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Phenomena as reconnection scenarios, periodic-orbit collisions, and primary shearless tori have

been recognized as features of nontwist maps. Recently, these phenomena and secondary shearless

tori were analytically predicted for generic maps in the neighborhood of the tripling bifurcation of

an elliptic fixed point. In this paper, we apply a numerical procedure to find internal rotation

number profiles that highlight the creation of periodic orbits within islands of stability by a saddle-

center bifurcation that emerges out a secondary shearless torus. In addition to the analytical

predictions, our numerical procedure applied to the twist and nontwist standard maps reveals that

the atypical secondary shearless torus occurs not only near a tripling bifurcation of the fixed point

but also near a quadrupling bifurcation. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4750040]

Many Hamiltonian systems can basically be discretized

by two-dimensional area-preserving maps. We can distin-

guish the many differences between maps by the so-called

twist condition (or torsion); i.e., a condition that asserts

the nondegeneracy of the frequencies. Twist and nontwist

maps have been introduced for several dynamical sys-

tems. The compositions of their phase spaces have some

similarity, but also special differences. One of the differ-

ences, and maybe the most relevant, is the existence of a

torus without twist, sometimes called shearless torus, in

nontwist maps. The scientific community has always con-

sidered that these shearless tori were characteristic of

nontwist maps, but recent studies have shown they can

also be found in twist maps. In this paper, we present a

numerical investigation identifying the onset of shearless

tori around elliptic fixed points of standard nontwist and

twist maps.

I. INTRODUCTION

The idea that Hamiltonian systems of two degrees of

freedom can be represented by area-preserving maps of pla-

nar regions was first introduced by Henri Poincar�e. One of

the main advantages of these maps is that they are efficient

from a computational point of view. Owing to their high per-

formance, area-preserving maps have received much atten-

tion in both theoretical1–3 and experimental4,5 investigations.

Nowadays, it is well accepted that the universal behav-

ior of Hamiltonian systems can be synthesized by area-

preserving maps. Nevertheless, this universal behavior

depends on a condition that asserts the nondegeneracy of the

frequencies in the integrable regime, the so-called twist con-

dition. (The mathematical definition of the twist condition

will be given in Sec. II.) For example, the twist condition is

defined for area-preserving maps so that if a map possesses

orbits with frequencies (rotation numbers) that increase

monotonically, then the map satisfies the twist condition and

it is called a twist map; otherwise, we have a nontwist map.

The twist condition is assumed in several mathematical theo-

rems such as the Poincar�e-Birkhoff theorem, Aubry-Matter

theorem, and the well-known Kolmogorov-Arnold-Moser

(KAM) theorem, which in the second half of the 20th cen-

tury pointed out the persistence of quasi-periodic motion

under small perturbations. These theorems are the basis of

twist map scenario but they not been verified in the nontwist

case, and there may be different features in the phase space.

Hence, from a topological point of view, the phase

spaces of twist and nontwist maps have some differences. In

particular, it had been expected that some atypical phenom-

ena such as the presence of an invariant torus without twist,

and the separatrix reconnection process were only observed

in nontwist maps. Nevertheless, Dullin et al. studied the res-

onant normal form around the neighborhood of elliptic fixed

points of area-preserving maps and showed that shearless

tori can emerge through an atypical bifurcation.6 This shear-

less torus can eventually collide with a saddle-center bifurca-

tion creating period-three orbits. Since the saddle-center

bifurcation is generic, the shearless tori are also generic7 and

we expect to find these tori in both nontwist and twist maps.

However, the application of the normal forms to identify

shearless tori may be difficult for some maps, e.g., those

introduced to describe nearly integrable systems in fluids and

plasmas.8,9 Thus, it is useful to introduce a numerical proce-

dure to identify shearless tori around elliptic fixed points. In

the present paper, we introduce a simple numerical proce-

dure, based on the variation of the rotation number profile

with the control parameter, in order to identify the onset of

secondary shearless tori, i.e., a shearless tori that appear

within islands of stability, and illustrate not only the con-

comitant creation of period-three orbits but also a new unpre-

dicted period-four orbits. As examples, we apply this

procedure to the nontwist and twist standard maps.

The paper is organized as follows. Section II presents

formulas that are used throughout the paper. Section III

a)Author to whom correspondence should be addressed. Electronic mail:

cabud@if.usp.br.
b)ibere@if.usp.br.
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reviews some properties of standard nontwist maps (SNMs)

and investigates a tripling bifurcation identified by a second-

ary shearless torus inside an island. Our main goal is

achieved in Sec. IV, where we show that the secondary

shearless torus may also exist in the standard twist map (SM)

near of the tripling and quadrupling bifurcation of an elliptic

fixed point. Furthermore, we present a reconnection process

for the first time for the standard map. Conclusions are given

in Sec. V.

II. AREA PRESERVATION AND THE TWIST
CONDITION

Generally, two dimension Hamiltonian systems can be

described by area-preserving maps having the form

Jnþ1 ¼ Jn þ f ðhnÞ; (1)

hnþ1 ¼ hn � gðJnþ1Þ; (2)

where J 2 < and h 2 ½�p; p� are action-angle variables

whereas f ðhnÞ is a 2p-periodic function. In most studies, the

function g(J) is monotonic. However, one finds situations

where g(J) has an extremum (i.e., g0ðJÞ ¼ 0), resulting in a

degeneracy in the frequency. Both cases can be checked by

the so-called twist condition

@hnþ1ðJn; hnÞ
@Jn

����
���� ¼ jg

0ðJnþ1Þj � c > 0; (3)

where c is a real number. If Eq. (3) is fulfilled, then the map

is called twist and g(J) is monotonic. On the other hand, if a

map violates the twist condition, it is called nontwist and it

has a nonmonotonic function g(J).

An important quantity to verify the monotonicity of

orbits is the rotation number. In general, the rotation number,

x, of an orbit is defined by

x ¼ lim
n!1

1

n

X1

n¼1

ðxnþ1 � xnÞ: (4)

From Eq. (4), we see that the rotation number exists

when a well-defined limit exists. In this case, the x-coordinate

(abscissa coordinate) is lifted to the entire real line; i.e., xn is

not modulated. Hence, it is referred to as the global rotation

number. If, the initial point returns to the same point after

n-iterations, then one has a periodic orbit with rational rota-

tion number m/n, where n is the period and m is the integer

number of times that the orbit passed through the x-domain.

On the other hand, quasi-periodic orbits (tori) are represented

by an irrational rotation number, whereas for chaotic orbits

the sum in Eq. (4) does not converge.

In this paper, we are interested in localized regions of

the phase space to identify secondary shearless tori and

observe their parameter dependence through an island of sta-

bility. Hence, we introduce the internal rotation number.

Similar to the case of using the global rotation number to

show (monotonic or nonmonotonic) profiles of invariant

curves that cross the entire phase space, the internal rotation

number allows us to measure the torsion of each torus within

one regular island. Since the internal rotation number is a

measure of the rotation of a torus with respect to the elliptic

fixed point of an island, it is defined as

xin ¼ lim
n!1

1

2pn

X1

n¼1

Pnðx; yÞĥPnþ1ðx; yÞ; (5)

where PnĥPnþ1 means the angle h between two consecutive

points and (x, y) are the coordinates of the two-dimensional

map. The angle h is normalized by 2p so that the values

returned belong to the range [0,1]. Note that the internal rota-

tion number does not have a lifted coordinate. However, pro-

ceeding in this way, a rational internal rotation number (m/n)

describes a periodic orbit while an irrational number repre-

sents a quasi-periodic orbit. For a chaotic orbit, Eq. (5) does

not converge, likewise the global rotation (Eq. (4)). For our

purposes, the main use of the internal rotation number is to

measure the rotation of the torus within just one island that,

for example, belongs to a chain of islands. Hence, the results

discussed in this paper relate to local properties and not

global properties as is usually done.

III. NONTWIST GLOBAL PHENOMENA

This section considers the SNM. The map can be

obtained by choosing a nonmonotonic function for g(J) in

Eq. (2). Since g(J) is nonmonotonic, it may have a countable

number of extrema (JS). The Taylor series expansion of g(J)

around the extrema JS gives

gðJÞ � gðJSÞ þ
1

2
g00ðJSÞðJ � JSÞ2: (6)

Without loss of generality, since gðJSÞ is a constant, we

choose gðJSÞ ¼ 0. Now, we introduce normalized variables:

x ¼ h=2p and y ¼ J=JS. Finally, defining a ¼ 1
4p g00ðJSÞ and

f ðhÞ ¼ �bJS sinðhÞ, Eqs. (1) and (2) become the SNM

Xnþ1 ¼ Xn þ að1� Y2
nþ1Þ; mod1 (7)

Ynþ1 ¼ Yn � b sinð2pXnÞ; (8)

with y 2 <. Usually, we limit the investigation to the range

a ¼ ½0; 1� and b 2 <. The SNM is an area-preserving map

that violates the twist condition; i.e., @Xnþ1=@Yn ¼ 0 for

Yn ¼ b sinð2pXnÞ.
Nontwist maps have received much attention from phys-

icists and mathematicians. Many physical systems are mod-

eled by nontwist maps, and they are of particular interest for

continuous systems; e.g., the magnetic field lines in reversed

shear tokamaks10–13 and the zonal flows in geophysical fluid

dynamics.8 One important mathematical point is that many

theorems (as the KAM theorem14) formulated for near-

integrable Hamiltonian systems are not valid for nontwist

systems since they assume the nondegeneracy of the

frequencies.

Some properties of the nontwist map have been previ-

ously studied.15–19 Owing to the violation of the twist condi-

tion, several nontwist phenomena are observed. All nontwist

phenomena appear around the so-called shearless curve; i.e.,

033142-2 C. V. Abud and I. L. Caldas Chaos 22, 033142 (2012)
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a robust torus with maximum or minimum frequency. In the

vicinity of the shearless torus emerge two adjacent sets of

periodic orbits (chains of islands) of period p. According to

the period p of the island chains, the island positions on each

side of the shearless curve in the phase space may change.

Thus, if the orbits have even p, then the orbits on each side

have the same stability; i.e., if one is a center (saddle) there

is also a center (saddle) on the other side. Otherwise, if p is

odd, the stability type differs.

As the perturbation parameter increases, the two island

chains approach each other and reconnect15,19 such that the

periodic points do not change their type. After the reconnec-

tion process, the two island chains are separated by invariant

curves, called meanders, with a nonmonotonic rotation num-

ber profile containing a shearless curve. Figure 1 shows the

typical phase space of SNM. From Fig. 1, for b¼ 0.5232 and

a¼ 0.3640, we see two chains of 1
3

islands separated by non-

twist invariant tori, the meanders. This separation of the 1
3

chains of islands means that reconnection process has previ-

ously occurred. The inset of Fig. 1 shows the profile of the

global rotation number. The mentioned rotation number is

obtained by choosing 400 different initial conditions along

the line X¼ 0 and iterating 106 times. Note that when the

profile is around the meanders, the typical curve is a kind of

bump with maximum rotation. This maximum is due to the

shearless torus (red line in the phase space). The profile satu-

rates when it enters the 1
3

island, and we have the rotation

xglobal ¼ 1
3
.

In Fig. 2, we choose b¼ 0.800 and a¼ 0.455 to observe

the mixing of chaos and small islands in the Poincar�e section.

At this point, the meandering curves are almost wiped out and,

the shearless torus is the last invariant torus to be destroyed

(see the inset of the magnified phase space). For some parame-

ter combinations, the meandering curves are destroyed and the

two chaotic regions are unified.17,20 Then, the orbits in SNM

develop a transport in the Y-coordinate, being affected only by

the stickiness effect of the remnant islands.21

Most studies on maps focus on the global properties of

the phase space. In this paper, we investigate the secondary

resonances of a system to check more precisely topological

properties that may have been missed in previous global

investigations.

A. S-shearless torus (tripling bifurcation)

Several articles have reported primary shearless tori,

like those shown in Figs. 1 and 2. Included in this list are:

nontwist Hamiltonian systems15,17,20 and even non-

Hamiltonian systems.22

In this section, we explore the possibility of finding a

torus without twist near an elliptic fixed point of islands. We

refer to such tori as secondary shearless (s-shearless) tori

owing to the topological similarity to the global shearless

structure.

In Fig. 3, we have four phase spaces showing the evolu-

tion of only one island that belongs to a period-two chain.

For the phase spaces of Fig. 3, we fix b¼ 0.8 and change a in

the range a 2 ½0:5430; 0:5517�. On the right side of each

phase space, we show the internal rotation number profile,

calculated choosing 400 initial conditions along the line

X¼ 0 within the island. From Fig. 3(a) with a¼ 0.543, we

observe that the tori within the islands are disposed follow-

ing the geometry of the islands and that the internal rotation

profile is monotonic; i.e., each rotation number is related to a

single torus. We emphasize that the top of the bump in the

profile of the rotation indicates the position of the elliptic

fixed point. In fact, according to the definition of Eq. (5), the

elliptical point has an internal rotation number equal to unity,

but we need to avoid the exact elliptic point in order to plot a

smooth curve. The blue dashed line was introduced in each

picture to assist in identifying the fixed point. The left and

right sides of the blue dashed line relate to the orbits above

and below the elliptic fixed point, respectively. Therefore, in

the considered range for Y, the curve of internal rotation

number is symmetrical for left and right sides.

FIG. 1. Phase space for the nontwist map with b¼ 0.5232 and a¼ 0.3640.

The inset shows the global rotation number (Eq. (4)) for a line of initial con-

ditions on the line X¼ 0. The shearless torus is indicated by an arrow in the

inner box and corresponds to the red line in the phase space.

FIG. 2. Phase space for the nontwist map with b¼ 0.800 and a¼ 0.455. The

blue square inside the figure is a magnification emphasizing the surviving

shearless torus.
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In Fig. 3(b), we slightly modify the parameter a
(a¼ 0.5485) and the internal rotation number shows the rise

of a new bump above the elliptic fixed point, which is now a

minimum point in a valley. The new profile of the internal

rotation is nonmonotonic because we have the same rotation

numbers related to more than one torus. In addition, the top

of the bump relates to a torus with a zero derivative. The

evolution of the s-shearless torus can be checked from fol-

lowing plots of Fig. 3. Note that in Fig. 3(c), the bump
increases to rotation numbers higher than those in Fig. 3(b)

and the internal invariant circles are deformed, indicating the

start of a saddle-center bifurcation. Finally, in Fig. 3(d), we

have the emergence of tripling bifurcation. Owing to our line

of initial conditions, the left bump corresponds to the separa-

trix and the right bump to the 1
3

bifurcation. After the tripling

bifurcation, the s-shearless torus no longer exists and the sep-

aratrix of the period-three orbit continues to the outside to

become a cantorus.

Our results are in agreement with Ref. 6, where the

authors pointed out that a tripling bifurcation of the elliptic

fixed point is always due to a saddle-center bifurcation of a

shearless torus. In that paper, the authors used the resonant

normal form for area-preserving maps in the neighborhood

of an elliptic fixed point, finding the emergence of a shear-

less torus through mathematical arguments. Our approach is

quite different and we introduce a tool—the internal rotation

number—that allows us to verify the evolution of the shear-

less torus onset and the topology. The reader may think that

it is an expected phenomenon since we are studying nontwist

phenomena in a nontwist map. We emphasize that this has

never been shown before for nontwist maps. Moreover, since

a saddle-center bifurcation is generic, we expect to see the

same event even for twist maps. In the next section, we pres-

ent the emergence of an s-shearless torus in the standard map

for a similar case of tripling bifurcation and a new scenario,

a quadrupling bifurcation.

IV. STANDARD MAP

Before showing the shearless torus in standard map, we

introduce some basic properties of the map. The SM, also

called the Chirikov-Taylor map,23 can be obtained using the

relations: f ðhÞ ¼ K sin h and g(J)¼ J in Eqs. (1) and (2),

respectively. Thus, the map becomes

Jnþ1 ¼ Jn þ
K

2p
sinð2phnÞ; mod1 (9)

FIG. 3. Islands of stability for the nontwist map (left) with their related internal rotation number (right). In all cases, we fixed b¼ 0.8 and we chose one of the

islands that belong to a period 2 chain of the phase space. In (a), we have a¼ 0.543 and the internal rotation number presents a monotonic profile. Figures (b)

with a¼ 0.5485 and (c) with a¼ 0.551, show the emergency of a shearless torus. In the figure (d) with a¼ 0.5517, we see the creation of a period-three orbits

inside the island.
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hnþ1 ¼ hn � Jnþ1; mod1; (10)

where K � 0 is the nonlinearity parameter. The SM is an

area-preserving map that meets the twist condition; i.e.,

@hnþ1=@Jn 6¼ 0. For K¼ 0, the map is integrable and only

periodic and quasi-periodic orbits are possible. The chaotic

dynamics are achieved by increasing the parameter K, with

appropriate initial conditions.

Unlike the case for the SNM, the formation of the

invariant tori in the SM is predicted by KAM theory, and

the destruction of tori and the generation of islands are also

well predicted by the Poincar�e-Birkhoff theorem. The SM

models several physical systems: e.g., the cyclotron particle

accelerator24 and the Frenkel-Kontorova model of con-

densed matter physics.25 There are also applications in

plasma physics,9 celestial dynamics,26 and even quantum

mechanics.27

In this example, we study the SM of high-perturbation re-

gime. The phase space consists of two visible regular islands

immersed in a chaotic sea. Hence, to obtain the internal rota-

tion number, we follow the evolution of one of two main

islands. For K¼ 4, these islands emerge from a split of a major

island around the stable periodic orbit (h ¼ 0:5 and J¼ 0).

Therefore, the islands have suffered several bifurcations and

have reduced size because the system possesses stronger per-

turbation and the chaos tends to spread.

A. S-shearless torus (tripling bifurcation)

Figure 4 shows the evolution of one of the islands, start-

ing from K¼ 5.35. The phase space is seen to have symme-

try across the diagonal (J ¼ 2h, dashed curve in Fig. 4(a)),

which we use for the initial conditions of the internal rotation

number, as done in Sec. II A for SNM. The profile of the in-

ternal rotation number is a monotonic curve, characteristic of

twist regions. Increasing the parameter to K¼ 5.50 is suffi-

cient for the formation of bumps as shown in Fig. 4(b). The

presence of a minimum point in the rotation profile indicates

a torus without twist. This shearless torus is not expected in

the theory of twist maps and means that the twist condition

is not applicable, locally, in some regions of the phase space.

In Figure 4(c), we verify that the bumps approach xin ¼
1=3 and all tori have decreasing the internal rotational num-

ber, driven by the bumps. The phase space of Fig. 4(c) with

K¼ 5.554 shows clearly the emergency of a saddle-center

bifurcation. When the internal rotation number reaches the

rational value of 1/3, there is a tripling bifurcation inside the

main island as shown in Fig. 4(d) with K¼ 5.56.

FIG. 4. Islands of stability for the standard twist map (left) with their related internal rotation number (right). In (a), we have K¼ 5.35 and the internal rotation

number presents a monotonic profile. Figure (b) with K¼ 5.50 and (c) with K¼ 5.554, show the presence of a shearless torus. In figure (d) with K¼ 5.56, we

see the creation of a period-3 orbit inside the island.
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In the range where the s-shearless torus exists, there

may be many rational internal rotation numbers. If the num-

ber is a lowest-order rational number in the considered

range, there should be visible nontwist bifurcations. In Sub-

section IV B, we describe these bifurcations in terms of their

phase space.

B. Reconnection process of the s-shearless torus

In the interval where the s-shearless torus exists, the in-

ternal rotation number may be a rational value. For exam-

ple, between Figs. 4(a) and 4(b), the rotation number of the

s-shearless torus, identified for the SM, passed the rational

value 0.4. This value is the most prominent because it is the

lowest-order rational in the interval considered. Hence,

near this value, there should be nontwist bifurcations. From

Fig. 5(a) (K¼ 5.428313), we see that before approximately

xin ¼ 0:4, there is a small range in the phase space where

the s-shearless torus causes a new torsion. When K¼
5.428320 (Fig. 5(b)), there is a saddle-center 4

10
bifurcation.

Afterward, a new saddle-center 4
10

bifurcation emerges.

Therefore, in Fig. 5(c) with K¼ 5.428330, we have four 4
10

periodic orbits, two being stable (elliptic) and two being

unstable (hyperbolic). We should clarify that the phase

space shows 10-periodic orbits that form a chain of islands

after four turns around the elliptic fixed point, therefore,

this explains why the rotation number is 4
10

instead of not

simply 2
5
.

Suddenly, at K¼ 5.428340, the stable and unstable

manifolds of the two unstable (hyperbolic) 4
10

orbit undergo

reconnection as shown in Fig. 5(d). Finally, Figs. 5(e) and

5(f) with K¼ 5.428343 and K¼ 5.428352, respectively,

show decoupling of the chains.

This is a typical scenario of nontwist maps creating

invariant tori that do not follow the KAM theorem. In partic-

ular, the scenario described by Fig. 5 is identical to the odd-

period reconnection sequence of the standard nontwist map,

whose rotation number profile is characterized by the onset

of two outer shearless tori in addition to the previous one.15

It means that in Fig. 5(a), in addition to the main bump veri-

fied in Fig. 4, other two outer shearless exist to generate the

two 4
10

chain of islands.

As stated previously, this kind of bifurcation has been

extensively studied for nontwist maps. However, we are

dealing with a twist map whose global properties follow the

KAM theorem. It does not mean that we need to re-evaluate

the theory for twist maps but, at least locally for some range

of phase space, there is the possibility to break down some

behaviors.

We should call attention to the similarity between Fig. 5

of the present paper and Fig. 7 of Dullin et al. in Ref. 6 for

the H�enon map. Both systems are twist maps, but the equa-

tions are quite different. This reveals the generality of the

bifurcations that appears in the presence of an s-shearless

torus within a stable island.

C. S-shearless torus (quadrupling bifurcation)

Besides the case that leads to the tripling bifurcations,

we also find a new emergency of s-shearless tori that bifur-

cate in four islands (see Figs. 6(a)–6(c)) This case occurs

before the triplication of the elliptic fixed point and repre-

sents a novelty faced with the analytical predictions.6

Thus, for K¼ 5.074, Fig. 6(c) shows four islands con-

taining two independent 1
2

stable periodic orbits. To illustrate

this bifurcation, in Fig. 6(d), we present internal rotation

FIG. 5. Reconnection process of the shearless torus near an elliptic fixed point of the standard map. The sequence of bifurcations is: (a) torsion, K¼ 5.428313;

(b) saddle-center 4
10

, K¼ 5.428320; (c) a new saddle center 4
10

, K¼ 5.428330; (d) reconnection process, K¼ 5.428340; (e) K¼ 5.428343; and (f) K¼ 5.428352

show the decoupling in two chain of islands.
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number profiles for K¼ 5.0650 to K¼ 5.714. To calculate

these profiles, we choose a set of appropriate initial condi-

tions disposed on the symmetry line 2J ¼ � K
2p sin 2phÞð that

crosses the two new elliptic points (the red dashed line in

Fig. 6(d)). In the first profile at K¼ 5.0650, we observe the

emergency of two bumps, one maximum and one minimum,

corresponding to two secondary shearless tori. Consequently,

as indicated in Fig. 6(b), the same rotation number may

repeat up to three times. For K¼ 5.0714, the minimum bump

reaches the value xin ¼ 1
2

yielding two stable fixed points, so

long as the maximum bump still exist and does not bifurcate

for any lower order rational number.

This period-four bifurcation, which has not yet been pre-

dicted in the literature for twist maps, gives rise to two invar-

iant shearless curves in contrast to the generation of one

shearless curve in the tripling bifurcation. We would like to

remark that the global presence of more than one shearless

curve was studied in Ref. 15 to the standard nontwist map.

The onset of two shearless lead to a nonstandard reconnec-

tion scenarios15 that may differ, for example, to that shown

in Fig. 5 of the present paper. Unfortunately, we were not

able to verify the possible nonstandard scenarios near the

quadrupling bifurcation because the two s-shearless tori

cross high-order rationals in the rotation number profile (see

Fig. 6(d)).

V. CONCLUSIONS

Until recently, the presence of a torus without twist had

been credited only to nontwist maps. In the context of non-

twist phase space, the torus without twist is called a shearless

torus and can be verified as the maximum/minimum of the

corresponding rotational number (Eq. (4)). Unexpectedly, it

has been shown that a shearless torus can also emerge from

secondary resonances of area-preserving twist maps in a

neighborhood of the tripling bifurcation.6 Theoretically, a

shearless torus implies the local violation of important theo-

rems that assume the nondegeneracy of the frequency; e.g.,

the KAM and Poincar�e-Birkoff theorems. Furthermore,

when periodic orbits collide with such a torus, we expect to

observe a nontwist bifurcation in the reconnection process.

In the present paper, based on Ref. 6, we introduced the

internal rotation number (Eq. (5)) as a numerical diagnostic

to find the secondary shearless tori. With this procedure, we

found bifurcation scenarios not only for the predicted tripling

bifurcation but also for the quadrupling bifurcation first

reported in this article. We investigated two systems: (1) the

SNM and (2) the SM. We stress that all cases emphasized for

the standard map were also found for the standard nontwist

map. Although twist and nontwist standard maps have global

differences in the phase space, they may have similarities

FIG. 6. The quadrupling bifurcation. (a) K¼ 5.065; (b) K¼ 5.071; (c) K¼ 5.074. (d) Five different internal rotation numbers. In the neighborhood of period-

four orbit, there are two s-shearless tori. The dotted line in curve 4 indicates the same value of the rotation number for three different tori.
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around the elliptic fixed point of stable islands, since we

found s-shearless tori and reconnection processes in both

maps. It is worth noting that our results have not been previ-

ously reported even though the standard map has been osten-

sibly studied. As the systems presented here represent a large

number of Hamiltonian systems, it is possible to assume that

the violation of the twist condition (Eq. (3)) and the emer-

gence of nontwist phenomena near an elliptic fixed point may

happen at least for one set-parameter family in the phase

space of any system.

Comparing the examples presented here and in Ref. 6,

we observe that in all cases the shearless torus appears when

the remaining regular islands have reduced size and the per-

turbation parameter is high, therefore the systems gets fur-

ther away from the integrable case and, eventually, the

perturbed map may not be much useful to describe the dy-

namics of the considered system. Even so, several interesting

properties have been reported for high values of the perturb-

ing parameter. For example, the studies concerning the ac-

celerator modes in standard twist map28 and the rupture of

the transport barrier in nontwist maps.17,21 In our study, the

described bifurcations appear isolated in phase space for

some parameters. Consequently, higher parameter values do

not guarantee any special concentration of secondary shear-

less tori. Thus, for high parameters between those of the tri-

pling and quadrupling bifurcations, no other secondary

shearless tori have been found. Moreover, we stress that our

numerical procedure using the internal rotation number pro-

file is definitive to find nontwist scenario around the elliptic

fixed point for isolated bifurcation parameters.

Apart from the theoretical implications, we would like to

discuss a possible application of the emergence of an

s-shearless torus within the islands in SNM. There is numeri-

cal evidence21 in the SNM that the breakdown of a tripling

separatrix, at the edge of the chaotic sea, generates stickiness

stronger than that generally observed. This effect modifies the

transport in the shearless region even after the shearless torus

has broken. We investigated the islands presented in Ref. 21

and we conclude that those islands of period-three, actually,

originated from a tripling bifurcation of a s-shearless torus.

The suggestion of the authors of the above paper is consist-

ent and from the point of view of transport, this is interest-

ing because it enhances the possibility of achieving a

more efficient transport barrier. This strong stickiness of

the broken period-three separatrix should be further

explored, especially because the stickiness phenomenon has

been shown to be of great importance in many branches of

physics.
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