2, the eigenvalue λ3 is imaginary, indicating
that at the same abscissa y∗

3 = y∗
2 = π , we also have elliptic stability

for any P > 3/2 with p∗
3 > 1.

The values of p∗
i at the fixed points (12) are obtained as a func-

tion of total momentum P, i.e., p∗
i = ±1/

√

2(P − p∗
i ) so that we can

describe the equilibrium solutions with the equation

(P − I∗i )
2I∗i = 1/2. (14)

As shown in Fig. 1, Eq. (14) selects the I∗i values for which the cubic
polynomial on the left-hand side assumes a given value. The blue
(solid) line represents the stable solution at the elliptic fixed point at
y∗

1 = 0 : this solution exists for any value of total momentum P. The
black point at P = 3/2 shows a bifurcation, where two types of equi-
libria with different stabilities coincide at the same fixed position
y∗

2,3 = π . After the bifurcation point, the red (dotted) line corre-
sponds to the unstable solution at the fixed position y∗

2 = π , and the
green (double-dotted) line corresponds to the stable solution in the
same fixed position y∗

3 = π .
The M = N = 1 system is integrable. Actually, solving (9) for

cos y and squaring (8b) leads to the first order equation

ṗ2 = 2(P − p)



1 −
(

H − p2/2
√

2(P − p)

)2




= 2P − H2 − 2p + Hp2 −
p4

4
, (15)

which is solved analytically in terms of elliptic functions.31

Briefly, one finds a function P such that p = P(t; p∗, P, H) by
integrating (15), and a function Y such that y = Y(t; p∗, P, H)

= arcsin[−ṗ/
√

2(P − p)] = arccos[(p2 − 2H)/
√

8(P − p)]
modulo boundary conditions. One can also construct action-angle
variables for each type of periodic trajectory.

The equilibrium points p = p∗
i = constant for Eq. (15) are

defined by the conditions

G(p∗
i ) = 0,

dG

dp

∣

∣

∣

∣

p=p∗
i

= 0, (16)

with G(p) the quartic polynomial on the right-hand side of (15).
Solving (16) for the values of parameters H and P, we find

parametrically given curves

P(p∗
i ) =

1 + 2p∗
i

3

2p∗
i

2 , H(p∗
i ) =

2 + p∗
i

3

2p∗
i

. (17)

These curves on the (P, H) plane contain important information on
the system dynamics.44

The loci of Eq. (17) on the (P, H) plane are shown in Fig. 2.
As in Fig. 1(a), the blue (solid) curve represents the stable ellip-
tic point at y∗

1 = 0; the black point at (P, H) = (3/2, 3/2) with
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(a)

(b)

FIG. 1. (a) Bifurcation diagram of Eq. (14) for the M = N = 1 system. The blue
(solid) line corresponds to the elliptic stable fixed point at y∗

1 = 0. The black point
at I∗2,3 = 1/2 and P = 3/2 corresponds to the bifurcation, and the red (dotted)
and green (double-dotted) lines correspond, respectively, to the hyperbolic and
the elliptic fixed points at y∗

2,3 = π after bifurcation. (b) Roots of the normalized

equation (14), (1 − I∗i /P)
2
I∗i /P = 1/(2P3).

p∗
2,3 = 1 corresponds to bifurcation; the red (dotted) curve repre-

sents the parameters of the hyperbolic fixed point at y∗
2 = π ; and the

green (double-dotted) line is associated with the elliptic fixed point
also at y∗

3 = π . After bifurcation, for a given value of P, the energy of
the stable (elliptic) fixed point at y∗

1 = 0 is lower than the energy of
the hyperbolic fixed point at y∗

2 = π , and the latter, in turn, is lower
than the energy of the elliptic fixed point at y∗

3 = π . The topological
changes described by the solutions of (14) in Fig. 1(a) and by (17) in
Fig. 2 are presented in the phase portraits of Sec. III B.

Moreover, for (P, H) on these curves, the evolution equation (15)
reduces to

ṗ = ±(p − p∗)
( 1

p∗ −
(p − p∗)2

4

)1/2

, (18)

which can be solved in terms of elementary functions. Specif-
ically, if 0 < p∗ < 1, this equation admits real-valued solutions

FIG. 2. Curves on the (P,H) plane for Eq. (17).

for real time, describing motion on the separatrix of the hyper-
bolic fixed point. On the contrary, if p∗ < 0 or if p∗ > 1, Eq. (18)
has no real-valued solution as the associated fixed point is
elliptic.

B. Phase portrait analysis for N =M =1

The phase portrait of the system in the (p, y) variables is shown
in Fig. 3 and has special boundaries. Indeed, variable y = x − θ is
2π-periodic and the wave intensity must be positive so that p ≤ P,
and the portrait will be plotted over half a cylinder.

As already seen in Sec. III A, the fixed point at y∗
1 = 0 has

elliptic stability for all values of total momentum P so that the sys-
tem dynamics around the elliptic point is represented by closed
trajectories.

The black line in the phase portraits represents the trajectory
for which the wave intensity I passes through 0. The ordinate P for
p does not correspond to a continuum of values for y, because Eq.
(10a) is meaningless if cos y 6= 0. Thus, only abscissae y = ±π/2 are
permitted when I = 0, and then the wave phase is actually unde-
fined. But the dynamics is well defined in Cartesian variables (X, Y)

and, if the wave turns out to vanish at a time, then Ẋ2 + Ẏ2 = 1
implies that I cannot remain zero, i.e., the potential acting on the
particle cannot remain flat. Actually, as the particle position is a
smooth function of time, what occurs when I vanishes is that the
wave phase jumps between x − π/2 and x + π/2, and the trajectory
in (p, y) variables transits through this connection with ṗ = 0 and
p̈ = −1 so that the value p = P is a non-degenerate local maximum
of p along the trajectory. According to (9), this trajectory has energy
H = P2/2. The phase jump by π instantly interchanges the locations
of the wave potential’s trough and crest, which is a very efficient
mechanism generating chaos and violent mixing in the system with
more than one particle.37

For P < 3/2, the black line separates the cylinder into two
domains: the orbits rotating (clockwise) around the elliptic fixed
point and the orbits winding (toward the left) around the cylinder.
For the value P = 3/2, the system has a saddle-center bifurcation
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FIG. 3. Phase portrait with N = 1 for the single wave Hamiltonian (9). Panel (a) shows the case P < 3/2 (before bifurcation), panel (b) shows the case P = 3/2 (at the
saddle-center bifurcation), panel (c) corresponds to total momentum P = 3/41/3, for which the trajectory containing I = 0 coincides with the upper branch of the X point
separatrix, and panel (d) shows the dynamics after the global bifurcation.

at which an elliptic–hyperbolic pair coalesce, as shown by the black
point in the bifurcation diagram (Figs. 1 and 2). The trajectory
asymptotic to the bifurcation point is represented by the red line in
Fig. 3(b).

For P > 3/2, we see two different types of stability at the same
fixed point coordinate y∗

2,3 = π . The upper fixed point is elliptic, cir-
cled by orbits rotating counterclockwise in the phase portrait. The
lower fixed point is hyperbolic, and the lower branch of its sepa-
ratrix winds (to the left) around the cylinder: from t → −∞, the
particle leaves the crest of the wave potential, it passes at the bottom
of the wave potential when the wave has its largest amplitude, and
it asymptotes again the next crest of the potential for t → +∞ so

that
∫ +∞

−∞ ẏ(t) dt = −2π . The upper branch of the separatrix is, for

3/2 < P < 3/41/3, a counterclockwise loop around the elliptic fixed
point, with cos(x − θ) always negative: from t → −∞, the particle

leaves the crest of the wave potential, it passes again at the same crest
of the wave potential when the wave has its smallest amplitude, and
it asymptotes again the same crest of the potential for t → +∞ so
that

∫ +∞
−∞ ẏ(t) dt = 0.
Figure 3(c) shows another special value of P for which the phase

portrait changes: when P = 3/41/3, the points of null wave inten-
sity belong to the separatrix of the X point (y∗

2 = π , p∗
2

√

2(P − p∗
2)

= 1). The trajectory for which this happens has energy HI=0

= P2/2 (for passing through I = 0) and this energy must also
be equal to the energy of the X point, i.e., HI=0 = (p∗

2)
2/2

+
√

2(P − p∗
2) (where p∗

2 is the X point momentum obtained by solv-

ing condition p∗
2

√

2(P − p∗
2) = 1). Thus, P2 = (p∗

2)
2 + 2

√

2(P − p∗
2)

= (p∗
2)

2 + 2/p∗
2 , and the X point condition implies that P = p∗

2

+ 1/(2(p∗
2)

2) so that (p∗
2)

2 + 1/p∗
2 + 1/(4(p∗

2)
4) = (p∗

2)
2 + 2/p∗

2 , i.e.,
p∗

2 = 4−1/3 and P = 3/41/3. Because this phase portrait connects
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two distinct points (the I = 0 point and the X point), the system
undergoes a global bifurcation at P = 3/41/3.

For P > 3/41/3, the upper branch of the separatrix winds
around the cylinder (to the right): from t → −∞, the particle
leaves the crest of the wave potential, it passes at the bottom of
the wave potential when the wave has its smallest amplitude, and
it asymptotes the next crest of the potential for t → +∞ so that
∫ +∞

−∞ ẏ(t) dt = 2π . Moreover, for P > 3/41/3, the black line contain-
ing the points with I = 0 separates two domains: above it, trajecto-
ries circle counterclockwise around the elliptic fixed point at y∗

3 = π ,
whereas trajectories wind around the cylinder (to the right) between
it and the upper branch of the separatrix.

The system with N = 1 particle coupled to M = 1 wave does
not generate chaos. In Sec. IV, we describe the emergence of chaos
by increasing the number of particles to N = 2 in the single wave
model. The symmetric case with N = 1, M = 2, although depart-
ing from the SWM, can be described by the same Hamiltonian (1)
and (2), and chaos occurs as soon as two waves with different phase
velocities are present.1

IV. THE SINGLE WAVE AND TWO PARTICLES

A. General aspects

The M = 1, N = 2 system is the first step toward the dynam-
ics of the paradigmatic single wave model, where the case of many
particles sheds much light on fundamental plasma instabilities, in
particular, the bump-on-tail. The reference Hamiltonian H2,1

sc (from
now on, denoted simply H)

H =
p2

1

2
+

p2
2

2
+ ω0

X2 + Y2

2

+ εY(sin x1 + sin x2) − εX(cos x1 + cos x2) (19a)

=
p2

1

2
+

p2
2

2
+ ω0I

− ε
√

2I(cos(x1 − θ) + cos(x2 − θ)) (19b)

describes two particles interacting self-consistently with one wave.
Again, a Galileo transformation enables us to set ω0 = 0, leaving

H =
p2

1

2
+

p2
2

2
+ ε(Y(sin x1 + sin x2)

− X(cos x1 + cos x2)) (20a)

=
p2

1

2
+

p2
2

2
− ε

√
2I(cos(x1 − θ) + cos(x2 − θ)). (20b)

Finally, rescaling all variables as t′ = λ−1t, x′ = x, θ ′ = θ ,
p′ = λp, I′ = λI, P′ = λP, X′ = λ1/2X, Y′ = λ1/2Y, and H′ = λ2H
shows that the coupling parameter can also be scaled away with
ε′ = λ3/2ε. Thus, we are left with three cases:

1. ε = 0: the system is uncoupled;
2. ε = 1: the coupling has unit strength and favors x1,2 ∼ θ ener-

getically; and
3. ε = −1: the coupling has unit strength and favors x1,2 ∼ π + θ

energetically, but this can be absorbed in the change of variable
θ ′ = θ + π .

The model is thus completely parametrized by total energy H
and total momentum P = p1 + p2 + (X2 + Y2)/2 for ε = 1. From
here on, we set ε = 1. A similar Hamiltonian was considered by
del Castillo-Negrete and Firpo,37,43 with a different wave–particle
coupling. Our results complement theirs.

For the M = N = 1 model, the fact that the wave intensity must
be positive implied that the particle momentum p was bounded from
above by P. With two particles, total momentum P sets no bound on
a single particle momentum since only p1 + p2 is bounded by P.

The original dynamics (19a) or (20a) has three degrees of free-
dom, with phase space (T × R)2 × R

2, where particles evolve on the
cylinder T × R and the harmonic oscillator (viz., the wave) evolves
in the plane R

2. Given the two conserved quantities, the dynamics is
restricted to four-dimensional manifolds, and the motions generate
Poincaré maps in three-dimensional sections.

The equations of motion read

ẋr = pr, (21a)

ṗr = −X sin xr − Y cos xr = −
√

2I sin(xr − θ), (21b)

Ẋ = sin x1 + sin x2, (21c)

Ẏ = cos x1 + cos x2, (21d)

θ̇ = −(2I)−1/2(cos(x1 − θ) + cos(x2 − θ)), (21e)

İ =
√

2I(sin(x1 − θ) + sin(x2 − θ)). (21f)

For ω0 > 0, Hamiltonian (19b) is bounded from below:
| cos(x1 − θ) + cos(x2 − θ)| ≤ 2 so that

H ≥
p2

1 + p2
2

2
− 2

√
2I + ω0I,

=
p2

1 + p2
2

2
+

ω0

2

(√
2I −

2

ω0

)2

−
2

ω0
. (22)

For ω0 ≤ 0, Hamiltonian (19b) is not bounded from below:
one may have x1 = x2 = θ , p1 = p2 = 0 and I arbitrarily large.
Then, H = ω0I − 2

√
2I → −∞ as I → ∞. However, for fixed P,

the Hamiltonian is bounded from below even for ω0 ≤ 0,

H ≥
p2

1 + p2
2

2
− 2

√
2I + ω0I

=
(p1 + p2)

2 + (p1 − p2)
2

4
− 2

√
2
√

P − (p1 + p2)

+ ω0(P − (p1 + p2))

≥
(p1 + p2)

2

4
− 2

√
2
√

P − (p1 + p2)

+ ω0(P − (p1 + p2)), (23)

and the last two terms cannot diverge faster than the first one if P is
bounded.

Given P and H, Eq. (23) implies that p1 and p2 are bounded,
and Eq. (22) shows that I is bounded too. Since x1, x2, and θ vary on
the unit circle, the constant (P, H) manifolds are compact.
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This discussion about boundedness shows how important the
conservation of momentum is. Moreover, it stresses how the notion
of energy depends on the observer’s viewpoint: a mere Galileo trans-
formation changes the model from H bounded from below for
any P (with ω0 > 0) to H bounded from below conditionally on a
fixed P.

B. Reduction to 2 degrees of freedom

The intersection of energy and momentum surfaces is com-
pact for every (H, P), for any fixed ω0. Indeed, the general-
ized coordinates (x1, x2, θ) range over a 3-torus. The generalized
momenta must satisfy the above inequalities implying that neither
p1 nor p2 can diverge, and hence I = P − p1 − p2 cannot diverge
either.

For a fixed P, consider the reduced dynamics in terms of
(y1, y2, p1, p2), with I = P − p1 − p2 and yr = xr − θ . Then,

ẏr = pr +
cos y1 + cos y2
√

2(P − p1 − p2)
, (24a)

ṗr = −
√

2(P − p1 − p2) sin yr, (24b)

with the conserved Hamiltonian

H =
p2

1

2
+

p2
2

2
−
√

2(P − p1 − p2)(cos y1 + cos y2). (25)

As the N = 1 case is recovered by setting y1 = y2 and p1 = p2

and rescaling time, energy, and coupling constant, let σ = P/2. With
variables z1 = (y1 + y2)/2, z2 = (y1 − y2)/2, w1 = (p1 + p2)/2, and

w2 = (p1 − p2)/2, the Poisson brackets are

[f, g] = ∂p1 f ∂y1g − ∂y1 f ∂p1g + ∂p2 f ∂y2g − ∂y2 f ∂p2g

=
1

2
(∂w1 f ∂z1g − ∂z1 f ∂w1g

+ ∂w2 f ∂z2g − ∂z2 f ∂w2g) (26)

so that Hamilton’s canonical evolution equations read

ġ = [H, g] =
(

∂w1

H

2

)

∂z1g −
(

∂z1

H

2

)

∂w1g

+
(

∂w2

H

2

)

∂z2g −
(

∂z2

H

2

)

∂w2g. (27)

Specifically,

ż1 = w1 +
cos(z1 + z2) + cos(z1 − z2)√

4(σ − w1)

= w1 +
cos z1 cos z2√

σ − w1
, (28a)

ż2 = w2, (28b)

ẇ1 = −
√

4(σ − w1)
sin(z1 + z2) + sin(z1 − z2)

2

= −2
√

σ − w1 sin z1 cos z2, (28c)

ẇ2 = −
√

4(σ − w1)
sin(z1 + z2) − sin(z1 − z2)

2

= −2
√

σ − w1 cos z1 sin z2. (28d)

The new variables (w1, w2, z1, z2) are not canonically equivalent
to the original ones (since the bracket undergoes a rescaling by 1/2)
but the quantity

E = H/2 =
w2

1

2
+

w2
2

2
−

√
σ − w1 (cos(z1 + z2) + cos(z1 − z2))

=
w2

1

2
+

w2
2

2
− 2

√
σ − w1 cos z1 cos z2 (29)

plays the role of a Hamiltonian in these new variables as the action
differential of the system may be written as

dS =
∑

r

pr dxr + I dθ − H dt

=
∑

r

pr dyr + P dθ − H dt

= 2
(

∑

wr dzr + σ dθ − E dt
)

. (30)

Note that E = H/2 is also the energy per particle, like σ = P/2 is the
momentum per particle.

Energy E can be rewritten in the form

E = E1(w1, z1) + E2(w2, z2, w1, z1), (31)

with

E1 =
w2

1

2
− 2

√
σ − w1 cos z1, (32)

E2 =
w2

2

2
+ 2

√
σ − w1 cos z1(1 − cos z2). (33)

This form extracts for (w1, z1) an effective Hamiltonian E1, which
is the N = 1 model, up to rescaling the coupling coefficient with a
factor

√
2. The second term E2 is positive if cos z1 > 0, which cor-

responds to the case where the two particles are not “too far” from
each other, and describes their relative motion as that of a pendulum
with time-dependent parameters.

The periodic boundary conditions yr ≡ yr + 2π mod (2π)

imply that the configuration space is a torus. The covering of this
torus with cells of the form zr ≡ zr + 2π mod (Ar) for an appro-
priate Ar is not consistent if one sets A1 = A2 = π for both z1 and
z2. For the sake of safety, we set A1 = A2 = 2π , which implies that
the new cells have an area equal to twice that of the original ones,
and two points in the cell (z1, z2) correspond to a single point in
(y1, y2).

We analyze Poincaré sections at z2 ≡ 0 mod (2π). For a given
σ , a point (w1, z1) in this section may correspond to different ener-
gies E, depending on w2. More precisely, when both particles have
the same (p, y) = (p1, y1) = (p2, y2), we have the N = 1 dynamics,
with just a doubled mass and doubled coupling constant. This gen-
erates a family of solutions to the N = 2 case. However, for N = 2
with z2 = 0 and an arbitrary w2, the two-particle case always has
more energy than the N = 1 case. Since E is conserved, the initial
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FIG. 4. Interception of trajectories with the Poincaré section located at y1 − y2
= 0. This panel represents the dynamics in the neighborhood of the elliptic fixed
point at y1 − y2 = 0 with total energy H = −4.7.

excess energy E2 = w2
2/2 in the two-particle system may be taken

as a perturbation parameter enabling chaos near the orbits of the
integrable system.

The (z2 = 0, w2 = 0) trajectory appears in the Poincaré section
z2 = 0 as the boundary of the domain accessible for a given total
energy H. Its stability is governed by the linearized equations

ż1 = w1 +
cos z1√
σ − w1

, (34a)

ẇ1 = −2
√

σ − w1 sin z1, (34b)

δż2 = δw2, (34c)

δẇ2 = −(2
√

σ − w1 cos z1)δz2, (34d)

where the (w1, z1) dynamics is the master and the (w2, z2) dynam-
ics is the slave. Indeed, the Taylor expansion cos δz2 = 1 − (δz2)

2/2
+ · · · implies that δz2 cannot appear in the (w1, z1) dynamics.
This master–slave description is, for (δw2, δz2), a linearized ver-
sion of Boozer’s analysis of the emergence of chaos in Hamiltonian
systems.45

If the (w1, z1) trajectory remains confined in the band
cos z1 > 0 (or −π/2 < z1 < π/2), then the small perturbation
(δz2, δw2) obeys a linear evolution equation with time-periodic coef-
ficients of Hill type, δz̈2 = −g(t)δz2 with a positive function g(t).
Though there may be resonances for some such (w1, z1) trajecto-
ries, the perturbation may remain bounded. Indeed, the Poincaré
sections show nice KAM (Kolmogorov-Arnold-Moser) tori in this
range (Fig. 4) and one checks that E2 is positive definite for cos
z1 > 0.

In contrast, when the (w1, z1) trajectory enters the band
cos z1 < 0 (or −π/2 < z1 − π < π/2), then the perturbation obeys
δz̈2 = −g(t)δz2 with a negative function g(t). During this time,
the perturbation is amplified (and the more as z1 approaches

π), and the system may leave the linear regime. Then, cos z2 is
no longer close to 1 and the relative motion (w2, z2) feeds back
upon the “master” variables. Such a process easily generates chaos,
and one may expect that, soon enough, the trajectory approaches
z1 ≈ π and the associated hyperbolic point. As a result, one may
expect a well-developed chaotic behavior for trajectories entering
the band cos z1 < 0. Energetically, E2 has an indefinite signature for
cos z1 < 0.

The (w1, z1) trajectories which come close to w1 = σ are also
likely to behave chaotically, because this line corresponds to I = 0,
and on this line, the angle z1 spontaneously jumps by π to account
for the sign reversal of both X and Y when the wave crosses null-
amplitude. Then, the corner of the wave cat’s eye in original variables
(xr, pr) suddenly becomes its center and, conversely, which is a very
efficient mixing process.37,46

V. FIXED POINTS AND SPECIAL TRAJECTORIES

The equilibrium solutions for the case with N = 2 are given
in terms of (x1, x2, p1, p2) such that (I, θ) remain constant. Thus,
if I > 0 the amplitude and the phase remain constant only if
x2 = π + x1 mod(2π), which implies p1 = p2. The latter requires
sin(x1 − θ) = sin(x2 − θ), which must, therefore, vanish so that
x1 = θ mod π and p1 = p2 = 0. Then, P = I and H = 0. One par-
ticle stands on the unstable fixed point of the wave (π + θ), while
the other particle is at the bottom of the potential well (θ). It has
actually been proved that, for a finite-amplitude wave with fixed
(I, θ), particles cannot move with respect to the wave, whatever their
number N.47

For I = 0, i.e., X = Y = 0, the amplitude remains 0 only if
x1 = π + x2 mod (2π), implying p1 = p2 (which must not vanish)
and then P = 2p1 and H = P2/4. Both particles move at the same
velocity and form a (two-particle) ballistic beam. Such solutions
exist for any number N ≥ 2 particles.48

The limit case I = 0 (for which θ is undefined) in the first
type is also the special case P = 0 in the second type. Moreover, if
we seek regular solutions with merely a constant phase, say, θ = 0
with no loss of generality, this imposes Y = 0 and Ẏ = 0; hence,
x2 = π ± x1, which has two solutions:

1. x2 = π + x1 implies Ẋ = 0, which was considered above: X itself
must be 0.

2. x2 = π − x1 implies p2 = −p1, but it also implies sin x1 = sin x2

so that Ẋ = 2 sin x1. However, total momentum P = X2/2 must
remain constant, which implies sin x1 = 0; hence, x1 = 0 and
x2 = π (or the opposite).

Thus, any other solution must have a time-dependent phase.

A. Vanishing wave

For a vanishing wave amplitude, the special solution has its two
particles moving at a finite velocity v = p1 = p2 = P/2. Then, let
x1 = vt and x2 = π + vt (by a proper choice of the origin of time
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if v 6= 0). The resulting linearized dynamics reads

d

dt















δx1

δp1

δx2

δp2

δX
δY















=















0 1 0 0 0 0
0 0 0 0 − sin vt − cos vt
0 0 0 1 0 0
0 0 0 0 sin vt cos vt

cos vt 0 − cos vt 0 0 0
− sin vt 0 sin vt 0 0 0















×















δx1

δp1

δx2

δp2

δX
δY















. (35)

The explicit dependence of the matrix elements on time makes this
linear dynamics a Floquet system.48

One easily eliminates one pair of variables by introducing

s1 = (δx1 + δx2)/2, (36a)

u1 = δp1 + δp2, (36b)

s2 = δx1 − δx2, (36c)

u2 = (δp1 − δp2)/2 (36d)

so that the system decouples to

d

dt

(

s1

u1

)

=
(

0 1/2
0 0

)(

s1

u1

)

, (37)

along with

d

dt







s2

u2

δX
δY






=







0 2 0 0
0 0 − sin vt − cos vt

cos vt 0 0 0
− sin vt 0 0 0













s2

u2

δX
δY






. (38)

Total momentum reads, to first order, δP = u1, and energy to
second order

δ2H =
u2

1

4
+ u2

2 + (δX)s2 sin vt + (δY)s2 cos vt, (39)

and the decoupling ensures that u1 remains constant. Note that the
perturbative approach does not require momentum conservation to
second order, as the dynamics is linearized. The second order energy
is relevant because the Hamiltonian is derived with respect to the
perturbations to generate the dynamics.

Though the decoupling reduces the number of dynamical vari-
ables in (38), conservation laws no longer simplify the dynamics:
total momentum conservation places no constraint on this system,
and total energy is now formally time-dependent. However, since
the coefficients in (38) are trigonometric functions of time, one may
view this system like forcing the wave oscillator by the particles
reference motion, at the Doppler-shifted angular frequency v.

It is thus interesting to perform a Galileo transformation to
the beam frame, introducing variables x′

r = xr − vt, p′
r = pr − v,

X′ + iY′ = (X + iY) eivt so that (21a), (21b), (21c), and (21d) read

ẋ′
r = p′

r, (40a)

ṗ′
r = −X′ sin x′

r − Y′ cos x′
r, (40b)

Ẋ′ = sin x′
1 + sin x′

2 − vY′, (40c)

Ẏ′ = cos x′
1 + cos x′

2 + vX′. (40d)

The null solution now reads x′
1 = 0, x′

2 = π , p′
1 = p′

2 = 0, and
X′ = Y′ = 0, and the linearized dynamics is now autonomous,

d

dt





















δx′
1

δp′
1

δx′
2

δp′
2

δX′

δY′





















=















0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 0 1
1 0 −1 0 0 −v
0 0 0 0 v 0



































δx′
1

δp′
1

δx′
2

δp′
2

δX′

δY′





















. (41)

Again, introducing s1, s2, u1, and u2 decouples the system, and the
nontrivial part reads

d

dt







s2

u2

δX′

δY′






=







0 2 0 0
0 0 0 −1
1 0 0 −v
0 0 v 0













s2

u2

δX′

δY′






. (42)

The characteristic polynomial of the matrix in the right-hand
side of (41) is

P4(λ) = λ4 + v2λ2 + 2v, (43)

which admits four roots

λ = ±
i

√
2

√

v2 ±
√

v4 − 8v. (44)

If v < 0, viz., if the particles are slower than the wave, this defines
two real roots and two imaginary roots: the reference solution is
unstable. If 0 < v < 2, viz., if the particles are moderately faster than
the wave, this defines a quartet of complex roots ±α ± iβ : the ref-
erence solution is also unstable. If v > 2, viz., if the particles are
significantly faster than the wave, all four roots are purely imaginary:
the reference state is stable.

At v = 0, the case coincides with the zero-amplitude limit of the
other class of solutions. For v close to 0 and negative, the eigenvalues
have modulus (−2v)1/4 and lie on the real and imaginary axes. For v
close to 0 and positive, the eigenvalues have modulus (2v)1/4 and lie
on the bissectrices. At v = 2, the model exhibits a Krĕın collision (or
Hamiltonian Hopf bifurcation).49

B. Coinciding particles

If the two particles are at the same position with the same
velocity at t = 0, they will never separate. Indeed, with variables
(pr, xr, Y, X), the evolution equations (21a), (21b), (21c) and (21d)
are smooth and have unique solutions globally in time.

For z2 = 0 and w2 = 0, the evolution equations (34a) and
(34b) with time t can be rewritten as (10a) and (10b) with a time
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FIG. 5. Time evolution and Fourier transform of the particles total momentum for
the black (outer oval) trajectory in Fig. 4.

s by rescaling s = 21/3t, y = z1, p = 2−1/3w1, PN=1 = 2−1/3σ , and
HN=1 = 2−2/3 HN=2. Note that the rescaling of time implies that
frequencies and Lyapunov exponents rescale accordingly.

The wave amplitude I > 0 implies that p1 + p2 < P, then θ is
well defined, and we have sin y1 = sin y2 = 0. So when both particles
are in the same position y1 = y2 = 0, from (24), one finds

p1 = p2 =
−1

√
σ − p1

< 0. (45)

The linear stability analysis from Eq. (24),

δẏ1 = δp1, (46a)

δṗ1 =
2

p1
δy1, (46b)

FIG. 6. Time evolution and Fourier transform of the particles total momentum for
the blue (central point) trajectory in Fig. 4.

FIG. 7. Interception of trajectories with the Poincaré section located at y1 − y2
= 0 for negative H values. The panels represent the dynamics in the neighbor-
hood of the elliptic fixed point at y1 − y2 = 0 with total energy (a) H = −1.82
and (b) H = −0.45.

δẏ2 = δp2, (46c)

δṗ2 =
2

p1
δy2, (46d)

shows that this case is stable so that both particles oscillate at the
same frequency near the bottom of the wave potential well. As we see
in Figs. 4–6, at low energy, the system undergoes harmonic oscilla-
tions near the fixed point at y1 = y2 = 0. For increasing energy, the
nonlinear coupling generates chaos near this 1:1 resonance.

Now, considering the case where both particles coincide at the
same position y1 = y2 = π (unstable position of the potential),

p1 = p2 =
1

√
σ − p1

> 0, (47)
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FIG. 8. Time evolution and Fourier transform of the particles total momentum for
(a) the dark red (similar to an “8”) trajectory in Fig. 7(a) and (b) the blue (chaotic)
trajectory in Fig. 7(b).

and this solution exists only if σ ≥ 3/41/3. Here, we have two
possibilities, namely, p1 = p2 = p∗

low and p1 = p2 = p∗
high.

The linearized equations read

δṗr = 2
√

σ − p∗δẏr, (48a)

δẏr = δpr −
1

4(σ − p∗)3/2 (δp1 − δp2), (48b)

or







δẏ1

δẏ2

δṗ1

δṗ2






=







0 0 1 − K −K
0 0 −K 1 − K

2
√

σ − p∗ 0 0 0
0 2

√
σ − p∗ 0 0













δy1

δy2

δp1

δp2






,

(49)
with

K =
1

4(σ − p∗)3/2 = p∗3/4. (50)

Thus,






δż2

δż1

δẇ2

δẇ1






=







0 0 1 0
0 0 0 1 − 2K

2
√

σ − p∗ 0 0 0
0 2

√
σ − p∗ 0 0













δz2

δz1

δw2

δw1






,

(51)
and the dynamics decouples (δz1, δw1) and (δz2, δw2).

The “center of mass” dynamics (δz1, δw1) near y1 = y2 = π

gives

δż1 = (1 − 2K)δw1, (52a)

δẇ1 = 2
√

σ − p∗δz1. (52b)

The eigenvalues are given by

λ2 = 2
√

σ − p∗
(

1 −
1

2
p∗3

)

. (53)

They are real for p∗ < 21/3 and imaginary for p∗ > 21/3. Thus, the
p∗

low solution is unstable and the p∗
high one is stable. The critical value

p∗ = 21/3 implies that σ = 3/41/3, in agreement with the N = 1 case.
For the “relative motion” (δz2, δw2) dynamics

δż2 = δw2, (54)

δẇ2 = 2
√

σ − p∗δz2, (55)

the eigenvalues solve λ2 = 2
√

σ − p∗ > 0 and are always real.
Therefore, the coinciding particle solution at y1 = y2 = π with
p1 = p2 is always unstable.

C. Oppositely placed particles

For the nonvanishing wave reference state, let θ0 = 0, viz.,
X0 =

√
2I0 and Y0 = 0, x10 = 0, x20 = π , and p10 = p20 = 0. This

exact solution has no analog in the N = 1 case. Near this state, the
energy reduces to second order to

δ2H =
δp2

1 + δp2
2

2
+ δY(δx1 − δx2) + X0

δx2
1 − δx2

2

2
, (56)

and momentum to first order to

δP = δp1 + δp2 + X0δX. (57)

The linearized evolution equations read

d

dt















δx1

δp1

δx2

δp2

δX
δY















=















0 1 0 0 0 0
−X0 0 0 0 0 −1

0 0 0 1 0 0
0 0 X0 0 0 1
1 0 −1 0 0 0
0 0 0 0 0 0





























δx1

δp1

δx2

δp2

δX
δY















. (58)

The eigenvalue 0 is degenerate, with eigenvector (1, 0, 1, 0, 0, −X0)
T

corresponding to a simple translation in space and the associated

Chaos 31, 083104 (2021); doi: 10.1063/5.0040939 31, 083104-12

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

change in the wave phase, and eigenvector (0, 0, 0, 0, 1, 0)T corre-
sponding to a change in the wave intensity. The latter eigenvector
changes P. Neither eigenvector changes H.

The eigenvalues λ = ±
√

X0 are simple, with eigenvectors
(0, 0, λ, X0, −1, 0)T corresponding to particle 2 moving in the vicin-
ity of its unstable equilibrium (conditioned by the wave). The change
of momentum for particle 2 is compensated with the change of wave
intensity so that these two (complex conjugate) eigenvectors lie in
the plane tangent to constant (P, H) surfaces.

The eigenvalues λ = ±i
√

X0 are simple, with eigenvectors
(λ, −X0, 0, 0, 1, 0)T corresponding to particle 1 oscillating in the
vicinity of its stable equilibrium (conditioned by the wave). The
change of momentum for particle 1 is compensated with the change
of wave intensity so that these two eigenvectors lie in the plane
tangent to constant (P, H) surfaces.

In summary, the I > 0 solutions are unstable in
six-dimensional space: they have two eigenvectors with 0 eigenvalue
(cf. constants of the motion), two eigenvectors related to elliptic

perturbations, and two related to hyperbolic perturbations.
The clear link between the four nonzero eigenvalues and

the motion of a single particle should not obscure the fact that
the wave variables (X, Y) must also evolve during these eigen-
motions. Indeed, the particle–wave system is self-consistent, and
one should not use blindly the stability analysis relevant to slaved
particles (though this analysis hints at the actual self-consistent
behavior).

Finally, let us recall that this analysis is formulated for the fixed
point y1 = 0, y2 = π , p1 = p2 = 0. On relabeling particles, it also
applies to the fixed point y1 = π , y2 = 0, and p1 = p2 = 0. In the
four-dimensional phase space of the reduced model (24) with fixed
total momentum P, this latter fixed point is distinct from the for-
mer one. Therefore, the stable and unstable manifolds of both fixed
points will generate heteroclinic connections within their common
homoclinic tangle.

VI. REGULAR AND CHAOTIC TRAJECTORIES

Chaos in the self-consistent interaction of two particles (N = 2)
with one wave (M = 1) is expected since this is a non-integrable
Hamiltonian system, and there is no nontrivial solution with a trav-
eling wave.47 Moreover, it is intuitive to think that typically chaos
starts and is more intense in the regions close to the separatrix of the
N = 1 system.1 In particular, the explicit solution for the separatrix
can be used to prove nonintegrability of perturbations of this system
using the Melnikov–Poincaré integral.50,51

In our case, there are two standard ways for chaos to appear and
grow. One is the homoclinic tangle growing from a separatrix, and
the other is resonances near elliptic points, as discussed in Sec. V.

To keep the discussion simple, we consider here the case P = 2
so that σ = 1, and the N = 1 reference model has PN=1 = 2−1/3. For
this total momentum, the integrable N = M = 1 system has only
one fixed point, as in Fig. 3(a).

A. Chaos near the elliptic fixed point for H <0

In the negative energy regime, the wave intensity is large and
the kinetic energy of the particles is low so that the particles oscillate

FIG. 9. Poincaré section at y1 − y2 = 0 for moderate positive H values.
(a) H = 0.0, (b) H = 0.5, and (c) H = 1.0.

at the bottom of the wave potential well. For a very small perturba-
tion, the two particles “agglomerate” and move together in such a
way that the evolution can be understood as if there was only one
particle (N = 1) in the system. This dynamics is represented by the
black (outer oval) trajectory in Fig. 4.
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FIG. 10. Interception of trajectories with the Poincaré section located at
y1 − y2 = 0 for large positive H values. The system total momentum is P = 2
on both panels and the total energy increases from (a) H = 1.5 to (b) H = 4.7.

The perturbation strength, which is given by the difference in
the initial velocities of the particles, increases from the black (outer
oval) to the blue (central point) trajectory. The outer oval trajec-
tory corresponds to w2 = 0 and z2 = 0, and it remains forever in the
Poincaré section plane, as we saw in Sec. IV B. The other trajectories
only intersect the section plane at times at which the two particles
cross each other (having then a nonzero relative velocity 2w2).

The Fourier transform of the particles total momentum p1 + p2

for the black (outer oval) trajectory is displayed in Fig. 5, and it
shows that the system then oscillates harmonically with a single
frequency.

For the blue (central point) trajectory in Fig. 4, which has the
highest perturbation strength for this energy surface, we find that, as
we increase the disturbance in the system, the oscillation amplitude
of the particles center of mass increases and the particles start oscil-
lating in anti-phase with respect to each other. The relative motion

of the particles with respect to the wave gives rise to a resonance,
as shown by the Fourier transform in Fig. 6. The contribution of
this resonance is eventually enough to establish resonance overlap
and chaos, as seen in Figs. 7(a) and 7(b), with (w1, z1) trajectories
confined in the band cos z1 > 0.

This is the usual scenario near an elliptic fixed point, with
deformation and destruction of tori due to increased distur-
bance as predicted by the KAM theorem.52 Furthermore, the
Poincaré–Birkhoff theorem predicts that when a resonant torus is
destroyed (due to the increase in the perturbation), a sequence of
periodic orbits will appear in phase space, which alternate between
elliptic (stable) and hyperbolic (unstable), generating periodic points
in the Poincaré section. In this scenario, hyperbolic points are
related to the emergence of chaos while elliptic points become the
center of stable regions, called resonant islands, immersed in the
chaotic sea.52 When the perturbation is increased, the trajectories
that contain an unstable point [as the one similar to an “8” in
Fig. 7(a)] give rise to chaos in this region.

Figures 8(a) and 8(b) show the time evolution of the particles
total momentum and its Fourier transform for the dark red (similar
to an “8”) and the blue (chaotic) trajectories of Figs. 7(a) and 7(b),
respectively. Despite the noise in the Fourier-transformed signal, the
peak frequency and its harmonics still appear well defined. This may
be related to the fact that when one or both particles escape from the
wave potential well (giving rise to a burst of chaos), they are easily
recaptured by the wave potential well. Hence, in this energy regime,
the chaotic trajectory does not present a large excursion through
phase space.

B. Chaos with a separatrix for 0≤H <P2/4

At H = 0, for positive P, a new special solution appears, with
particles at opposite positions (see Sec. V C). This solution is “far”
from the Poincaré surface y1 = y2, and it does not significantly alter
the Poincaré sections, as shown by Fig. 9(a). But its existence enables

FIG. 11. Time evolution and Fourier transform of the particles total momentum
for the green chaotic trajectory in Fig. 10(b).
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the appearance of a connection between hyperbolic points (with one
particle at the crest of the wave), which generates further chaos.

Indeed, close to a separatrix, the distances between resonances
are very small so that for small perturbation values the system can
be driven quickly to the chaotic regime.51,53 In our case, in particu-
lar, this means that the dynamics becomes strongly chaotic even for
small initial perturbations (z2, w2) of a coinciding-particles solution.

Even for larger energy, as long as H < P2/4, the wave intensity
cannot vanish during the system evolution. Indeed, when I = 0, the
energy reduces to H = (p2

1 + p2
2)/2 = P2/4 + w2

1. Therefore, when
the energy remains below the threshold P2/4, the wave always keeps
a finite intensity, and the motion of particles is constrained by the
potential well, which is modulated smoothly with time and never
disappears.

C. Large-scale chaos for H >P2/4

At energy H = P2/4, a new type of solution appears: the wave
may vanish. Then, its phase can undergo a π-jump, and large-
scale chaos does prevail, in a way similar to what was observed by
Menyuk46 and del Castillo-Negrete and Firpo.37

Poincaré sections for larger H values are shown in Fig. 10. In
this energy regime, both particles can wander far away from the
bottom of the wave potential well. In particular, for H = 1.5, the
green (chaotic) trajectory reaches close to p1 + p2 = P (viz., I = 0),
allowing a very wide range of values for y1 = y2.

The time evolution of the particles’ total momentum and its
Fourier transform for the green chaotic trajectory in Fig. 10(b) is
shown in Fig. 11. The Fourier transform looks just like a noise and it
is not possible to point out a peak frequency. This may suggest that,
in this chaotic regime, particles are free to move in phase space after
gaining energy from the wave. The particles come back to exchange
energy with the wave because the system is conservative and motions
occur on compact manifolds.

VII. CONCLUSION

In this work, we analyze the regular and chaotic dynamics
in the wave–particle interaction using the self-consistent Hamilto-
nian model.1,2 Considering the single wave model,27,28 we study the
dynamics for N = 1 and N = 2 particles.

In the first stage, we recall the analysis29,31,43 of the self-
consistent wave–particle interaction for N = M = 1. As this system
is integrable, its phase space presents only regular trajectories. Inte-
grable cases are important because they provide54 a basic under-
standing of the coherent structures found for large N. As observed
in Sec. III B for different values of total momentum, the phase
portrait topology of the H = constant contours changes. For the spe-
cific value P = 3/2, the system has a bifurcation point at which an
elliptic–hyperbolic pair of fixed points coalesce.

Bifurcation diagrams (Figs. 1 and 2) provide a clear descrip-
tion of the system dynamics in terms of equilibrium solutions. The
analysis of the phase portrait complements the bifurcation diagrams.
After the saddle-center bifurcation, a separatrix orbit appears and
divides the phase portrait topology in three different domains, and
the evolution of the system is different in each domain. Moreover,

for the special value P = 3/41/3, the system has a global bifurca-
tion by which the energy line that contains I = 0 passes through the
hyperbolic point.

For N = 2, we identify and analyze the emergence of chaos
in a low-dimensional system. In this scenario, the discussion about
the chaotic activity can be divided into two regions of phase space,
namely, close to the hyperbolic and elliptic fixed points.

The appearance and intensification of chaos in the region close
to the hyperbolic fixed point is usual since, for N = 2, the system is
non-integrable, and the homoclinic tangle generated from a separa-
trix in a non-integrable Hamiltonian system is a skeleton near which
chaotic transport develops. Chaos in this scenario is called separatrix
chaos. In this region of phase space, the system presents strong sen-
sitivity on the initial condition so that the interaction quickly leads
to chaos for small variations in the particles relative position and
velocity.

On the other hand, for wave–particle systems, the appearance
of chaos near the elliptic fixed point is not typically expected. For
negative H, the momenta pr associated with the particles are small,
whereas the wave intensity I is large since total momentum P and
total energy H are conserved quantities for this dynamics. Therefore,
in the beginning, the particles should move in the wave potential
well and, as we increase the disturbance in the system, the particles
would have more energy to exchange with the wave while remaining
trapped. Our results show that the contribution of the resonance is
eventually enough to destroy tori and establish chaos in this domain.
A more appropriate view of the N = 2 and M = 1 system in this
regime is that of two particles coupled through an effective inter-
action mediated by the wave, similar to the low-energy regime of
the celebrated Hénon–Heiles system.55,56 Finally, for large enough
energy, the wave intensity can occasionally vanish, which results in
very efficient chaos.

The description of the wave–particle interaction in low-
dimensional approximation proved to be effective in analyzing basic
characteristics of the system, related to the emergence and intensifi-
cation of chaos for N = 2. Similarly, investigating the “mirror” case
of N = 1 particle coupled to several waves is also an important issue,
which will be discussed in a separate work. However, while cases
N + M = 3 can be thoroughly investigated, increasing the number
of degrees of freedom toward the N � 1 case (and similarly M � 1)
is the real challenge for a sharp understanding of the fundamental
problem of the transition from dynamics to statistical behavior.1,2,57

ACKNOWLEDGMENTS

The authors acknowledge discussions with Dr. C. Chandre, Dr.
X. Leoncini, Dr. L. H. Miranda F., Dr. T. M. Rocha Filho, and mem-
bers of the équipe turbulence plasma in Marseille. They also thank
anonymous reviewers for constructive comments.

The Centre de Calcul Intensif d’Aix-Marseille is acknowledged
for granting access to its high performance computing resources.
J.V.G. acknowledges the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior (CAPES) for financing her stay at Aix-
Marseille Université (AMU) under the Programa de Doutorado
Sanduíche no Exterior (PDSE) (Process No. 88887.307528/2018-
00) and the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq) for a doctoral fellowship at Universidade

Chaos 31, 083104 (2021); doi: 10.1063/5.0040939 31, 083104-15

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Federal do Paraná (UFPR) (Process No. 166914/2017-7). M.C.d.S.
acknowledges the CAPES for financing her stay at AMU under
the Programa Estágio Pós-Doutoral no Exterior (Process No.
88887.307684/2018-00) and the Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) for a postdoctoral fellowship at
Universidade de São Paulo (USP) under Grant No. 2015/05186-
0 (associated with Grant No. 2018/03211-6). At the beginning of
this work, Y.E. enjoyed the hospitality of the grupo controle de
oscilações at USP, and R.L.V. and I.L.C. enjoyed the hospital-
ity of the équipe turbulence plasma at AMU, with support from
a COFECUB-CAPES (COFECUB - Comité Français d’Évaluation
de la Coopération Universitaire et Scientifique avec le Brésil)
grant (Processes COFECUB No. 40273QA-Ph908/18, and CAPES
No. 88881.143103/2017-01). R.L.V. received financial support from
CNPq (Process No. 301019/2019-3). I.L.C. acknowledges financial
support from FAPESP under Grant No. 2018/03211-6 and CNPq
under Grant Nos. 407299/2018-1 and 302665/2017-0.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1Y. Elskens and D. Escande, Microscopic Dynamics of Plasmas and Chaos (IOP
Publishing, Bristol, 2003).
2D. F. Escande and Y. Elskens, “Microscopic dynamics of plasmas and chaos: The
wave-particle interaction paradigm,” Plasma Phys. Control. Fusion 45, A115–124
(2003).
3D. G. Swanson, Plasma Kinetic Theory (CRC Press, Boca Raton, 2008).
4T. H. Stix, Waves in Plasmas (Springer-Verlag, New York, 1992).
5C. F. F. Karney and A. Bers, “Stochastic ion heating by a perpendicularly
propagating electrostatic wave,” Phys. Rev. Lett. 39, 550–554 (1977).
6G. R. Smith and N. Pereira, “Phase-locked particle motion in a large-amplitude
plasma wave,” Phys. Fluids 21, 2253–2262 (1978).
7R. Balescu, Transport Processes in Plasmas (North-Holland, Amsterdam, 1988).
8S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (CRC Press, Boca
Raton, 2018).
9Y. Elskens, “Irreversible behaviours in Vlasov equation and many-body Hamil-
tonian dynamics: Landau damping, chaos and granularity,” in Topics in Kinetic
Theory, Toronto, 24 March–2 April 2004, Fields Institute Communications Series
Vol. 46, edited by T. Passot, C. Sulem, and P. L. Sulem (American Mathematical
Society, Providence, 2005), pp. 89–108.
10N. Besse, Y. Elskens, D. F. Escande, and P. Bertrand, “Validity of quasilinear the-
ory: Refutations and new numerical confirmation,” Plasma Phys. Control. Fusion
53, 025012 (2011).
11Y. Elskens, “Gaussian convergence for stochastic acceleration of particles in the
dense spectrum limit,” J. Stat. Phys. 148, 591–605 (2012).
12A. V. Timofeev, “Cyclotron oscillations of plasma in an inhomogeneous mag-
netic field,” Sov. Phys. Uspekhi 16, 445 (1974).
13D. F. Escande, D. Bénisti, Y. Elskens, D. Zarzoso, and F. Doveil, “Basic micro-
scopic plasma physics from N-body mechanics,” Rev. Mod. Plasma Phys. 2, 9
(2018).
14F. Doveil, D. F. Escande, and A. Macor, “Experimental observation of nonlinear
synchronization due to a single wave,” Phys. Rev. Lett. 94, 085003 (2005).
15F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press,
New York, 1984).Vol. 1.
16W. Herr, “Introduction to Landau damping,” in Advanced Accelerator Physics,
Trondheim, 19–29 August 2013, edited by W. Herr (CERN, Geneva, 2014).
17J. He, L. Wang, C. Tu, E. Marsch, and Q. Zong, “Evidence of Landau and
cyclotron resonance between protons and kinetic waves in solar wind turbulence,”
Astrophys. J. Lett. 800, L31 (2015).

18C. H. K. Chen, K. G. Klein, and G. G. Howes, “Evidence for electron landau
damping in space plasma turbulence,” Nat. Commun. 10, 1–8 (2019).
19L. D. Landau, “On the vibrations of the electronic plasma,” Yad. Fiz. 10, 25
(1946).
20D. D. Ryutov, “Landau damping: Half a century with the great discovery,”
Plasma Phys. Control. Fusion 41(3A), A1–A12 (1999).
21P. Stubbe and A. I. Sukhorukov, “On the physics of Landau damping,” Phys.
Plasmas 6, 2976–2988 (1999).
22Y. Elskens, D. F. Escande, and F. Doveil, “Vlasov equation and N-body dynam-
ics: How central is particle dynamics to our understanding of plasmas?,” Eur.
Phys. J. D 68, 1–7 (2014).
23D. F. Escande, “Stochasticity in classical Hamiltonian systems: Universal
aspects,” Phys. Rep. 121, 165–261 (1985).
24M. C. de Sousa, F. M. Steffens, R. Pakter, and F. B. Rizzato, “Standard map
in magnetized relativistic systems: Fixed points and regular acceleration,” Phys.
Rev. E 82, 026402 (2010).
25Y. H. Ichikawa, T. Kamimura, and C. F. F. Karney, “Stochastic motion of
particles in tandem mirror devices,” Physica D 6, 233–240 (1983).
26H. E. Mynick and A. N. Kaufman, “Soluble theory of nonlinear beam-plasma
interaction,” Phys. Fluids 21, 653–663 (1978).
27I. N. Onishchenko, A. R. Linetskii, N. G. Matsiborko, V. D. Shapiro, and V. I.
Shevchenko, “Contribution to the nonlinear theory of excitation of a monochro-
matic plasma wave by an electron beam,” Soviet Phys. JETP 11, 281–285
(1971).
28T. M. O’Neil, J. H. Winfrey, and J. H. Malmberg, “Nonlinear interaction of a
small cold beam and a plasma,” Phys. Fluids 14, 1204–1212 (1971).
29J. L. Tennyson, J. D. Meiss, and P. J. Morrison, “Self-consistent chaos in the
beam-plasma instability,” Physica D 71, 1–17 (1994).
30A. Antoniazzi, Y. Elskens, D. Fanelli, and S. Ruffo, “Statistical mechanics and
Vlasov equation allow for a simplified Hamiltonian description of single-pass free
electron laser saturated dynamics,” Eur. Phys. J. B 50, 603–611 (2006).
31J. C. Adam, G. Laval, and I. Mendonça, “Time-dependent nonlinear Langmuir
waves,” Phys. Fluids 24, 260–267 (1981).
32M.-C. Firpo and Y. Elskens, “Kinetic limit of N-body description of wave-
particle self-consistent interaction,” J. Stat. Phys. 93, 193–209 (1998).
33N. Carlevaro, G. Montani, and D. Terzani, “On the viability of the single-wave
model for the beam plasma instability,” Europhys. Lett. 115, 45004 (2016).
34M.-C. Firpo and Y. Elskens, “Phase transition in the collisionless damp-
ing regime for wave-particle interaction,” Phys. Rev. Lett. 84, 3318–3321
(2000).
35N. A. Yampolsky and N. J. Fisch, “Simplified model of nonlinear Landau
damping,” Phys. Plasmas 16, 072104 (2009).
36Z. Huang and K.-J. Kim, “Review of x-ray free-electron laser theory,” Phys. Rev.
ST Accel. Beams 10, 034801 (2007).
37D. del Castillo-Negrete and M.-C. Firpo, “Coherent structures and self-
consistent transport in a mean field Hamiltonian model,” Chaos 12, 496–507
(2002).
38D. Testa, A. Fasoli, D. Borba, M. de Baar, M. Bigi, J. Brzozowski, P. de Vries,
JET-EFDA Contributors et al., “Alfvén mode stability and wave-particle interac-
tion in the JET tokamak: Prospects for scenario development and control schemes
in burning plasma experiments,” Plasma Phys. Control. Fusion 46, S59–S79
(2004).
39E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:
Structure-preserving Algorithms for Ordinary Differential Equations (Springer,
Berlin, 2006).
40G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford Univer-
sity Press, New York, 2005).
41J. D. Crawford and A. Jayaraman, “First principles justification of a “single wave
model” for electrostatic instabilities,” Phys. Plasmas 6, 666–673 (1999).
42D. Farina, F. Casagrande, U. Colombo, and R. Pozzoli, “Hamiltonian analysis of
the transition to the high-gain regime in a Compton free-electron-laser amplifier,”
Phys. Rev. E 49, 1603–1609 (1994).
43D. del Castillo-Negrete, “Dynamics and self-consistent chaos in a mean field
Hamiltonian model,” in Dynamics and Thermodynamics of Systems with Long-
Range Interactions, Les Houches, 18–22 February 2002, edited by T. Dauxois,
S. Ruffo, E. Arimondo, and M. Wilkens (Springer, Berlin, 2002), pp. 407–436.

Chaos 31, 083104 (2021); doi: 10.1063/5.0040939 31, 083104-16

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1088/0741-3335/45/12A/008
https://doi.org/10.1103/PhysRevLett.39.550
https://doi.org/10.1063/1.862163
https://doi.org/10.1088/0741-3335/53/2/025012
https://doi.org/10.1007/s10955-012-0546-2
https://doi.org/10.1070/PU1974v016n04ABEH005196
https://doi.org/10.1007/s41614-018-0021-x
https://doi.org/10.1103/PhysRevLett.94.085003
https://doi.org/10.5170/CERN-2014-009.377
https://doi.org/10.1088/2041-8205/800/2/L31
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1088/0741-3335/41/3A/001
https://doi.org/10.1063/1.873584
https://doi.org/10.1140/epjd/e2014-50164-9
https://doi.org/10.1016/0370-1573(85)90019-5
https://doi.org/10.1103/PhysRevE.82.026402
https://doi.org/10.1016/0167-2789(83)90008-8
https://doi.org/10.1063/1.862273
https://doi.org/10.1063/1.1693587
https://doi.org/10.1016/0167-2789(94)90178-3
https://doi.org/10.1140/epjb/e2006-00175-0
https://doi.org/10.1063/1.863354
https://doi.org/10.1023/B:JOSS.0000026732.51044.87
https://doi.org/10.1209/0295-5075/115/45004
https://doi.org/10.1103/PhysRevLett.84.3318
https://doi.org/10.1063/1.3160604
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1063/1.1470203
https://doi.org/10.1088/0741-3335/46/7/S05
https://doi.org/10.1063/1.873302
https://doi.org/10.1103/PhysRevE.49.1603


Chaos ARTICLE scitation.org/journal/cha

44A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Topology and stability of
integrable systems,” Russian Math. Surveys 65, 259–318 (2010).
45A. H. Boozer, “Arnold diffusion and adiabatic invariants,” Phys. Lett. A 185,
423–427 (1994).
46C. R. Menyuk, “Particle motion in the field of a modulated wave,” Phys. Rev. A
31, 3282–3290 (1985).
47Y. Elskens, “Finite-N dynamics admit no travelling-waves solutions for the
Hamiltonian XY model and single-wave collisionless plasma model,” in ESAIM:
Proceedings (EDP Sciences, 2001), Vol. 10, pp. 221–215.
48D. F. Escande, S. Zekri, and Y. Elskens, “Intuitive and rigorous microscopic
description of spontaneous emission and Landau damping of Langmuir waves
through classical mechanics,” Phys. Plasmas 3, 3534–3539 (1996).
49J. D. Meiss, Differential Dynamical Systems (SIAM, Philadelphia, 2017).
50V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics,”
Russ. Math. Surveys 38, 1–76 (1983).

51J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields (Springer, New York,
1983).
52E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 2002).
53A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion
(Springer, New York, 1983).
54R. Pakter and G. Corso, “Improving regular acceleration in the non-
linear interaction of particles and waves,” Phys. Plasmas 2, 4312–4324
(1995).
55M. Hénon and C. Heiles, “The applicability of the third integral of motion: Some
numerical experiments,” Astron. J. 69, 73 (1964).
56J. H. Lowenstein, Essentials of Hamiltonian Dynamics (Cambridge University
Press, Cambridge, 2012).
57Y. Elskens and C. Firpo, “Kinetic theory and large-N limit for wave-particle
self-consistent interaction,” Phys. Scripta T75, 169–172 (1998).

Chaos 31, 083104 (2021); doi: 10.1063/5.0040939 31, 083104-17

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1070/RM2010v065n02ABEH004672
https://doi.org/10.1016/0375-9601(94)90178-3
https://doi.org/10.1103/PhysRevA.31.3282
https://doi.org/10.1063/1.871943
https://doi.org/10.1070/RM1983v038n01ABEH003330
https://doi.org/10.1063/1.870986
https://doi.org/10.1086/109234
https://doi.org/10.1238/Physica.Topical.075a00169

	I. INTRODUCTION
	II. THE SINGLE WAVE HAMILTONIAN
	III. THE SINGLE WAVE WITH ONE PARTICLE
	A. Preliminary analysis of the dynamics for N==M==1
	B. Phase portrait analysis for N==M==1

	IV. THE SINGLE WAVE AND TWO PARTICLES
	A. General aspects
	B. Reduction to 2 degrees of freedom

	V. FIXED POINTS AND SPECIAL TRAJECTORIES
	A. Vanishing wave
	B. Coinciding particles
	C. Oppositely placed particles

	VI. REGULAR AND CHAOTIC TRAJECTORIES
	A. Chaos near the elliptic fixed point for H=<0
	B. Chaos with a separatrix for 0=H=<P2/4
	C. Large-scale chaos for H=>P2/4

	VII. CONCLUSION
	ACKNOWLEDGMENTS

