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Some internal transport barriers in tokamaks have been related to the vicinity of extrema
of the plasma equilibrium profiles. This effect is numerically investigated by considering
the guiding-centre trajectories of plasma particles undergoing E × B drift motion,
considering that the electric field has a stationary non-monotonic radial profile and an
electrostatic fluctuation. In addition, the equilibrium configuration has a non-monotonic
safety factor profile. The numerical integration of the equations of motion yields a
symplectic map with shearless barriers. By changing the safety factor profile parameters,
the appearance and breakup of these shearless curves are observed. The shearless curve’s
successive breakup and recovery are explained using concepts from bifurcation theory.
We also present bifurcation sequences associated with the creation of multiple shearless
curves. Physical consequences of scenarios with multiple shearless curves are discussed.
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1. Introduction

The control of radial particle transport in tokamak plasmas is a necessary, albeit not
sufficient, condition for obtaining good confinement, and it is currently an area of intensive
research (Hazeltine & Meiss 2003; Horton & Benkadda 2015). Such a goal can be
achieved by creating internal transport barriers (ITBs), which are regions of reduced radial
(cross-field) particle transport in the plasma column (Horton 2018). Such ITBs have been
produced in JET by the utilization of strong supplementary heating during the current rise
phase of the plasma discharge (Wolf 2002).

Another type of transport barrier is the so-called edge transport barrier (ETB), related to
steep pressure gradients at the plasma edge (Wolf 2002). These gradients arise due to the
high pedestal pressure profiles, characteristic of H-mode confinement, and can also exist
inside the plasma core (Goldston 1984; Yushmanov et al. 1990). This H-mode regime
was obtained by combining neutral beam heating with a divertor configuration, showing
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a reduction of the particle and energy transport fluxes (Wagner et al. 1982; Connor et al.
2004).

Recently, a second type of ITB has been investigated, the shearless transport barrier
(STB), which appears in tokamak plasmas with reversed-shear profiles, and for which the
pressure gradients do not need necessarily to be as large as for ETBs (Caldas et al. 2012).
Reversed-shear profiles can be obtained by modifying the safety factor profile (Connor
et al. 2004), and by applying radial electric fields in a specific way (Horton et al. 1998).
For example, reversed-shear profiles of q(r) have one or more extrema, at which shearless
toroidal magnetic surfaces are formed (Morrison 2000). Shearless surfaces represent ITBs
in the sense that cross-field transport is reduced therein (Wolf 2002).

Another type of reversed shear appears by a suitable alteration of the tokamak
equilibrium, which creates a non-monotonic radial electric field profile (Horton et al.
1998; Marcus et al. 2019). The presence of ITBs due to this effect can explain the
reduction of turbulence-driven particle fluxes observed in tokamak experiments, leading
to an improvement of the plasma confinement (Marcus et al. 2008). Finally, ITBs have
been related to reversed-shear profiles of the toroidal plasma velocity, measured in the
Texas Helimak, where a set of probes is mounted to quantify velocity shear in different
directions (Gentle et al. 2010; Toufen et al. 2012).

The STBs are formed in mixed phase space with non-monotonic equilibrium profiles,
containing regular particle trajectories as invariant curves and chaotic trajectories
(del-Castillo-Negrete, Greene & Morrison 1996). Locally, the invariant curves separate
the chaotic trajectories and prevent the global chaotic particle transport in phase space
(del-Castillo-Negrete 2000). Moreover, in STBs there are robust curves, namely shearless
curves, which survive the increasing of the chaotic area and, consequently, are among
the last invariant curves to be broken. This is a dynamical effect due to the perturbed
trajectories in non-monotonic plasma profiles (del-Castillo-Negrete et al. 1996). The onset
of STBs may be one of the mechanisms that hide behind certain improved scenarios
observed in tokamaks with non-monotonic plasma profiles. In this work, we apply a model
proposed by Horton et al. (1998) to show how this mechanism depends on the required
profiles.

The presence of different types of reversed shear (safety factor, radial electric field,
toroidal plasma velocity) has been investigated by using a drift-wave test particle transport
model (Horton et al. 1998). The latter is based on E × B drift combined with the
advection of guiding-centre motion along the magnetic field lines (Horton et al. 1998).
The numerical integration of guiding-centre trajectories leads to a Poincaré stroboscopic
map, in which we sample the coordinates at integer multiples of some characteristic
period (Lichtenberg & Lieberman 1997). This kind of description, integrating particle
trajectories, has led to important advances in the understanding of anomalous particle
transport (Horton et al. 1998; Kwon et al. 2000; El Mouden et al. 2007; Rosalem, Roberto
& Caldas 2014, 2016; Marcus et al. 2019), trapped particle transport (White & Chance
1984) and generic magnetic perturbations (White 2012).

The role of equilibrium profiles and oscillation spectrum in Horton’s model has been
studied previously. Rosalem et al. (2014) investigated the influence of the equilibrium
electric field profiles on non-twist transport barriers and reported that monotonic profiles
of electric field and safety factor do not generate a STB. Meanwhile, in the plasma edge,
the trajectories are mainly determined by the plasma velocity profile (Rosalem et al. 2016).
The effect of the amplitude of oscillation has also been studied (El Mouden et al. 2007;
Marcus et al. 2019; Osorio et al. 2021). However, the influence of the safety factor profile
has not yet been systematically investigated.
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In this paper, we present a numerical investigation of the formation of single or multiple
shearless curves due to reversed magnetic and electric shear profiles. The use of an E × B
drift guiding-centre description allows us to choose the radial profiles for the safety factor,
radial electric field and toroidal velocity. In this way, we are able to use reversed-shear
profiles in order to study STBs. A numerically obtained Poincaré map is used to compute
the rotation number profile, which takes into account all reversed-shear profiles. It turns
out that there can be one or more STBs, corresponding to extrema of the rotation number
profiles. Shearless curves can be created or destroyed by bifurcations triggered by suitably
changing the safety factor profile. We also identify the dynamical mechanisms causing
these shearless bifurcations.

This paper is organized as follows. In § 2, we present the drift guiding-centre model to
be used in the numerical simulations and the construction leading to the Poincaré map
to be used in this work. Section 3 introduces the different reversed-shear profiles to be
considered in the numerical simulations, showing the appearance of shearless surfaces
at the extrema of rotation number profiles. In § 4, we discuss the possible shearless
bifurcation scenarios. Our conclusions are left to the final section.

2. Drift-wave model

One of the characteristic features of anomalous cross-field transport in tokamak plasmas
is the presence of electrostatic wave instabilities arising from density and temperature
gradients (Horton & Benkadda 2015). A wide spectrum of waves has been shown to
produce radial transport fluxes of plasma particles (Horton 2018). A mathematical model
for describing the test particle motion in electrostatic waves has been proposed by Horton
et al. (1998), using a local coordinate system x = (r, θ, ϕ), where r is the radius measured
from the magnetic axis, with θ and ϕ being the poloidal and toroidal angles, respectively.
We denote by a and R, respectively, the minor and major plasma radius.

We consider the combined presence of an equilibrium magnetic field B and an electric
field E related to the electrostatic waves. Moreover, let us suppose that the plasma particles
are test particles, i.e. they are influenced by the external fields but do not affect them. In
the applied model (Horton et al. 1998), the ∇B and curvature drifts are neglected, and
therefore trapped particle transport is not taken into account. Under these assumptions, the
guiding-centre motion has two components: (a) a passive advection along the magnetic
field lines, with velocity v‖, and (b) an E × B drift velocity, so that the guiding-centre
equation of motion is

dx
dt

= v‖
B
B

+ E × B
B2

. (2.1)

In the large-aspect-ratio approximation (ε = a/R � 1), we use a tokamak equilibrium
magnetic field B = (0,Bθ (r),Bϕ), where Bϕ and Bθ are the toroidal and poloidal magnetic
field components, respectively. Since Bθ ∼ εBϕ , we approximate B ≈ Bϕ � Bθ and treat
B as a uniform field. The safety factor of the magnetic surfaces is thus given by

q(r) = rBϕ
RBθ (r)

. (2.2)

The model applied in this paper enables us to relate the advanced scenarios in tokamaks
with the STBs predicted for the non-monotonic plasma profiles typical of these scenarios.
To investigate this relation, it is assumed in this model (Horton et al. 1998) that the
electrostatic fluctuation spectrum is coherent and time-independent.

The assumed electric field can be expressed as E = Ēr(r)− ∇φ̃, where Ēr is
a time-independent radial electric field profile and Ẽ = −∇φ̃ is a fluctuating part,
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representing the electrostatic instabilities in the tokamak edge (Horton et al. 1998). The
latter is supposed to exhibit a broad spectrum of frequencies ωn = nω0 and wavevectors,
characterized by the oscillation spectrum (Horton et al. 1998):

φ̃(x, t) =
∑
m,�,n

φm,�,n cos (mθ − �ϕ − nω0t ± αm,�,n), (2.3)

where αm,�,n is the relative phase and φm,�,n are constant coefficients. A radial-dependent
spectrum was proposed by Connor & Taylor (1987) and results in a global drift-wave map,
valid for long times (Kwon et al. 2000). However, to study local transport, we use the local
drift-wave map, valid for short times (Horton et al. 1998). In this local map, we assume
the coefficients φm,�,n to be constants and consider only the dominant spatial mode in
(2.3), with harmonics of the lowest angular frequency ω0, and poloidal and toroidal mode
numbers m = M and � = L, respectively. Although the electrostatic fluctuations have a
broad spectrum, the wavenumber width is smaller than the frequency width (Marcus et al.
2008). Therefore, the numbers M and L can be estimated by the highest amplitudes in the
fluctuation spectrum. In this case, the electrostatic fluctuation spectrum becomes

φ̃(x, t) =
∑

n

φn cos(Mθ − Lϕ − nω0t + αn). (2.4)

This model does not take into account the nonlinear interactions between the modes
and the incoherent nature of the fluctuations. It supposes a single spatial mode of
oscillation and a temporal spectrum concentrated in low frequencies. The correlation
time and length of the fluctuation spectrum are key parameters for the validity of this
theoretical analysis. If the correlation time τc is small compared with the circumnavigation
time of the E × B motion τcirc, then the quasi-linear theory holds. However, if the
perturbation has a correlation time long enough for a test particle to be able to feel the
whole wave structure, we enter in trapping regime (Diamond, Itoh & Itoh 2010).
The dimensionless Kubo number, defined by K = τc/τcirc, gives us a simple criterion: in
the limit K � 1 the quasi-linear theory holds, and for K > 1 the particle is in the trapping
regime (Zimbardo, Pommois & Veltri 2000).

Writing (2.1) in components, and taking into account the large-aspect-ratio
approximation, yields

dr
dt

= − M
Br

∑
n

φn sin(Mθ − Lϕ − nω0t + αn), (2.5)

r
dθ
dt

= rv‖(r)
Rq(r)

− Er(r)
B

, (2.6)

R
dϕ
dt

= v‖(r). (2.7)

The guiding-centre equations of motion (2.5)–(2.7) are written in terms of the three
radial profiles to be considered in this work. Defining action and angle variables
(Horton et al. 1998), I = (r/a)2 and ψ = Mθ − Lϕ, and performing a normalization
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(Appendix A), the set of three equations reduces to just two:

dI
dt

= 2M
∑

n

φn sin(ψ − nωot + αn), (2.8)

dψ
dt

= ε
v‖(I)
q(I)

[
M − Lq(I)

] − MEr(I)√
I
. (2.9)

The drift motion of the guiding centre of charged particles in combined magnetic and
electric fields has been long known to be a Hamiltonian system, with canonical equations
(Morrison 2000):

dI
dt

= −∂H
∂ψ

,
dψ
dt

= ∂H
∂I
, (2.10a,b)

where the Hamiltonian can be written as H(I, ψ, t) = H0(I)+ H1(ψ, t), where

H0(I) =
∫ I

dI′
{
ε
v‖(I′)
q(I′)

[
M − Lq(I′)

] − MEr(I′)√
I′

}
(2.11)

is the equilibrium part and

H1(ψ, t) = 2M
∑

n

φn cos(ψ − nωot + αn) (2.12)

corresponds to the time-dependent perturbation. Hence, in general, the system is
non-integrable.

If we switch off the perturbation caused by electrostatic fluctuation (this amounts
to setting φn = 0 for all values of n), (2.8) shows that the action variable is a
constant of motion, as required from an integrable system (Lichtenberg & Lieberman
1997). The perturbations of the quasi-integrable system (2.8)–(2.9) have resonant and
non-resonant modes. The resonance condition for a perturbation mode n is given by (d/dt)
(ψ − nω0t) ≈ 0, which implies

nω0 = ε
v‖(I)
q(I)

[M − Lq(I)] − MEr(I)√
I
. (2.13)

Once the profiles of q(I), Ēr(I) and v‖(I) are specified, it turns out that (2.13) is satisfied
for a given n only for certain values of the action I = In. From Hamiltonian system theory,
it follows that chains of periodic islands appear due to the perturbation, centred at those
resonant values In.

In order to visualize those islands, we can use a Poincaré map obtained stroboscopically,
i.e. we sample the values of the action–angle variables at integer multiples of a
characteristic period, which is τ = 2π/ω0 in our system. Numerically integrating
equations (2.8), we obtain stroboscopic Poincaré maps by plotting the trajectories in
instants tj = j(2π/ω0). The two-dimensional map Ij+1 = Ij+1(Ij, ψj), ψj+1 = ψj+1(Ij, ψj)
is area-preserving because of the Liouville theorem (Hazeltine & Meiss 2003).

Since we are interested chiefly in non-monotonic radial profiles corresponding to
reversed-shear quantities like q(I), v‖(I) and Er(I), the Poincaré map is non-twist, i.e.
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the equilibrium Hamiltonian H0 has a point where

∂2H0

∂I2
= 0. (2.14)

Many results of the Hamiltonian theory, like Kolmogorov–Arnold–Moser theory and
Aubry–Mather theory, hold only for twist systems, and hence new features are expected
when non-twist maps are considered (del-Castillo-Negrete et al. 1996; Morrison 2000).
One of them is the existence of twin island chains (del-Castillo-Negrete et al. 1996;
Morrison 2000). These twin chains are centred at resonant values In satisfying (2.13)
that arise in pairs. The evolution of map orbits near twin chains has been extensively
investigated for the so-called standard non-twist map (SNM).

Introducing reversed-shear profiles in this model, transport barriers correspond to
shearless invariant curves in phase space, defined by an extreme point in rotation number
profile (del-Castillo-Negrete et al. 1996; Morrison 2000). To every regular (non-chaotic)
orbit we can associate a rotation number Ω given by the mean rotation angle in the
Poincaré section. Given an initial condition (I0, ψ0), the rotation number of this orbit is
given by

Ω(I0) = lim
N→∞

ψN − ψ0

N
, (2.15)

where ψN is the angle of the Nth intersection in the Poincaré map. We choose ψ0 = 0 in
numerical simulations, but the final value does not depend on that choice. The limit in
(2.15) exists provided the orbit is non-chaotic.

3. Breakup and reappearance of STBs

In this section, we show the presence of shearless invariant curves locally separating the
chaotic trajectories and preventing plasma edge transport.

In order to numerically solve (2.8)–(2.9) we use parameters of TCABR (Nascimento
et al. 2005), although the results can be applied to any tokamak, described in a
large-aspect-ratio approximation. However, we present a conceptual investigation rather
than detailed comparisons with experiments performed in any tokamak.

The improvement of plasma confinement quality by using reversed-shear profiles has
long been acknowledged. A substantial reduction of the turbulent transport levels has been
observed in regions with negative magnetic shear (Mazzucato et al. 1996; Connor et al.
2004). In order to generate negative shear regions, it is necessary that the safety factor
radial profile be non-monotonic. Magnetohydrodynamics-based models of a cylindrical
plasma column suggest the following profile of the safety factor (Kerner & Tasso 1982):

q(r) = qa
r2

a2

[
1 −

(
1 + μ

′ r2

a2

)(
1 − r2

a2

)ν+1
]−1

, (3.1)

where qa is the safety factor at the plasma edge and

μ′ = μ
ν + 1

μ+ ν + 2
. (3.2)

In the numerical simulations shown in this work, we fixed the parameters ν = 0.8 and
q0 = 3.75, making the remaining parameter μ a function of qa, which we choose as our
control parameter. Such a high value of q0 is not usual in common discharges but is
present in strong reversed magnetic shear profiles for studies in ITER (Sips et al. 2005;
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(a) (b) (c) (d)

FIGURE 1. Profiles of (a) radial electric field, (b) parallel velocity, (c) non-monotonic safety
factor profile and (d) resonant mode numbers as a function of the action value for different
values of qa. Since only integer values of n are allowed, it follows that only the modes n = 3
and 4 produce resonances.

Joffrin 2007). The q(r) profile is plotted in figure 1(c) for some values of the control
parameter. For qa = 3 and 4, the profile is non-monotonic, with minima at r/a ≈ 0.7
and 0.8, respectively; whereas qa = 5 yields a quasi-monotonic profile, included here for
completeness. This range of values of qa is compatible with TCABR plasma discharges
(Nascimento et al. 2005).

The presence of negative shear in the radial electric field profile has been related to the
reduction of turbulent particle fluxes in H-mode tokamak discharges (Viezzer et al. 2013).
This effect is compatible with a STB if the radial profile of Er is non-monotonic (Marcus
et al. 2008, 2019). One of the simplest functions with this property is a quadratic one,
given by

Er(r) = 3αr2 + 2βr + γ, (3.3)

where α = −1.14, β = 2.529 and γ = −2.639 are parameter values after normalization
(see Appendix A for details). These values were chosen to yield a local minimum in the
desired plasma region and are compatible with profiles measured in the TCABR tokamak
(Nascimento et al. 2005).

Toroidal plasma rotation is an important effect to be taken into account in tokamaks,
such as stabilization or growth rate decrease of certain magnetohydrodynamic modes.
Besides intrinsic rotation, this effect can also be obtained by using neutral beam injection,
since the incident particles impart momentum to the plasma particles. Moreover, it
has been observed that plasma rotation is able to decrease turbulent flux levels in the
plasma edge (Gentle et al. 2010; Toufen et al. 2012). Hence, it has been conjectured that
non-monotonic profiles of the toroidal plasma velocity can be related to ITBs (actually,
shearless barriers).

Spectroscopic techniques have been used for the measurement of toroidal plasma
rotation velocities in TCABR discharges, giving values of about 3.0 km s−1 for the plasma
edge (Nascimento et al. 2005). A normalized parallel velocity profile used in this work,
and consistent with TCABR observations, is given by

v‖(I) = v‖0 + vm tanh (σ1I + σ2), (3.4)

where the parameters take the following values: v‖0 = −3.15, vm = 5.58, σ1 = 14.1 and
σ2 = −9.26, once we apply the normalization factor v0 = E0/B0 (Osorio et al. 2021).
Profiles of Er and v‖ are shown in figure 1(a,b).

After discussing the equilibrium aspects of the model, let us consider the perturbation
caused by the electrostatic fluctuations given by (2.4). We assume the spatial dominant
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( f )(e)(d)

(c)(b)(a)

FIGURE 2. Poincaré sections in the action–angle variables obtained by numerical integration of
the equations of drift motion, for different values of the safety factor at plasma edge: (a) qa =
5.00, (b) qa = 4.50, (c) qa = 4.00, (d) qa = 3.45, (e) qa = 3.30 and ( f ) qa = 3.00. The shearless
curves are indicated by green, red and blue wherever they appear in the Poincaré sections.

mode to have M/L = 16/4, which are typical numbers in the wave spectrum at the
tokamak plasma edge (Horton et al. 1998). The temporal modes considered are n =
2, 3, 4, based on the fluctuating spectrum of TCABR (Marcus et al. 2008), with
normalized amplitudes φ2 = 11.74 × 10−3, φ3 = 2.077 × 10−3 and φ4 = 0.2443 × 10−3.
The fundamental frequency of the temporal modes is around 10 kHz (Marcus et al. 2019),
which implies a normalized angular frequency ω0 = 5.224. We keep αn = 0 and the
perturbation amplitudes at these values throughout this work.

Assuming that the rest of the profiles and parameters are fixed, the safety factor is chosen
to be the tunable parameter which determines the dynamical behaviour of the system.
Given a qa value, as mentioned before, there are resonant actions In determined by the
condition (2.13), whose numerical solution is shown in figure 1(d) for different values
of qa. The mode n = 3 produces a resonance at two values of the action I3,(a,b), which
also characterizes non-twist behaviour. The n = 4 mode, however, gives a resonance at a
single value I4. In addition, the n = 2 mode does not yield resonance at any value of I, but
it nevertheless influences the formation and destruction of STBs (Marcus et al. 2019).

The variation of the safety factor profile changes the behaviour of STBs. Figure 2
displays examples of Poincaré sections for some values of control parameter qa. We
represent the action–angle variables as rectangular coordinates for better visualization.
In figure 2(a), obtained for qa = 5.00, we observe two large (twin) islands and a chaotic
region around the inner one (the outer island has also a chaotic region, but it is too narrow
to be seen with the present resolution).

Those islands refer to the main resonances of n = 3 mode in figure 1 and are direct
consequences of the non-monotonicity of the profiles. Between these twin islands, there is
a shearless curve, located at the action value corresponding to an extremum of the rotation
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(a) (b)

FIGURE 3. Rotation number profiles corresponding to the Poincaré sections depicted in
figures 2(a) and 2(e). The extrema for each case are indicated by red, green and blue points,
in the case of one, two and three coexisting shearless curves, respectively.

number profile (figure 3a). There are other island chains corresponding to higher-order
resonances, but their width is considerably smaller than the main ones, and their effect
will not be taken into account, at least not directly.

The chaotic region around the inner islands grows as the parameter qa decreases
and eventually causes the breakup of the shearless curve for qa = 4.50 (figure 2b).
The mechanism of shearless curve breakup due to increasing perturbation has been
thoroughly described by Morrison and co-workers, in the context of the SNM, introduced
by del-Castillo-Negrete et al. (1996):

In+1 = In − b̃ sin(2πθn), (3.5)

θn+1 = θn + ã(1 − I2
n+1), (3.6)

where (In, θn) can be regarded as action–angle variables of the drift model when we
consider a quadratic approximation of the radial safety factor profile about a local
extremum (Horton et al. 1998), and ã, b̃ are system parameters. In this work, we vary
the equilibrium magnetic field configuration while keeping constant the perturbation
amplitude. Furthermore, we find new scenarios for the shearless curve onset and breakup.
Moreover, a map (discrete-time) model can be obtained if we consider a wide frequency
spectrum of equally spaced resonant modes, instead of a single dominant resonant mode.

Of note, if the value of qa is further decreased to 4.00, the shearless curve between the
two twin islands reappears (figure 2c), since the corresponding rotation number profile has
an extremum for this parameter value. This new shearless curve, on its way, is broken for
smaller values of qa, like 3.45 (figure 2d).

Further decrease in qa causes the appearance of three shearless curves at qa = 3.30
(plotted in red, green and blue in figure 2e). They are also located at extrema of the
rotation number profile: the red one at a maximum, and the green and blue ones at minima
(figure 3b). These multiple shearless curves also disappear for even lower values of qa, as
exemplified by figure 2( f ), obtained for qa = 3.00. In this Poincaré map, we can see that
even after the shearless curve breakup a partial transport barrier persists, as seen by the
density of points, due to the stickiness effect.
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The stickiness phenomenon occurs when a chaotic orbit in the vicinity of periodic island
chains spends a large amount of time encircling it, after which it is free to diffuse until it
approaches the neighbourhood of another periodic orbit, where it may be trapped again,
and so on. This results in an anomalous diffusion scenario, whereby the orbit experiences
long periods of trapping, interspersed by fast diffusion in the chaotic sea. This trapping
near a periodic island is attributed to the existence of cantori, or tori perforated in a
self-similar way, and the stickiness-induced trapping can be quantified by the calculation of
the finite-time Lyapunov exponents (Szezech et al. 2009). The mechanism for orbit escape
through cantori involves a structure called turnstiles, formed by segments of invariant
manifolds of unstable periodic orbits embedded in the chaotic sea (MacKay, Meiss &
Percival 1984).

A related investigation, reported in Szezech et al. (2012), quantifies the transport
properties of the SNM, due to the STB, using a novel concept, the finite-time rotation
number, which is computed in the same way as the conventional rotation number, but
using a short period of time. The statistical properties of the finite-time rotation number
are remarkably similar to those of the finite-time Lyapunov exponents. For example,
Lagrangian coherent structures (LCS) can be obtained by considering the ridges of the
scalar field of the finite-time rotation number, over a given phase space region. The LCS
are structures that have properties similar to those of the invariant manifolds of periodic
orbits but, unlike the latter, are defined in more general contexts (e.g. when there is explicit
time dependence), which allows their use in a wide variety of plasma physics applications
(Falessi, Pegoraro & Schep 2015). In addition, LCS can also be interpreted as transport
barriers, and their description reveals escape patterns for the E × B motion of plasma
particles.

Sequences of breakup and reappearance of shearless curves as a parameter is varied,
exemplified by figure 2(a–c), occur quite often in the non-twist system considered in
this work. In figure 4 we plot a shearless bifurcation diagram, showing the extrema of
rotation number as a function of the parameter qa. Hence, each point in this diagram
corresponds to a shearless curve, whenever it exists. There are some gaps in the diagram,
corresponding to parameter values with no extrema ofΩ , or for which the rotation number
itself is ill-defined (because the considered orbit is chaotic, for example). Such regions are
indicated in black in the bar at the top of figure 4.

For most parameter values in the shearless bifurcation diagram, there is only one
shearless curve, represented by red points in figure 4, corresponding to the red regions
in the colour bar. Multiple shearless curves are indicated by blue and green points, when
there are two and three coexisting shearless curves, respectively. In the inset of figure 4
we display a magnification of the interval 3.1 < qa < 3.4, for which there are green points
indicating three coexisting shearless curves. There are some blue points as well, but they
occupy a region so small that they are barely visible in figure 4.

We see that a shearless bifurcation is an abrupt change in the behaviour of the shearless
curve as a system parameter is varied through a critical value. For example, a change
between red and green points in figure 4 suggests the occurrence of a shearless bifurcation,
whereby a single shearless curve bifurcates into two shearless curves as the parameter qa
passes through some value. When green points become red points again, we can speak of
an inverse shearless bifurcation. Bifurcations on transport barriers like the one mentioned
above were experimentally observed for JET and ASDEX Upgrade (Joffrin et al. 2003).
However, in these experiments, the triggering mechanism of those barriers is different
from the one presented in this paper, but the possibility of having more than one transport
barrier remains.
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FIGURE 4. Shearless bifurcation diagram showing the extrema of the rotation number profile
(whenever they exist) as a function of the control parameter qa. Blue and green points indicate the
observation of two and three extrema, respectively. In the top colour bar, black regions represent
intervals for which there is no shearless curve.

4. Shearless bifurcation scenarios

The shearless curves undergo bifurcations of many types. In the most frequent, the
shearless curve simply disappears as a control parameter passes through some critical
value. Since shearless curves represent transport barriers, their breakup will be followed
by a significant increase in the transport levels (Szezech et al. 2009). After the breakup of a
shearless curve, a larger chaotic region would enable the guiding centres to undergo longer
excursions in action space (Szezech et al. 2009). However, if limited regions of chaotic
orbits exist before the shearless curve breaks down, the curve breakup is not expected to
increase significantly the transport levels.

In the SNM, after the shearless curve disappears, global chaotic transport appears in
phase space, since at both sides of the shearless curve there are locally chaotic regions
that merge together after the curve breakup, leaving a larger chaotic region therein. We
observed that the system (2.8)–(2.9) manifests some atypical shearless breakups. Two of
them are shown in figures 5 and 6. Each one depicts a shearless breakup in one of the
reconnection scenarios of the SNM.

Figure 5 shows an odd reconnection scenario involving the shearless curve. Figure 5(a)
displays the shearless curve (in red) located between twin chains of 19 islands each
(in cyan and magenta), evident in the magnification of the rectangle area (figure 5b).
A slight decrease in the value of the control parameter qa leads to a collision of both
island chains with the shearless curve and, in this process, the STB breaks up (figure 5c).
A further decrease in qa causes the reappearance of a shearless curve in a meandering
form, separating the two island chains (figure 5d). Lowering further the parameter qa, this
odd reconnection scenario involves the extinction of the twin islands, leaving only the
meandering invariant curves, separated by the surviving shearless curve (figure 5e).

A sequence of Poincaré sections showing an even reconnection scenario is depicted
in figure 6. For a given value of qa there are twin chains of four islands each (marked
green and blue), straddling a shearless curve (in red) (a magnification of the phase portrait,
showing only two islands in each chain, is displayed in figure 6a). For the current value of
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(a) (b) (c)

(d) (e)

FIGURE 5. Poincaré sections of the drift-wave model for (a) qa = 3.1290, (b) magnification
of marked region in (a), (c) qa = 3.1282, (d) qa = 3.1277 and (e) qa = 3.1272. The remaining
parameter values are the same as in figure 2. In these phase portraits, we magnify the region
containing the twin islands of 19 islands each, straddling the shearless curve.

the amplitudes considered in this figure, there are already two sizeable chaotic regions on
both sides of the shearless curve, where the remnants of the islands are embedded.

As the control parameter qa slightly increases, the twin island chains approach each
other and reconnect, causing a transition when the shearless curve is absent (figure 6b),
although the STB is still present. Increasing again qa, the lower island chain (green)
disappears, leaving only the upper chain (blue), showing an asymmetry characteristic of
this even reconnection scenario (figure 6c). After this remaining island disappears, for
increasing qa, the shearless curve reappears (figure 6d). The asymmetric behaviour of this
even reconnection scenario is a characteristic of non-twist maps with a lack of symmetry,
such as the considered model. For example, the SNM (3.5) has symmetry with respect
to action coordinate (del-Castillo-Negrete et al. 1996). However, most other maps do not
have such property, like the extended SNM (Wurm & Martini 2013).

Another category of shearless bifurcations concerns the appearance of more than one
shearless curve, as illustrated by figure 7. For qa = 3.2360 there are four island chains, two
of them at each side of a shearless curve, marked in magenta, blue, green and cyan. As in
the previous figure, the amplitude of the perturbation is already large enough to create two
large chaotic regions at each side of the shearless curve, which acts as a transport barrier,
in this case preventing large-scale excursion of particles in chaotic orbits.

Let us consider the vicinity of one island of the magenta chain in more detail, as revealed
by the magnification shown in figure 7(b). On changing the control parameter value, the
periodic points of the chain collide and a chaotic layer takes their place, containing a
myriad of islands (figure 7c). This collision represents a saddle–centre bifurcation: we have
pairs of periodic points, half of them locally stable (centres) and the other half unstable
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(a) (b)

(c) (d)

FIGURE 6. Poincaré sections of the drift-wave model for (a) qa = 3.700, (b) qa = 3.725,
(c) qa = 3.730 and (d) qa = 3.740. The remaining parameter values are the same as in figure 2.

(saddles). As the control parameter increases, these pairs of periodic points approach
each other and eventually coalesce at the bifurcation points, disappearing afterwards, and
leaving a chaotic layer therein. In this myriad of islands there is a pair of twin island
chains, with 73 islands each marked in gold and pink, having the same rotation number
(figure 7d). A bifurcation process extinguishes those twin island chains and generates a
second shearless curve, plotted in blue in figure 7(e). Finally, figure 7( f ) displays the
full scenario with the two shearless curves. We remark that the appearance of the second
shearless curve is a bifurcation in the rotation number profile, whereas the saddle–centre
(O–X) bifurcation which precedes the latter occurs in phase space (here represented by
Poincaré sections). Bifurcations of this type have been observed in some atypical scenarios
in the SNM (Wurm et al. 2005).

The process detailed in figure 8 is analogous to figure 7 and leads to a third shearless
curve, through the same kind of shearless bifurcation. In figure 8(a), obtained for qa =
3.2451, we show a scenario just after the appearance of a second shearless curve, straddling
two chaotic regions. In this Poincaré section, below the shearless curve, there is a chain
of five tiny islands, one of which is magnified and shown in cyan in figure 8(b). Starting
from this island (as well as the other ones in the same chain), a third shearless curve
emerges, which is plotted in green in figure 8(c). In this example, another saddle–centre
bifurcation occurs in the Poincaré section, leading to secondary twin island chains with 58
islands each (not shown in the figure), which precedes the shearless bifurcation causing
the emergence of the third shearless curve. The scenario after the emergence of the green
shearless curve is depicted in figure 2(e).

The last scenario of shearless bifurcation presented in this paper is shown in figure 9. For
qa = 3.365 we see, in the Poincaré section, three shearless curves, marked in blue, red and
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(a) (b) (c)

(d) (e) ( f )

FIGURE 7. Poincaré sections of the drift-wave model for (a) qa = 3.2360, (b) magnification of
a region of (a), (c) qa = 3.23841, (d) magnification of a region of (c) and (e) qa = 3.23849.
( f ) A zoom out of (e). The remaining parameter values are the same as in figure 2. This
sequence represents a scenario containing four isochronous chains (magenta, cyan, blue and
green) originating shearless bifurcations. The periodic points of the magenta chain, in (a,b),
collide in a saddle–centre bifurcation (c) and a second shearless curve arises in (d) after the
suppression of pink and gold twin island chains, containing 73 islands each (e).

(a) (b) (c)

FIGURE 8. Poincaré sections of the drift-wave model for (a) qa = 3.2451, (b) magnification
of a region of (a) and (c) qa = 3.2527. The remaining parameter values are the same as in
figure 2. This scenario illustrates the emergence of a third shearless curve through a saddle-node
bifurcation.

green (figure 9a). The rotation number profile corresponding to this case (figure 9c) has
three extrema: one maximum, corresponding to the red shearless curve, and two minima,
corresponding to the green and blue curves. As the control parameter increases slightly,
the red and blue shearless curves collide at a critical value of qa. After the collision, these
shearless curves mutually annihilate, leaving only the green shearless curve (figure 9b), as
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(a) (b)

(c) (d)

FIGURE 9. Poincaré sections of the drift-wave model: (a) magnification of a region when
qa = 3.365; (b) magnification of a region when qa = 3.367. Rotation number profile for
(c) qa = 3.365 and (d) qa = 3.367. The remaining parameter values are the same as in figure 2.
This scenario exemplifies a bifurcation of shearless curves by collisions of periodic points
(saddle–centre). The red and blue curves collide and mutually annihilate.

confirmed by the rotation number profile for this value of qa (figure 9d), which exhibits
only the minimum corresponding to the green shearless curve.

5. Conclusions

Shearless transport barriers have been identified in a theoretical model describing the
E × B drift motion of the guiding centres. These barriers may be one of the mechanisms
that hide behind certain improved scenarios observed in tokamaks with non-monotonic
plasma profiles. Three profiles have been specified in advance, following experimental
evidence: the safety factor radial profile, the average radial electric field profile and the
toroidal velocity profiles. Excepting toroidal velocity, those profiles are non-monotonic
and thus present some kind of reversed shear, the combined effect of them being the key
ingredient in our model.

The equilibrium configuration characterized by these non-monotonic profiles is
perturbed by the influence of electrostatic fluctuations with a dominant mode, whose
amplitude was also determined from experimental results for the TCABR tokamak. Our
results follow by numerical integration of the drift motion equations taking into account
the reversed-shear profiles as well as the electrostatic fluctuation field. Since the motion
equations were expressed in action–angle variables, the drift motion has a Hamiltonian
form, and the Poincaré sections (taken at integer multiples of the dominant mode of the
perturbation period) are actually area-preserving maps of a non-integrable system.
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Since the radial profiles used are non-monotonic, this is a non-twist system, and hence
some novel features are expected with respect to models using monotonic profiles. One of
them is the existence of shearless curves, located at extrema of the rotation number profiles
(in action space, which is essentially the radial direction).

The main result of our work was the discovery of multiple shearless curves when one of
the system parameters (namely the safety factor at the plasma edge) is varied in specified
intervals. These intervals comprise the neighbourhood of qa = 3 equilibrium magnetic
surface and thus are of physical interest since many tokamaks (including TCABR) operate
at that range. Such multiple shearless curves can appear and disappear due to shearless
bifurcations since they occur after (or before) the control parameter passes through critical
values.

We identified three groups of shearless bifurcations. In the first group, we have shearless
curves that simply break up and reappear, indicating local changes in the rotation number
profile (figures 5 and 6). Additionally, a partial transport barrier may still persist after
the shearless curve breakup. In fact, small variations in the system parameters affect
substantially the transport coefficients in such situations due to the configuration of
cantori, LCS and escape channels by turnstiles. Furthermore, other mechanisms are
relevant for the reduction of transport coefficients of non-twist systems, such as manifold
crossing.

In the second bifurcation group, new shearless curves appear in phase space, after a
saddle–centre bifurcation and the emergence of secondary twin island chains (figures 7
and 8). These curves are related to extrema of the rotation number profile, but one of them
corresponds to a local minimum, while the other one to a local maximum. Finally, the third
group involves the collision and disappearance of shearless curves, due to a bifurcation in
the rotation number profile (figure 9) characterized by maximum and minimum points
colliding as the control parameter is varied.

Depending on the strength of the fluctuation amplitudes, Poincaré sections show the
existence of chaotic orbits on both sides of the shearless curves, indicating a limited
extension of the chaotic transport in this region. In this case, when a shearless barrier
breaks up, the chaotic orbits often merge together, leading to global transport. If there
is more than one shearless curve, however, we can have two regions where the chaotic
transport is reduced, increasing the complexity of the description. Since multiple ITBs
have been actually verified experimentally, our work sheds some light on the nature of this
dynamic phenomenon.
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Appendix A. Normalization of variables in the drift-wave model

In this appendix, we outline the normalization of variables of the drift-wave model used
in this paper, namely B, a, ω0, Er, φn and v‖. Note that SI units are used throughout. The
minor plasma radius, a, is divided by the factor a0 = 0.18 m, so the normalized value a′ =
a/a0 = 1. Besides the normalization of the plasma radius, the TCABR tokamak aspect
ratio ε = 0.3 is maintained. The same is done for the toroidal field: we choose B0 = 1.1
T ⇒ B′ = B/B0 = 1. We adopt an electric field normalization factor so that its magnitude
has a unit absolute value at the plasma edge: E0 = |Er(r = a)|. Here

Er = 3αr2 + 2βr + γ, (A1)

where α = −80 kV m−3, β = 31.95 kV m−2 and γ = −6 kV m−1. Thus, E0 = 2274 V m−1

and the normalized field, in action variables, is

Er
′ = Er

E0
= 3

αa2

E0

( r
a

)2
+ 2

βa
E0

( r
a

)
+ γ

E0
; (A2)

therefore,
Er

′ = 3α′I + 2β ′√I + γ ′, (A3)

with (α′, β ′, γ ′) = (−1.140, 2.529,−2.639).
The velocity, time and electric potential normalization factors are given by v0 =

E0/B0 = 2067 m s−1, t0 = a0/v0 = 8.707 × 10−5 s and φ0 = a0E0 = 409.3 V, respectively,
whereas the lowest angular frequency is ω0 = 6 × 104 rad s−1, such that its normalized
value is given by ω′

0 = ω0t0 = 5.224.
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