8. Sistemas Não-Integráveis

PGF 5005 - Mecânica Clássica

web.if.usp.br/controle (Referências principais: 2 artigos de Reichl e Zheng, em Physical Review A, 1984)

> IFUSP 2025

Equação de Duffing (potencial duplo simétrico perturbado periódicamente)

- L. E. Reichl, W. M. Zheng, Phys. Rev. A 29, 2186 (1984)
- L. E. Reichl, W. M. Zheng, Phys. Rev. A 30, 1068 (1984)

O poço de potencial duplo é aplicado para investigar um grande número de fenômenos em Mecânica Clássica e em Mecânica Quântica.

Apresentamos, a seguir, um sistema hamiltoniano unidimensional com *poço duplo de potencial simétrico harmônico*.

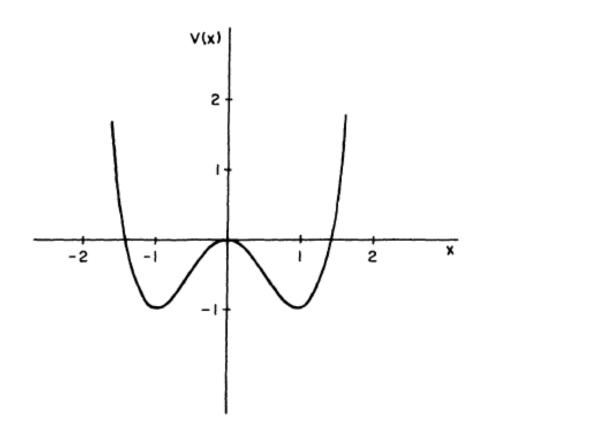
II. UNPERTURBED DOUBLE-WELL SYSTEM

We will first consider a particle of mass m=2 constrained to move along the x axis in a double-well potential

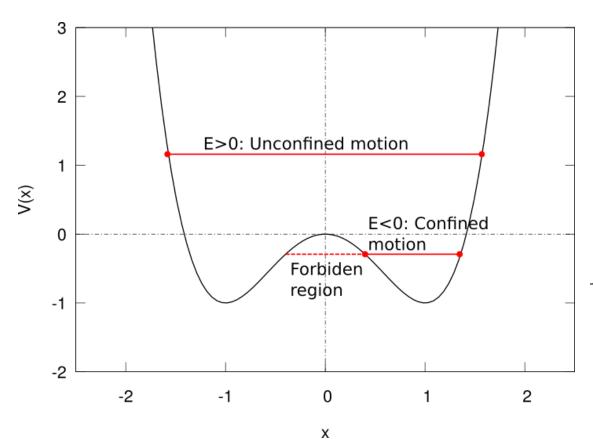
$$V(x) = -2x^2 + x^4. (2.1)$$

The Hamiltonian for this system is

$$H = \frac{1}{4}p^2 - 2x^2 + x^4 = E_0 , \qquad (2.2)$$

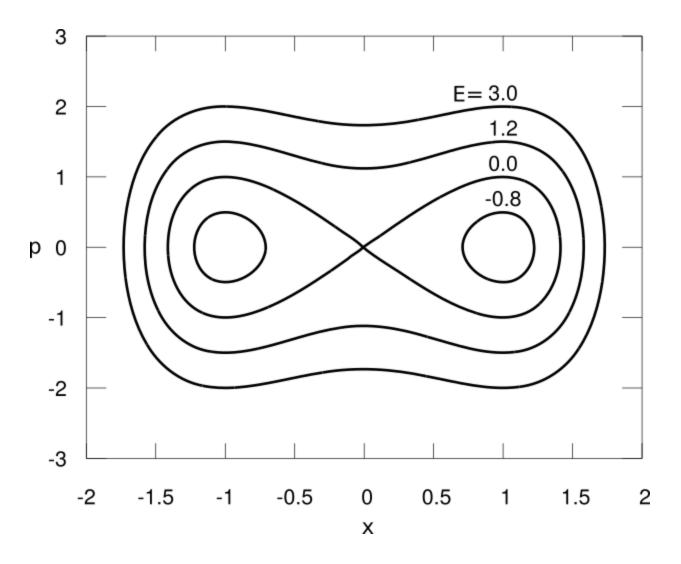


II – Double-Well Systems



$$V(x) = -2x^2 + x^4$$

$$H(x,p) = \frac{1}{4}p^2 - 2x^2 + x^4$$



Caso integrável ε = 0

A partícula se movimenta com energia $H_o = E_o$.

 E_o < 0 \rightarrow partícula presa em um dos dois poços, não ultrapassa a barreira.

 $E_o > 0 \rightarrow$ partícula pode ir de um lado para o outro ultrapassando a barreira.

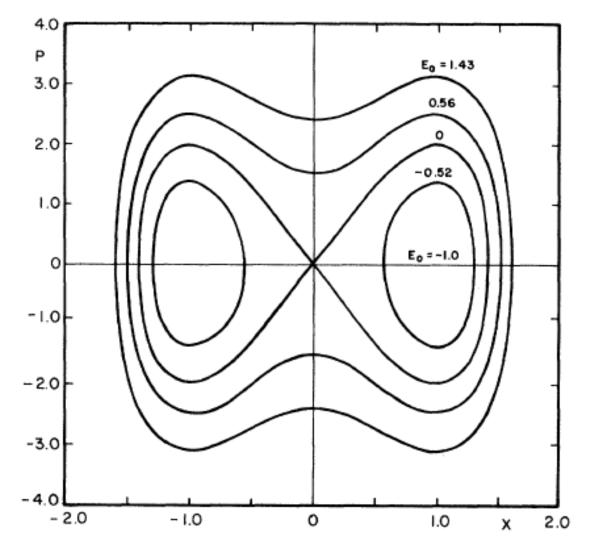


FIG. 2. Plot of phase-space trajectories for particle of mass m=2 trapped in the quartic potential $V(x)=-2x^2+x^4$. Trajectories are plotted for energies $E_0=-1$, -0.52, 0.0, 0.56, and 1.43. The trajectory $E_0=0.0$ is the separatrix and separates trapped motion from untrapped motion.

Partícula aprisionada ($E_o < 0$).

Quando E_o < 0 o momento p da partícula é dado por

$$p = \pm \left[2m(E_0 + kx^2/2 - x^4)\right]^{1/2} = \pm \left[2m(f^2 - x^2)(x^2 - e^2)\right]^{1/2},$$

$$f^2 = k/4 + (k^2/16 + E_0)^{1/2} e e^2 = k/4 - (k^2/16 + E_0)^{1/2}.$$

É fácil vermos que $x_1 = e$ e $x_2 = f$ são os pontos entre os quais a partícula oscila dentro do poço onde está aprisionada.

A variável de ação J é dada por

$$J = (1/2\pi) \int p \, dx = (1/\pi) \int_{e}^{f} dx \left[2m(f^2 - x^2)(x^2 - e^2) \right]^{1/2}$$
$$= 2(2m)^{1/2} f \left[kE(\kappa^2)/4 - e^2 K(\kappa^2) \right]/(3\pi),$$

 $κ^2 = (f^2 - e^2)/f^2$. $K(κ^2)$ e $E(κ^2)$ são as integrais elípticas de primeira e segunda espécies, respectivamente.

Caso não integrável, ε ≠ 0

Hamiltoniano H, denominado de *Hamiltoniana de Duffing*, é dada por

$$H(p,x,t) = Ho + \epsilon x \cos(\omega_0 t)$$
 onde $H_0 = p^2/2m - kx^2/2 + x^4$.

Nessas condições a Hamiltoniana não é constante; E_o e J não são constantes de movimento.

Temos de resolver numericamente as equações de Hamilton:

$$dx/dt = \partial H/\partial p$$
 e $dp/dt = -\partial H/\partial x$

Integração numérica

Para obter cada figura a seguir, os autores escolheram ω_o = 1,6 e 1,8 A partícula estava inicialmente dentro do poço direito com x_0 = 0.24, p_0 = 0 e energia E_o .

Os cálculos numéricos são feitos para tempos discretizados $t_k = 2\pi k / \omega_o$ onde k = 0,1,2,...Notemos que o primeiro ponto (x_1,p_1) a ser graficado é obtido através da integração numérica usando a condição inicial (x_o, p_o) ; o segundo ponto (x_2,p_2) é obtido usando (x_1,p_1) como condição inicial e assim, sucessivamente.

O nome *gráfico* ou *mapa estroboscópico* vem do fato de se observar o sistema em instantes discretos t_k. Notemos que esse mapa corresponde a um *mapa de Poincaré*.

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2016-0185

Articles

Licença Creative Commons

Deterministic Chaos Theory: Basic Concepts

Teoria do Caos Determinístico:Conceitos Básicos

Mauro Cattani^{*1}, Iberê Luiz Caldas¹, Silvio Luiz de Souza², Kelly Cristiane Iarosz¹

$$\ddot{x} + \beta \dot{x} - x + \gamma x^3 = F\cos(\omega t)$$

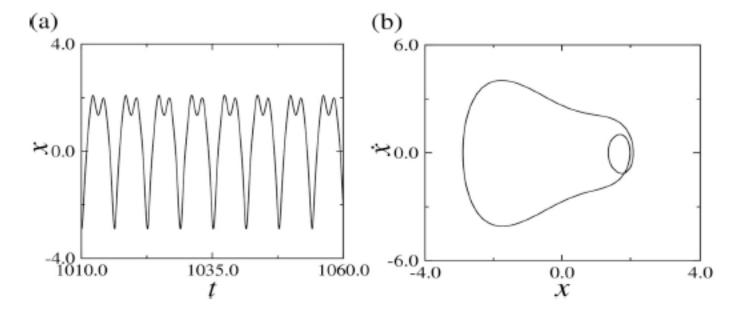


Figure 1: (a) Periodic time evolution of x, from a numerical solution of the Duffing equation for parameters β =0.05, γ =1.0, ω =1.0, F=4.0. (b). Orbit in phase space for the same solution.

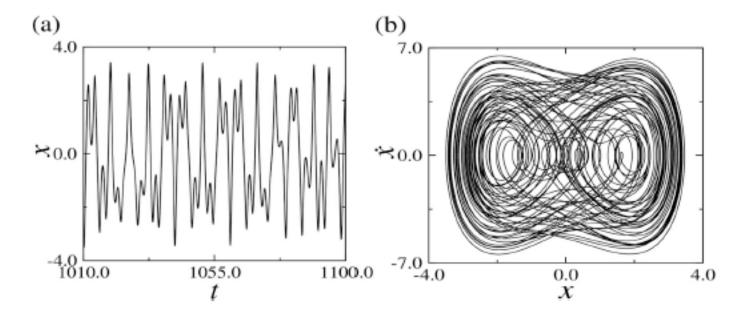


Figure 2: (a) Chaotic time evolution of x, from a numerical solution of the Duffing equation for parameters β =0.05, γ =1.0, ω =1.0, F=6.0. (b). Orbit in phase space for the same solution.

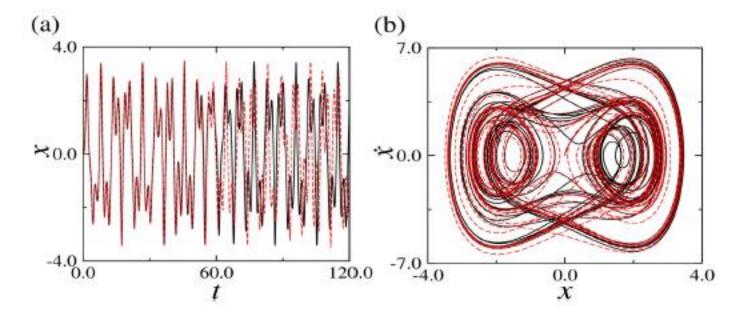


Figure 3: Sensitivity dependence on initial conditions. Chaotic time evolution of two solutions for the same parameters of Fig. 2, for initial conditions $(x_0, x'_0, t_0) = (0.0, 0.0, 0.0)$ for the black solid line and $(x_0, x'_0, t_0) = (0.001, 0.0, 0.0)$ for the red dashed line.

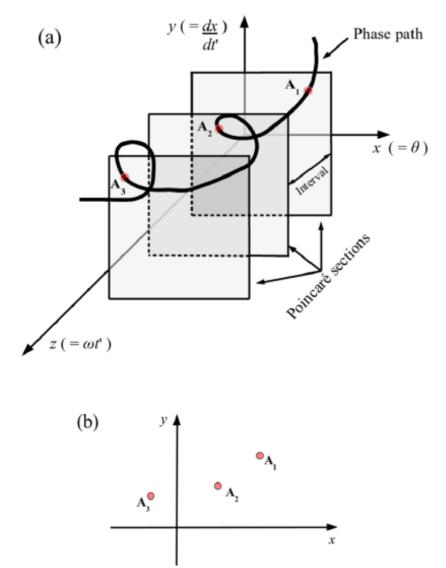
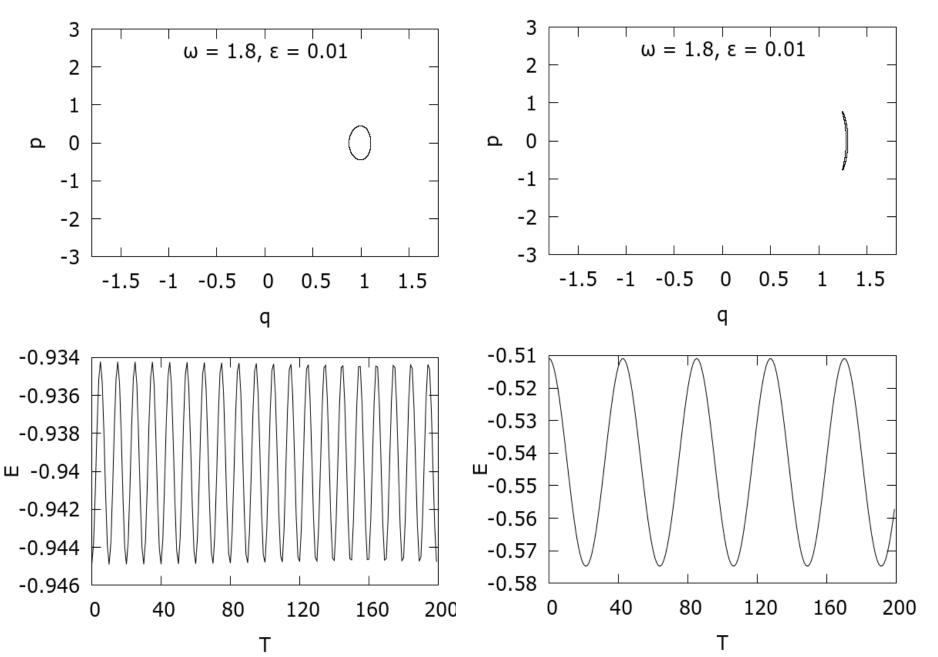
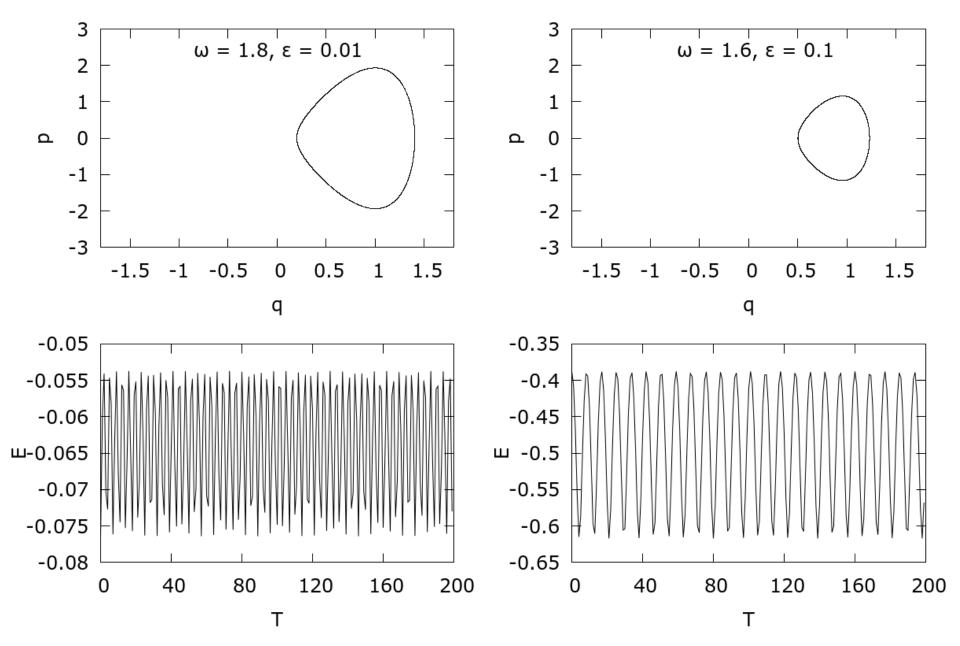


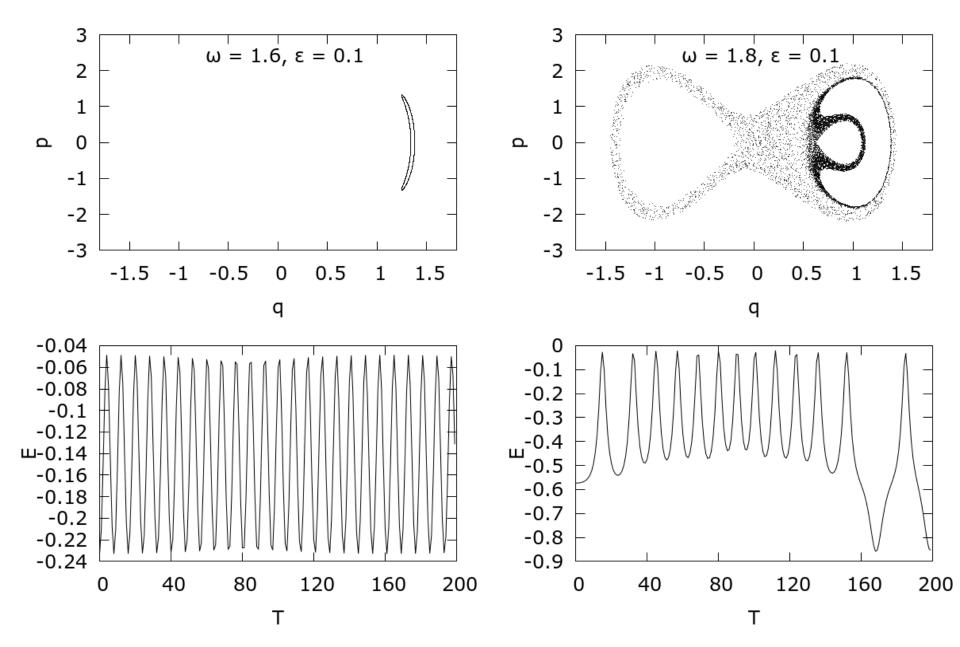
Figure 4: Technique invented by Poincaré to represent the phase space diagrams. The parallel planes are stroboscopic sections of the motion. The path pierces these planes at the points A_1 , A_2 , A_3 . (b) Points A_1 , A_2 , A_3 , projected on the plane (x, y).



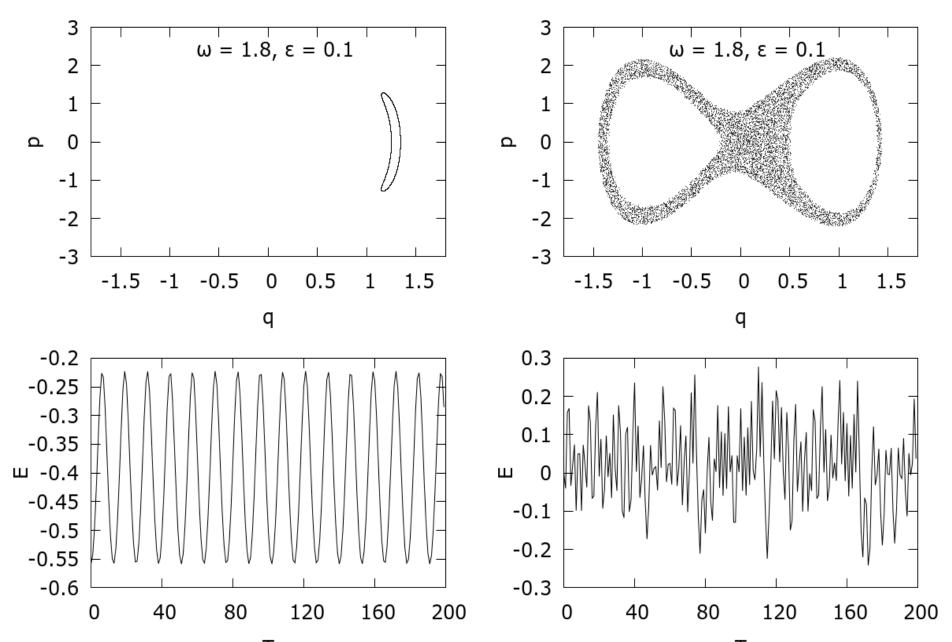
Figs. 3, 4: Strobe plots (x, p) for $\varepsilon = 0.01$, $\omega = 1.8$ (up). Corresponding energies for 200 cycles (down) Initial energies $E_o = -0.94$ (left), -0.51 (right).



Figs. 5, 6: Strobe plots (x, p) for $\varepsilon = 0.01$, $\omega = 1.8$ and $\varepsilon = 0.1$, $\omega = 1.6$ (up). Corresponding energies for 200 cycles (down) Initial energies Eo = -0.076 (left), -0.38 (right).



Figs. 7, 8: Strobe plots (x, p) for $\varepsilon = 0.1$, $\omega = 1.6$ and $\varepsilon = 0.1$, $\omega = 1.8$ (up). Corresponding energies for 200 cycles (down) Initial energies Eo = -0.23 (left), -0.57 (right).



Figs. 9, 10: Strobe plots (x, p) for $\varepsilon = 0.1$, $\omega = 1.8$ (up). Corresponding energies for 200 cycles (down) Initial energies Eo = -0.55 (left), 0.0 (right).