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Mathematical modeling is an important tool to analyze impacts and plan to mitigate epidemics in com-
munities. In order to estimate the impact of control measures in a second wave of infections, we analyze
the SEIR epidemic model based on stochastic cellular automata. The control measure is based on one of
the key strategies to control the epidemic, which is the restriction of the mobility of individuals in space.
For stronger restrictions, we observe a decrease larger than 15% in the total number of infected individu-
als during the epidemic. On the other hand, the total attenuation of control measures in the system can
lead to a second wave scenario and even a situation in which the total number of infected individuals
is close to the uncontrolled case. Additionally, we also include the possibility of reinfection, as the SEIRS
model, where the recovered individuals can go to the susceptible state based on a fixed immunity time or
a probabilistic rule. Our results show that an extinction of the epidemic occurs only for a fixed immunity
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1. Introduction

An epidemic can be defined as an outbreak of a disease capable
to infect a significant portion of the population before it ends [1].
The spread of an infectious disease can happen in different ways.
There are transmissions by direct contact with infected individuals
or by indirect contact, such as through disease vectors agents, for
example. Mathematical models can be considered as methods to
study the consequences and to estimate the future of the disease
spread [2,3]. They are crucial to understand the epidemic evolution
and the impacts of mitigation measures applied to the population,
for the purpose of lessening the disease severity, ie., decreasing
the number of infected individuals [4-6].

The epidemiological models, from the compartmental approach
(as SIR, SEIR, SI and others) to the Richards growth model, are
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mostly based on ordinary differential equations (ODE) [4,7]. The
ODE models give the infected population time evolution. These
models do not consider the individual role in the epidemic evolu-
tion, such as the movement of these individuals, the contact pro-
cesses and a different individual susceptibility [4,7,8].

One way to overcome these limitations imposed by the ODE'’s
models is to implement Individual-Based-Modeling (IBM), taking
the individual as a basic unity in the system. By this portrait we
include individuals particularities and their influences on the dis-
ease spread. One example of IBM is the model based on Cellular
Automaton (CA). Cellular automata are discrete dynamical systems
with discrete time and space, and the associated physical quanti-
ties also admit discrete values. As mentioned by Wolfram [9], phys-
ical systems with discrete elements and local iterations are often
modeled by CA. In this portrait, we can use CA models to describe
epidemics by discretizing the space, considering an IBM model in
which the discrete unity in the space is represented by the individ-
ual, and the discrete unity in time is a time step (hours or a day,
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for example). Cellular automata based models were already used
to generic epidemics and specific diseases detailed in the papers
[4,6-8,10-17] and references therein.

Various studies consider different properties of the individuals
in the CA model, for example, the heterogeneity of the populations,
as different susceptibility and infectivity [10] or the sex ratios, age
and individual immunity [6]. Some surveys consider the movement
of the individual in space [4,6,13,14,16], or the movement of the
vector agent responsible for the infection [15].

In addition to the inclusion of individual particularities, differ-
ent interaction processes can also be considered by CA based mod-
els, as the segregation of infected individuals. In order to attenuate
the impact of the epidemics of a disease spread by contact in the
population, the implementation of mitigation strategies is crucial.
Key strategies such as vaccines, isolation, quarantine, travel restric-
tions, and drug distribution are necessary and very important [18].
If the vaccines and drugs are absent, the non-pharmaceutical and
the preventive measures are the only possibility to reduce the im-
pacts of the epidemic. This topic became a central debate since
the outbreak of COVID-19 epidemic in December 2019, declared
as a pandemic in early March 2020. Several studies analyzed the
impacts of the quarantine of infected individuals and developed
mathematical models to forecast the future of the COVID-19 spread
[6,19-25].

Besides the impact of control measures, it is also important to
study the impact of prematurely easing these measures leading to
the possibility of subsequent waves of infections [26]. Souza and
coauthors showed that, for the SEIR model with an ODE portrait,
a relaxation in the mitigation measures leads to a second wave
scenario of the infection curve [22]. A second wave scenario was
also predicted by Xu, Qi and Hu [26], as well as by Renardy, Eisen-
berg and Kirschner [27] for a compartmental model with differen-
tial equations description.

The second wave scenario has been studied by means of dif-
ferential equations and they do not take into account the behavior
of the individuals and the possibilities of directed measures in the
population for the control of the epidemics. With this perspective,
we propose a CA model, based on the compartmental SEIR model,
to study the control measures and the possibility of a second wave
of infection by the relaxation of these measures. We show that
stronger restriction can decrease the total number of infected indi-
viduals. In order to also study the possibility of the perpetuation of
the disease in the population and subsequent waves of infections,
we also consider the loss of immunity of the recovered individu-
als, as the SEIRS model. A loss of immunity can be, for example, a
specificity of the disease or can be a consequence of a new strain
of the disease-causing agent. Our results show that, for a fixed im-
munity time, the end of the epidemic is possible.

This study is organized as follows: In Section 2 we present our
model based on cellular automata to describe a disease with a la-
tent period (exposed and not infectious individual) and permanent
immunity. In this section, we also expose how the control mea-
sures are implemented and eased in the system. The results about
the infection control and the probability of a second wave scenario
are shown in Section 3. Section 4 is centered in the model with
the inclusion of reinfection and we study the impact of a single
implementation and relaxation of control measures in the system.
Our conclusions are stated in Section 5.

2. SEIR Model and the cellular automata
2.1. Mobility and transition rules
The SEIR model is a well established mathematical set com-

posed of four equations which describe the time evolution of four
populations embraced by the model. The susceptible (S) popula-
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tion is composed of healthy individuals and they can become sick.
The first stage of the disease is the exposed state (E), where the
individuals are sick but they are not infectious or the individuals
are sick and they can infect other healthy ones, but with low fre-
quency [8,12]. This model has been considered to study diseases
with a latency period. After the latency time, the individual is in-
fected (I) and it can infect other people with a high probability.
Lastly, we have the recovered population (R), individuals who can
not be infected again.

According to the differential equation formulation, the time
evolution for each population of the SEIR model is described by

[1]:

S=-psI,

E = BSI— kE,

[ = kE —al,

R=al, (1)

where the parameters S, k, and o denote the transition rates of in-
dividuals from one population to another. According to the review
performed by Brauer and Castillo-Chavez, the equations in (1) rep-
resent the case where the exposed individuals are not infectious
[1].

The SEIR model presented above considers a fixed number of
individuals, i.e., the birth and death rates are not considered in the
model. In this study, we follow the same method and the total
population Ny =S+ 1+ E + R does not change. Some results from
the SEIR model with variable Nr can be found in [5,28-33].

Ordinary differential equations (ODE), similar to the ones in (1),
form the basis for most mathematical models of disease spread
and epidemic simulation [4]. These models are well consolidated
and they were extensively studied. However, they present some
limitations related to a high computation time to solve the equa-
tions [11] and they do not consider microscopic aspects or individ-
uals properties, as the contact process, the effects of mixing pat-
terns of the individuals, the spatial aspects of the epidemic, a pos-
sible heterogeneous interaction between individuals, the motion of
the individual in the available space and others individual particu-
larities [4,7,10,11,34].

One way to solve these limitations is the utilization of CA to
simulate the spreading of the disease [4,7]. As mentioned in the
previous section, a CA is a mathematical model where time and
space are discrete [9]. In a practical way, the CA is composed of
a regular uniform lattice, where each site (cell) is in a state de-
scribed by a discrete variable and the cell state evolves at each
time step following a set of rules based on the states of their
neighbors [9,35]. In this way, we can identify and modify the local
interactions by specifying the rules followed in the time evolution.

The studies of the SEIR model in a CA context consider, in gen-
eral, that each site is occupied by a single individual, which can
be in the susceptible (S), exposed (E), infected (I) or recovery (R)
state. One individual interacts with its neighborhood that can be
four (von Neumann) or eight (Moore) closest sites. The neighbor-
hood can even be more complex, as studied by Gang and coau-
thors [12], and one site can be filled with more than one individual
[4,15]. In our simulations, we consider just one individual per site
and the von Neumann neighborhood. The infectious process occurs
by the contact between susceptible and infected individuals. In the
CA, this happens when an individual in a S state has neighbors in
I state.

The model that we analyze in this study was proposed by
Quan-Xing and Zhen [8] as a SEIRS epidemic spread model by
the probabilistic cellular automata perspective. The model consid-
ers five populations: susceptible, exposed, infected, recovery and
dead, where every individual belongs to one of these five states.
The disease progresses in the following order: the susceptible in-
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Fig. 1. Illustrations for the (a) transition S — E, (b) mobility in the grid and (c) the neighborhood for the transition S — E when an empty site is present. In (c), the
neighborhood is expanded, where the closest direct neighbor to the empty site, in this schematic figure the red site on the right, is considered for calculating the probability
P. In all figures, squares in blue, yellow, red, black and gray represent susceptible, exposed, infected, recovered and empty sites, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

dividual becomes exposed after contact with infected individuals,
after the latency time the individual becomes infected and then it
recovers after the infection period, or dies, and the recovered indi-
viduals become susceptible again [8].

In the present study, we are interested in the SEIR portrait, in
which the recovered individuals stay in this state, ie, the immu-
nity is persistent. The CA is based on a regular lattice N x N, where
each site contains only one individual, and the lattice obeys a pe-
riodic boundary condition. The state of one site i, at a given time
t, is denoted by Z;(t), where Z;(t) €S, E, I, R if the individual in the
site is susceptible, exposed, infected or recovered, respectively. The
state sets are defined by the following sets:

s = {0},
E={1,....t}

I={te+1,....te+1t},

R={-1}, (2)

where t. and t; are the latency and the infection time of the dis-
ease, respectively.

Each site can interact with the closest four neighbors. As we
stated before, the state of an individual changes in a sequencing
way (S — E — I — R). In this way, the site state also changes in
the same way, according to a set of transition rules defined below.

2.1.1. Transition S - E

One susceptible individual becomes exposed with a probability
P defined by [8],
nePe + niPi

— 3)
where n, and n; indicate the number of exposed and infected in-
dividuals in the neighborhood of the site i (Z; =0). P. and P are
probabilities related to the disease, where P, is the probability in
which one exposed individual transmits the infection and P is the
probability of an infected individual to infect a susceptible one.
In this study, we follow the model in equation (1), hence, we set
P, = 0.0 and as a result the exposed individuals do not contribute
to the infection of susceptible ones. Therefore, a susceptible indi-
vidual becomes exposed with a probability P = "%P".

Once the simulations are probabilistic, we select a random
number rnd, with rnd € [0, 1]. If rnd < P, the transition S — E oc-
curs to the susceptible site: in a generation g=t the individual
is susceptible and in the next generation (g=t + 1) the individ-
ual becomes exposed. A generation is our time step where all the

P=
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sites in the lattice are evolved. This process is illustrated in Fig. 1

(a).

2.1.2. Transition E — |

One exposed individual remains in the exposed state until the
latent time (t.) occurs. Consider that in time t the individual be-
came exposed, we have the following

Zit)eE> Z(t+1)=Zi(t) + 1, Zi(t + t.) €, (4)
where E and I are the sets of states defined by Equation (2).

2.1.3. Transition I - R

One infected individual recovers from the disease with a prob-
ability Py, defined by Py = 1/t;, where t; is the infection period.
Therefore, the transition I — R is represented by

Zt) el Bzt +1)=-1,Z(t +1) eR. (5)

2.14. Mobility and the inclusion of empty sites

One of the main objectives is to study the impact of individual
actions on the spread of the disease. In this way, we include the
mobility on the grid on our CA model, once one of the impacts of
human mobility is a faster disease spread [14]. The movement of
individuals is included in a CA model to study different aspects,
as the patterns assumed by the individuals in the grid [36,37], the
possibility of biodiversity in a cyclic competition model [38,39], the
impact of mobility in the spread of infectious disease by vectors
[14] and by contact with infected individuals [6,13,16,34].

To include the movement of individuals in our model, we follow
the mobility strategy used by Boccara and Cheong in their work
about automata network for the SIR model [34]. In this way, we
impose the movement to the exchange of places between an indi-
vidual and an empty site. The mobility occurs randomly: a site is
randomly chosen as well as a neighbor; if the site is active (occu-
pied by an individual in any state) and the neighbor is an empty
site, the mobility occurs, otherwise, the sites remain unchanged.
With the inclusion of the mobility rule, we have two rules: the
movement and the state transition of every site. These two rules
are applied sequentially, first we consider the mobility and after
the mobility rule is applied to every individual, we applied the
transition state rule. The mobility process is shown in Fig. 1 (b).

With the inclusion of empty sites, we add a new set of states in
equations (2): Emp = {-2}. Following the inclusion of empty sites,
we alter the studied neighborhood of a susceptible individual in
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Fig. 2. Time evolution for each population in the SEIR model. In each generation,
all the sites are chosen randomly and according to their state, the individual in the
site follow the transition rules (S — E,E — R and I — R). The blue, yellow, red and
black colors indicate the susceptible, exposed, infected and recovered individuals
in the grid. The result is an average of 30 simulations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

the transition S — E: when an empty site is in the neighborhood
we consider the next site to enter in the computation of the prob-
ability of the infection P. A schematic illustration of the situation
is present in Fig. 1 (c).

2.15. Initial condition

Now that the transitions rules are defined, we need to specify
the initial condition for the CA. We establish that a number N and
N; of the sites will contain exposed and infected individuals, on the
initial grid. To construct this grid, we randomly chose Ng (N;) sites
and select, also randomly, one value that belongs to E (I). After this
step, we randomly choose a fraction femp of the sites to be empty
Z;i(t = 0) = -2, to enable mobility. The rest of the sites are set to
the susceptible state Z;(t = 0) = 0.

Evaluating the model described by the last sections (2.1.1 to
2.1.4), we obtain the following time evolution for each popula-
tion of the SEIR model (Fig. 2) for P, =0.7, N =75, Ny =0, t. =6,
t; =10, N=100 and femp = 0.3. The values of these parameters are
all fixed, except femp, for all paper. The magnitude of each popula-
tion is the density related to the total number of sites in the grid.
In every generation g, all sites are evolved.

Analyzing the time evolution presented in Fig. 2, we observe
the similar form obtained by the differential equation models [22].
The susceptible population decreases as the recovery population
increases over time until a stationary value achieved when the dis-
ease spread ends. The exposed and the infected populations in-
crease until a maximum value and then they decrease and assume
a null value in the end of the epidemics. In this way, our model
can be considered to reproduce the behavior of the SEIR model.
We perform some tests for greater values of N and observe that if
the proportion Ne/N? is the same for all values of N, the results are
similar. Keeping this proportion, the peak value of the curve I and
the generation g when the peak occurs are practically the same.
To be more precise, the difference is less than 0.0006 for the peak
of I and less than 2 generations of difference for when the peak
occurs.

2.2. Infection control and relaxation of control measures

We propose the infection control by individual mobility restric-
tion on the grid and by the decrease of the infection probability P.
By this framework, we consider the transformation of some empty
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Fig. 3. Lattice (a) before and (b) after the implementation of control in the lattice.
The schematic lattice is of size 20 x 20. The blue, yellow, red and black sites rep-
resent susceptible, exposed, infected and recovered individual. The gray sites are
empty sites and the white sites, only present in the lattice in (b), are the “blocked
sites”. In this figure, N = 20, femp = 0.5 and q = 0.5. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)

sites in “blocked sites”, which are sites that do not participate in
the mobility and protect the susceptible neighbors.

The proposed control method for our CA model is the trans-
formation of a fraction q of empty sites in blocked sites, when the
amplitude of the infected population reaches a value Imax. In Fig. 3,
we show the implementation of the control in a schematic lattice.

The inclusion of blocked sites decreases the number of individ-
uals moving on the lattice and, consequently, decreases the prob-
ability of an infected individual reaching a susceptible one and
spreading the disease. The blocked sites also decrease the infection
probability P: when they are in the neighborhood of a susceptible
individual they act as a shield, once the action of the infected in-
dividual right next to the blocked site is neutralized.

After the implementation of the control, we simulate the easing
of control measures and modify the scenario to a case with fewer
blocked sites. In this study, we consider the relaxation of control
in order to analyze the possibility of a second wave of infection in
the model. We propose the relaxation when the amplitude of the
infected population reaches a minimum value I;,, after the first
peak of the disease spread, and the relaxation occurs by the return
of all the blocked sites to the empty site state. With this relaxation,
the mobility and the infection probability recover their pre-control
state, as shown in Fig. 3, the panel (b) returns to the scenario in
Fig. 3 (a).

In the next section, we present our numerical simulations about
the control and the relaxation on the model. First, we analyze the
impact of different control parameter q in the peak of the infected
population. In a second moment, we investigate the possibility of
a second wave due to the relaxation of control measures.

3. Numerical results

In this section, we present the results related to the control im-
plementation and to the relaxation of control measures. We set
as the limit value for the implementation of control Ip.x = 0.008
and use the same value for the I;,, the relaxation of control mea-
sures. From our simulations for g = 1.0 and femp = 0.3, we observe
that the peak of infections (maximum value of I) for 0.001 < Inax <
0.004 are smaller. The peaks for I, = 0.005 and Ipax = 0.006 are
greater comparing to the peaks of the curves for 0.007 < Inax <
0.01, which indicates an intermediate behavior. From these obser-
vations, we choose an intermediate scenario, Ipax = 0.008 and em-
phasize that the choose of Inha.x can impact in the epidemic sce-
nario, such as the maximum of the infection and, probably, in the
second wave scenario. However, in this paper, we do not study the
influence of Inhax. For the next results, we choose two values for
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Fig. 4. Control effect on the normalized infected population for different values of
control parameter q. All the infected curves are an average of 30 simulations.

femp =0.3 and femp = 0.5, corresponding to different quantities of
empty sites and, consequently, to different mobility scenarios.

3.1. Infection control

For the implementation of control measures, we select a frac-
tion g of empty sites to become barriers, blocked sites. In order to
demonstrate the impact of different control magnitudes, we sim-
ulate the epidemic for five different values of gq: g = 0.0 (no con-
trol), g = 0.3 (low control), ¢ = 0.5 (medium control), g = 0.7 (high
control) and q = 1.0 (maximum control). The time evolution of the
density of infected individual for all these different control magni-
tudes are shown in Fig. 4.

For the curves in Fig. 4, we can conclude that an increase of the
control parameter q decreases the peak amplitude of the infected
curve and extends the duration of the disease spread. The control
method that we propose in this model presents the expected re-
sult for control measures in an epidemic spread model, namely the
peak amplitude decreases more for higher control and the duration
of the spread is longer. As the peak amplitude decreases, the total
number of infected at the same time is lower, which is beneficial
for the health system to avoid its saturation.

A similar result was showed by Lima and Atman (Ref[13].) with
their model based on a combination of an agent-based model with
probabilistic cellular automata. The paper proposed the inclusion
of two methods to control the disease spread, first with the restric-
tion to mobility and, secondly, with the consideration of mask used
by individuals. The model proposed by Lima and Atman is more
complex and considered more elements, like the heterogeneity of
the population and the use of personal protective equipment. Com-
paring our results on the impact of mobility restriction with those
presented in Ref[13], in both surveys, we observe that stronger
restrictions lead to a decrease in the peak of the infected curve
and the impact is more effective for restrictions near to lockdown,
in which the mobility is almost null (q > 0.7 in our case and re-
striction greater than 70% in their results). However, the decreased
peak of the infect curve happens in a different way for both re-
searches. In our model, the peak, for the restricted case, happens
almost in the same generation as the peak for the non-controlled
case, as we observe in Fig. 4 for ¢ =0.3, ¢=0.5 and q=0.7. For
the Lima and Atman model, the occurrence of the decreased peak
is delayed and occurs some time later, when compared to the un-
restricted case. These differences must be a consequence of differ-
ent control methods in the models. For our case, the restriction
occurs after the infected curve reaches a certain value, while for
the Lima and Atman model the restriction is present all the time.

In Table 1, we present the total number of sick individuals for
each curve shown in Fig. 4. From the results in Table 1, we ob-
serve that for higher values of the control parameter q the total

https://reader.elsevier.com/reader/sd/pii/S0960077921011371?tok...2934DE2396&originRegion=us-east-1&originCreation=20220110082458

Chaos, Solitons and Fractals 155 (2022) 111784

Table 1
Total number of infections and relative percentage difference, related to the
case with no control, for different values of control parameter g.

Total number of Relative percentage

Control parameter q infected individuals difference
0.0 68,577 -

0.3 66,256 34%

0.5 63,470 74%

0.7 56,793 172 %
1.0 32,006 533 %

number of infected individuals is lower, but by the observation of
Fig. 4, the duration of the spread is longer. In this way, we can con-
clude that the implementation of the control is important due to a
lower number of infected individuals and the decrease in the num-
ber of possible deaths from the disease. In order to enlighten the
decrease, we also present in Table 1 the percentage difference re-
lated to the total number of infected individuals for the case with-
out control (g = 0.0).

In Table 1, we verify a decrease of the total number of in-
fected individuals with the implementation of control measures.
For lower values of g, the decrease is lower than 10% while for
q = 0.7, the decrease is 17%. For the total control case, the decrease
is higher than 50%. With this result, we can conclude that it is nec-
essary to implement a control with q > 0.7 to obtain a reduction
greater than 15% in the number of cases.

In the next section, we will study the consequences of easing
control. With the analysis of a possible second wave, we observe
the impacts of the disease spread in the grid in a more “realistic”
scenario, once it is impossible to maintain the control measures
during a long time due to economic reasons.

3.2. Relaxation of control measures

For the relaxation of control measures in our model, we follow
the steps defined in Section 2.2. The time evolution of the lattice
occurs without control until the value of I reaches I = Inax = 0.008
and a fraction q of the empty sites becomes “blocked” sites. After
the peak of the disease spread (maximum value of I), the curve I
decreases and, when the value of I reaches I = I,;,, the relaxation
occurs and all the blocked sites turn into empty sites again (equiv-
alent to g = 0.0 situation). In this study, we choose Iy, = 0.008,
i.e., when the epidemic state returns to the situation in which con-
trol was implemented.

In order to study different scenarios of control and its subse-
quent relaxation, we simulate the evolution of the epidemic, for
the CA model with control and relaxation, for different values of
g and we choose g = 500 generations as the length of time series.
The result is shown in Fig. 5.

In Fig. 5, we show several time series for the infected popula-
tion for different values of q. The magnitude of the I curve is rep-
resented by the color scale. For both cases, femp = 0.3 (Fig. 5 (a))
and femp = 0.5 (Fig. 5 (b)), the higher values of I are concentrated
in the beginning of the evolution (g < 100) and for lower values
of g. From this observation, we can conclude that for less control
(q < 0.4) the infected curve presents a higher peak and, after it, the
spread ends for g ~ 200, namely the density of infected individuals
is higher but the infection ends sooner, even with the relaxation of
control measures.

When a higher control is applied in the system (q > 0.4), we
see an extension of the blue region, in Fig. 5 (a) and (b), with light
blue regions separated by a dark blue section. Following the color
scale, this scenario represents two peaks separated by a section of
lowers values of I, which characterizes a scenario of a second wave
of infections [22]. To elucidate this scenario, we plot some curves
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Fig. 5. Time evolution for the density of the infected population for different values of the control parameter g. The relaxation occurs when I = 0.008 after the peak of the
infected curve I. () femp = 0.3 and (b) femp = 0.5. All time evolutions are an average of 30 simulations.

of I for four values of g: ¢ = 0.0 (no control), g = 0.4 (apparently
no second wave), ¢ = 0.8 and q = 1.0 for high and total control,
respectively. The time evolutions for I are shown in Fig. 6 (a) and
(c). We also present, in Fig. 6, the total value of infected individu-
als, Ir, for the same control parameter q and for femp = 0.3 (Fig. 6
(b)) and femp = 0.5 (Fig. 6 (d)).

From the curves shown in Fig. 6 (a) and (c), we observe a sec-
ond peak in the curve, for ¢ = 0.8 and g = 1.0, indicating a second
wave scenario in the model. For a lower value of g, g = 0.4, a sec-
ond peak is not present but we see a change in the decay in the
end of the disease spread. When the relaxation occurs in g = 0.4,
the decay slope increases, leading to a slower decay, but the mit-
igation of the control measure is not enough to initiate a second
wave of infections. This outcome is explained by the shortage of
susceptible individuals after the first wave of infection. The sce-
nario is different for ¢ = 0.8 and g = 1.0, in which the amplitude of
the first peak is comparatively smaller and the decay of the infec-
tion curve occurs long before the curves for g = 0.0 and g = 0.4. In
this way, there is a larger number of susceptible individuals avail-
able to the infection what causes the second peak when the con-
trol measures disappear.

It is important to state that the lower values of I and I for the
Fig. 6 (c) and (d), in comparison to the curves in Fig. 6 (a) and (b),
are a consequence of the different values of empty sites. Once the
density I is related to the total number of sites, the highest value
of I for the case femp = 0.5 is lower than for femp = 0.3, due to the
lower number of active sites.

Observing the total number of cases in Fig. 6 (b) and (d), the
cases with relaxation present a cumulative number lower than for
the case with no control during all the simulations. For femp = 0.3,
the cases for ¢ = 0.4 and q = 0.8 follow the rule that intense con-
trol measures decrease the total number of infections. The excep-
tion occurs for q = 1.0, where the total number of infection sur-
passes the number for g = 0.8. Now, for femp = 0.5, we verify a dif-
ferent scenario. For higher values of q, ¢ = 0.8 and q = 1.0, the to-
tal number of infections is higher than for the case of lower value
of q, ¢ = 0.4. However, for all the cases with control, the cumula-
tive number of infections is still smaller than for the case without
control.

We conclude that the relaxation can generate a second wave of
infections and the total number of cases may be close to the case
with no control. Thus, the implementation of control measures and
the choice to relaxing these measures have a great impact in the
disease spread and in the total effect of the disease in the lattice.

In order to demonstrate how the waves of infection occur in the
lattice, we plot the grid for the local maximums and minimums of
the infected curve for the case in orange in Fig. 6 (a), i.e, g=1.0
and femp = 0.3. The grids are shown in Fig. 7.

https://reader.elsevier.com/reader/sd/pii/S0960077921011371?tok...2934DE2396&originRegion=us-east-1&originCreation=20220110082458

As we observe in Fig. 7, the infection occurs at some different
places distributed in the lattice, as we observe several red sites
in the grid. This occurs due to the fact that we consider Ny = 75
exposed individuals at the initial generation. The peaks occurs at
g =29 (Fig. 7 (a)) and at g = 204 (Fig. 7 (c)). They are represented
by a higher concentration of red sites in the lattice. The waves
of infections happen in a distributed way in the lattice, in which
the emergence of infected individuals occurs in different parts of
the space. We point out that the first wave occurs during the con-
trol moment, all the empty sites are blocked (white sites) and no
mobility is possible. The minimum of the infected curve is rep-
resented in Fig. 7 (b), a snapshot at g= 130. As we observe, the
number of red sites is lower and the majority of the grid is com-
posed of blue and gray sites. In Fig. 7 (d), we see the lattice at the
end of the spread, in which there are no red or yellow sites, only
susceptible and recovered individuals and empty sites. With this
result, we can understand how the waves of infection occur in the
lattice, they occur in different places in the grid due to mobility
and the to various exposed individuals in the initial condition.

4. SEIRS Model - inclusion of reinfection

In this section, we consider a temporary immunity of the in-
dividuals, i.e., the recovered individuals can become susceptible
again. When the reinfection is considered, as the SEIRS model, we
need a new transition rule, give by R — S. For our model, we pro-
pose and study two different transition rules: fixed immunity time
and probabilistic.

4.1. Transition rule R — S: Fixed immunity time

Similarly to the transition E — I described in equation (4) from
Section 2.1.2, we propose the transition R — S as,

Zi(t) eR—> Zi(t + 1) = Z;i(t), Zi(t + timm) € S. (6)

From this rule, a individual stays in the recovered state for a time
timm, and then becomes susceptible.

In order to study the impact of the immunity loss of the in-
dividuals in the lattice, we include the rule from equation (6) in
our model with the implementation and relaxation of control mea-
sures. For a case with control and immunity loss, we study dif-
ferent combinations of the control parameter q and the immunity
time tjy,.

We analyze the possibility of the extinction of the epidemic
with the chance of reinfection, by the implementation and relax-
ation of control measures. Thus, we study the averages of the in-
fection peaks for different values of q and t;,,,. For this computa-
tion, we evolve the lattice, for the same parameters values used in
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Fig. 6. Time evolution for the density of the infected population for some values of the control parameter q for (a) femp = 0.3 and (c) femp = 0.5. The accumulated value of
infected individuals are present in the right column: (b) femp = 0.3 and (d) femp = 0.5.
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Fig. 7. Grids for different scenarios of infection for ¢ = 1.0 and femp = 0.3, the orange curve in Fig. 6 (a). The grids in (a) and (c) are respective to the peaks of the curve, at
generations g = 29 and g = 204, respectively. In (b), we have the snapshot of the lattice for g = 130, relative to the valley between the two peaks. At last, (d) represent the

system at g = 500, the end of the disease spread.

Fig. 5, for 1000 generations and then, for the last 500 generations,
we compute the average of the local maximums of the curve I. We
calculate this average I,y for different values of q and t;,,. The re-
sults are presented in Fig. 8 for femp = 0.3 and femp = 0.5. The im-
plementation and relaxation of control measures are applied in the
same according to Figs. 5 and 6. As we established for the other
results, we calculate for an average of 30 simulations.

In Fig. 8, the color scale indicates the magnitude of I,,. The col-
ored regions display combinations of g and t;,,, for which the epi-
demic does not end in 1000 generations. Meanwhile, for the black
region, we observe situations related to the extinction of the epi-
demic, even with the relaxation of control measures and the re-
infection. The higher values of I;, are more present for lower val-
ues of t;,nm. As we see, even for a total control measure q = 1.0,
the average is high: Iy ~ 0.05 for femp =0.3 and Ipy ~ 0.03 for
femp = 0.5. As the value of t;,,, increases, the average I, decreases
for all values of g and for both values of femp.

From the perspective of the epidemic annihilation, the end of
the spread occurs to high values of tjnm, timm > 210, and low val-
ues of g for both values of femp. For femp = 0.5, we can also ob-
serve annihilation cases for higher values of q and tj;, indicated

https://reader.elsevier.com/reader/sd/pii/S0960077921011371?tok...2934DE2396&originRegion=us-east-1&originCreation=20220110082458

by the black region in the upper right corner in Fig. 8(b). The first
black region, for higher values of t;,, and lower values of q can
be explained by the fact that, with low control measures (lower
values of gq), a higher number of individuals are infected in the be-
ginning of the spread, then, when the individuals become suscepti-
ble again, there are not more infected individuals to perpetuate the
disease spread in the lattice. The second black region for femp = 0.5
is a consequence of a higher control. There are more empty sites
and less active individuals so, with g ~ 1.0 and t;,,, > 360, the dis-
ease can be extinct.

4.2. Transition rule R — S: Probability Py

For the second type of the transition rule R — S, we consider
a probabilistic rule, in which the recovered individual returns to
the susceptible state with probability Pgs. This rule is similar to
the recovery rule, related to the transition I — R, in Equation (5).
Therefore, the probabilistic transition rule R— S is defined by
Equation (7),

Zt)eR B z@t+1)eS:z@+1)=0. 7)
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average of the amplitude of I for the last 500 iterations from a time series of length 1000 iterations. The fraction of empty sites in the lattice is (a) femp = 0.3 and (b)
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Fig. 9. Parameter space for the average of the amplitude of I (color scale) for the last 500 iterations from a 1000-iterations time series for different values of immunity time
(timm) and magnitude control (q). The fraction of empty sites is (a) femp = 0.3 and (b) femp = 0.5.

The probability Py is defined according to the immunity time t;;,,
which is the time that an individual can remain recovered. Fol-
lowing the same logic used for Py (equation (5)), we define Pgs as
Prs = 1/timm.

In order to understand how a probabilistic loss of immunity
will impact in the epidemic spread, we repeat Fig. 8, considering
the transition rule stated in Equation (7) for an average of 30 sim-
ulations, as shown in Fig. 9.

Comparing Fig. 8 and Fig. 9, we observe significant different re-
sults. As mentioned in the previous section, the case with a fixed
immunity time (Fig. 8) presents pairs of q and t;;,,,, where the epi-
demic can be extinct, represented by the black regions. For the
probabilistic scenario, the epidemic is rarely over and the average
of the infection curve peaks, for the last 500 generations, is non-
null for all the pairs (q, tjyy,) for both femp = 0.3 and femp = 0.5. In
Figs. 9 (a) and (b), we see some dark points in the upper region of
the parameter space, which indicate values of I, about zero.

Even with a non-null case for I, in Fig. 9, we verify that for
higher values of t;;,;, the average I,y is lower, indicating a smaller
number of infected individuals for the last 500 generations. For
lower values of t;;,;,, the average is higher and decreases for higher
values of the immunity time.

If we compare the results for the two transitions rules for R — S
in Figs. 8 and 9, we also observe that the maximum value of Iy for
both cases are similar. We conclude that, for the proposed control
method, the extinction of the epidemic is only possible for high
values of tj,m and for the case with a fixed immunity time. If the
transition R — S follows the probability Pys = 1/t the extinction
is not possible and the control only decreases the average Ip, for
higher values of t;;,.
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5. Conclusions

In this paper, we studied the SEIR epidemic model by a cellular
automata portrait. With the proposed model, we could understand
the impact of mobility of individuals on the disease spread. As a
novelty, we proposed a method to include mitigation measures, as
isolation and quarantine in the population. From our mathemat-
ical simulations, we conclude that the implementation of control
measures decreases the amplitude of the curve of infected individ-
uals and increases the duration of the pandemic, as expected. We
also observe that, for a control with more than 70% of the possible
paths blocked (blocked sites), the decrease in the total number of
infected individuals is greater than 15%, throughout the epidemic.
A similar result was obtained by Lima and Atman for a SIR model
based on probabilistic cellular automata [13]. The model proposed
by Lima and Atman includes 8 different states for the individuals
and the heterogeneity of the population is represented by infec-
tions of different severities, such as asymptomatic, symptomatic,
need for hospital ward or ICU. Through our model, which is sim-
pler, we observe a similar result for the decrease of the infected
curve but the shape is different, once it is not flatted for stronger
restrictions, and the peak does not suffer a delay for most values
of q. Therefore, we affirm that our model can reproduce the impact
of restriction of mobility in the disease spread. Our model does
not include data from literature, however, we believe that it can
be used to model a specific disease.

We also investigate the possibility of a second wave of infec-
tions in our CA based model. Our numerical results showed that a
second wave scenario is possible and it happens for greater values
of the control parameter g. This happens because, with larger con-
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trol, there are more susceptible individuals available to become in-
fected when the control measures are relaxed. With this result, we
show that the mitigation of restriction measures when the state of
the epidemics is the same in which the control was implemented
leads to a second wave scenario. Moreover, the total number of in-
fected individuals can be close to the situation with no control.

Lastly, we study the possibility of epidemic extinction for the
SEIRS model with only one implementation and attenuation of
control measures. We proposed two transition rules for the re-
turn of recovered individuals to the susceptible state: fixed immu-
nity time and probabilistic transition. From the parameter spaces
for the average of the amplitudes of the curve I, we were able
to identify the end of epidemics (Iy = 0) only for the transition
based on fixed immunity time, for higher values of immunity time
timm > 180. We can imply that with a longer immunity time, when
the recovered individual becomes susceptible, there are no infected
individuals to perpetuate the epidemic. For the probabilistic transi-
tion, the epidemic persists for all pairs of control parameter, g, and
immunity time, t;;,, combinations.

This survey presents an epidemic model, based on cellular au-
tomata, that can be used to study the impacts on the disease
spread of the individuals moving in the space. We showed that
for some strategies of control and the attenuation of the control
measures, it is possible to extinct the epidemic even with the pos-
sibility of reinfection, for a fixed immunity time. We considered a
homogeneity population, which all individuals respond to the epi-
demic equally. In future studies, it will be interesting to include
heterogeneity in the population, as well as the possibility of phar-
maceutical control measures, such as medicines or vaccines.
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