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Abstract

The existence of primary shearless tori is a distinguishing feature of nontwist maps. However, secondary shearless tori have
been identified in the phase space of twist maps, in the neighbourhood of peculiar bifurcations of elliptic fixed points. In this
paper, we report secondary shearless bifurcations in a twist symplectic map that describes chaotic field lines in tokamaks with
an ergodic limiter. We identify the onset of secondary shearless tori, around elliptic fixed points within the island of stability,
by examining numerical profiles of the internal rotation number. We present examples of field line transport barriers, associated
with secondary shearless tori and their rupture, which reduce the usual magnetic field line escape at the tokamak plasma edge.

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last few years, investigations have indicated that
plasma confinement in tokamaks can be controlled by
appropriate modifications on the magnetic field at the plasma
edge [1]. This control has been achieved by applying resonant
perturbations at the plasma edge to alter the magnetic field
profile reducing the anomalous particle transport. Most of
these perturbations create chaotic field lines in the plasma edge.
The presence of chaotic magnetic field lines within the tokamak
implies the loss of the plasma confined in this region, due to
the destruction of magnetic flux surfaces. Even so, adequate
chaotization of field lines at the plasma edge has been found to
play a key role in the control of plasma–wall interaction [2–4].
Several tokamaks have been equipped with external devices
to induce chaotic field lines, for example, an ergodic limiter
[4–7] and a dynamic ergodic divertor [8]. Moreover, currents
in external coils have also been applied to create chaos and,
consequently, control plasma edge-localized modes [3].

Another favourable situation to improve plasma confine-
ment is the creation of a barrier to reduce field line escape in
tokamaks with a reversed magnetic shear profile. Such a bar-
rier is created by means of a nonpeaked plasma current density,
corresponding to a nonmonotonic radial profile for the equi-
librium safety factor [9]. A resonant magnetic perturbation in
the shearless region gives rise to a barrier separating the in-
ternal region with magnetic surfaces from the external chaotic
region. The presence of the barrier in the shearless region lim-
its the volume of the escape region. All this may contribute to
the enhanced plasma confinement, which has been observed in
some experiments with magnetic shearless equilibria [10, 11].

As is well known, magnetic field lines can be represented
by a 1 + 1/2 degree of freedom Hamiltonian system [12, 13].
Moreover, several properties of these field line Hamiltonian
systems can be investigated in associated bidimensional
symplectic maps [13, 14]. The advances of symplectic
models describing specific features of tokamaks equipped
with different devices are remarkable [15]. These maps
are introduced to increase the computational capability
of investigations on the transport and perform statistical
analysis of the chaotic field lines caused by magnetic
perturbations. In this framework, the magnetic surfaces
are seen as Kolmogorov–Arnold–Moser (KAM) tori and
the regular islands along with chaotic lines complete the
phase space. In general, Hamiltonian systems or symplectic
maps can be classified as twist, for which the rotation
numbers increase monotonically; otherwise they are nontwist.
The twist condition is assumed in several mathematical
theorems such as the Poincaré–Birkhoff theorem, Aubry–
Matter theorem and the well-known KAM theorem, which
pointed out the persistence of quasi-periodic motion under
small perturbations. These theorems are the basis of the twist
map scenario but their predictions are not verified for the
nontwist maps [13, 14].

Nonetheless, from a topological point of view, the phase
spaces of twist and nontwist maps have some remarkable
differences. In particular, some peculiar phenomena such as
the presence of a nontwist invariant torus and the separatrix
reconnection process are only observed in nontwist maps
[16–19]. Nevertheless, in [20] the authors studied the resonant
normal form around the neighbourhood of elliptic fixed points
of symplectic maps and showed that shearless tori (twistless
tori) can emerge in twist maps through an atypical bifurcation.
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Figure 1. Tokamak scheme showing the main coordinate systems (left) and the 2πR0-periodic cylindrical approximation (right) where l is
the length of the wires of the EML.

Recently, we introduced a numerical procedure to identify
shearless tori around elliptic fixed points in twist and nontwist
maps. Our procedure was applied to the nontwist and twist
standard maps and is based on the variation of the rotation
number profile with the control parameter, in order to identify
the onset of secondary shearless tori, i.e. shearless tori that
appear within the islands of stability [21]. It is noteworthy
that both twist and nontwist maps used in [21] are symmetric
maps, which implies a variety of symmetry lines spread
all over the phase space. Furthermore, the calculus of the
rotation number in [21] was made on these symmetry lines.
Owing to the toroidal geometry, most of the maps used to
describe magnetic surfaces in tokamaks are not symmetric.
Thus, it makes sense to investigate secondary shearless tori
in such systems and also their consequences to the plasma
confinement.

In this paper, we consider the perturbation created by
an ergodic limiter in the equilibrium tokamak field to cause
selective destruction of magnetic surfaces in this region, giving
rise to chaotic layers and several resonant regular islands at
the plasma edge [4–6]. We apply our numerical procedure
to find secondary shearless bifurcations in the Ullmann map,
a twist symplectic map introduced to describe chaotic field
lines in tokamaks with an ergodic limiter [22]. We identify
the onset of secondary shearless tori around elliptic fixed
points within the island of stability by examining numerical
profiles of the internal rotation number. Once the secondary
shearless tori are identified in the system, we focus on studying
their consequence on transport. We observe that the rupture
of the secondary shearless tori near the chaotic edge leads
to a sudden reduction in the escape of the magnetic field
lines.

The paper is organized as follows. Section 2 presents
the basic magnetic field line equations, the formulae that are
used throughout the paper and examples of field line phase
spaces. Section 3 introduces the procedure used to identify
the secondary shearless bifurcations and contains examples of
these bifurcations. Section 4 presents results on the stickiness,
associated with the identified bifurcation, which reduces the
field line transport. The conclusions are in section 5.

2. Magnetic field lines

The geometry of a tokamak is determined by its major (R0)
and minor (b) radii (see the scheme in figure 1). For large
aspect ratio, i.e. R0/b ≫ 1, we can consider a cylindrical
approximation in coordinates (r, θ, z), whose axis of symmetry
z is related to the toroidal angle φ by z = R0φ. The magnetic
field lines are determined by B × dl = 0 which, in the
cylindrical coordinates, can be written as

dr

Br

=
r dθ

Bθ

=
R0 dφ

Bφ

=
dz

Bφ

. (1)

The unperturbed field, B0, is a superposition of the
toroidal field Bφ = Bz, created by external coils and a
poloidal field Bθ , due to the plasma current Ip, i.e. B0(r) =

(B0
r = 0, B0

θ (r), B
0
φ(r)). Under previous assumptions, the

toroidal field Bφ is, practically, uniform and the magnetic
surfaces are considered to be circular and concentric (the
toroidal correction will be introduced later on). On the
other hand, magnetic perturbations of the form B1(r, θ, φ) =

(B1
r (r, θ, φ), B1

θ (r, θ, φ), B1
φ = 0) are generated when one

introduces external magnetic devices in the tokamak. In this
paper, we will consider an ergodic magnetic limiter (EML).

The EML is a grid-shaped current ring poloidally wound
around the tokamak. Its ring consists of a coil of width l,
with m pairs of wires along the toroidal direction carrying
a current Ih (see figure 1). Basically, the EML is a device
designed to generate external magnetic fields that interact
with the equilibrium tokamak field causing a destruction of
boundary magnetic surfaces. In order to describe the effect of
the EML on the magnetic surfaces, we will recall a symplectic
map previously introduced in [20].

2.1. The Ullmann map

An appreciative tool to study the magnetic field lines is the
Poincaré map. In the poloidal surface z = cte (the said
Poincaré surface), the Poincaré map relates the nth intersection
point, (rn, θn), to the next one, (rn+1, θn+1), after one toroidal
turn. In this paper, we recall a symplectic map that describes
the behaviour of magnetic field lines in the presence of an
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Figure 2. Monotonic safety factor profile given by equation (4) with
qa = 5 and γ = 4. The abscissa is in the rectangular normalized
coordinates: y = 1 − r/b.

ergodic limiter. The mentioned map was obtained in [20] and
it is constituted by the convolution of two maps, F̂ = F1 ◦ F2.
The first one is the equilibrium map:

F1 :















rn+1 =
rn

1 − a1 sin θ
,

θn+1 = θn +
2π

qeq(rn+1)
+ a1 cos θn,

(2)

where a1 is a correction for toroidal effect giving rise to a
difference between the geometric axis and the magnetic axis
(Shafranov shift). The function qeq is the equilibrium safety
factor defined by

qeq(r) =

〈

dφ

dθ

〉

=
1

2π

∫ 2π

0

(

dφ

dθ

)

dθ, (3)

where from equation (1), dφ/dθ = rBφ/R0Bθ . Following
[23], we consider the safety factor

qeq(r) =



















qa

r2

a2

{

1 −

(

1 −
r2

a2

)γ +1
}−1

(0 � r � a),

qa

r2

a2
(a � r � b),

(4)

which is a monotonic function toned by the parameters γ

and qa to fit plasma discharges observed in typical tokamak
experiments. We show in figure 2 the profile described by
equation (4) with qa = 5 and γ = 4. Note that the safety
factor goes to 1 in the plasma core, while higher values are
concentrated near the tokamak wall (y = 0, see the rectangular
transformation in section 2.2).

The perturbation map emerges from the effect of the
ergodic limiter on the equilibrium configuration and it is
defined by

F2 :















rn+1 = r∗
n+1 +

mCǫb

m − 1

(

r∗
n+1

b

)m−1

sin(mθn+1),

θ∗
n+1 = θn+1 − Cǫ

( rn+1

b

)m−2

cos(mθn+1),

(5)

with C = 2mla2/R0qab
2 and ǫ being the perturbation

parameter related to the ratio between the limiter and plasma

currents, ǫ = Ih/Ip. We should note that r∗
n+1 in equation (5) is

not separable, thus, a numerical method for finding roots (such
as the Newton–Raphson method) is required. Nevertheless,
the map F̂ is strictly area-preserving and can describe field
line behaviour in tokamaks with ergodic limiters in a practical
way, since we do not have to numerically integrate the field line
equations over the toroidal revolution. The advantages of the
Ullmann map over previous maps, used to describe magnetic
surfaces perturbed by resonances, are the use of parameters
more closely related to measurable physical quantities (such
as the safety factor and limiter current) and the consideration
of toroidal effects. In addition, the Ullmann map satisfies the
conditions for a tokamak model outlined in [24].

2.2. Typical phase spaces

As commented previously, a point in the tokamak is determined
by its cylindrical coordinates (r, θ, z) with respect to the
symmetry axis. Since the EML aims to modify the magnetic
surfaces close to the tokamak wall, it is common to replace
the cylindrical coordinates by rectangular ones: x = bθ and
y = b − r [25]. Hence, the tokamak wall is characterized
by the line segment y = 0, with x ∈ [0; 2πb]. In the
following phase spaces, we will use the normalized coordinates
x = x/b and y = y/b. In this paper, we choose a set
of parameters typical for large aspect ratio small tokamaks:
a1 = −0.04, R0 = 0.3 m, b = 0.11 m, a = 0.08 m
and l = 0.08 m.

In the unperturbed case (ǫ = 0), the dynamic of the
Ullmann map is dictated by the equilibrium map (equation (2)).
Thus, the trajectories lie on invariant lines in the phase space
when the rotation number, �, is irrational (invariant tori).
Otherwise, rational rotation numbers, � = n/m (n, m integer),
are related to periodic points in the phase space. In figure 3(a)
we observe the unperturbed phase space of the Ullmann map
mostly filled by invariant tori.

For ǫ �= 0, some invariant curves are destroyed forming
a thin chaotic layer near resonant islands. In the Ullmann
map, the perturbation parameter affects, primarily, the m-
mode resonances, i.e. chaotic trajectories will be produced
in the vicinity of resonances of periodicity m, where m is a
parameter related to the number of pairs of straight wires of
the EML. Therefore, in order to introduce chaotic trajectories
near the tokamak wall (y = 0), we should choose integer
values of m given by the safety factors near the tokamak
wall. In our case, it is enough to consider m > 5 (see in
figure 2 that safety factors higher than 5 are out of the plasma
region). In figure 3(b) we see the phase space for ǫ = 0.05
and m = 6. In this case, we note that the perturbation
parameter is enough to destroy some magnetic surfaces near the
tokamak wall giving rise to period-6, -7 and -8 island chains,
respectively, as we can easily observe in the phase space of
figure 3(b).

3. Secondary shearless magnetic surfaces

3.1. The global shearless structure

Generally, the safety factor represents the shear of helical
magnetic fields. Therefore, in terms of the two-dimensional
phase space, the rotation �(r) of the magnetic surfaces is
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Figure 3. Phase spaces of the Ullmann map with m = 6 and (a) ǫ = 0; (b) ǫ = 0.05.

defined as the average poloidal angle of displacement of a given
field line in the course of a complete toroidal turn around the
tokamak. Thus,

�(r) ∼

〈

dθ

dφ

〉

∼
1

q(r)
. (6)

Now, let us consider that �(r) does not satisfy the
nondegeneracy condition, also called the twist condition:

d�(r)

dr
�= 0. (7)

So, it means that �(r) is a nonmonotonic function and
there is at least one value r = rc for which the shear of
the rotation vanishes, d�(r)/dr = 0 at r = rc. If a
system does not satisfy the twist condition (equation (7)), it
is called nontwist and the point rc is a shearless point. In the
phase space, rc defines a shearless torus whose main feature
is the resistance to perturbation, implying a barrier to the
transport [18]. In addition, nontwist systems exhibit nontrivial
bifurcations due to separatrix reconnection [19], which are not
observed in typical twist systems.

In the context of magnetically confined plasmas it is
natural to expect that robust magnetic surfaces (shearless) are
possible only for reversed shear magnetic field configurations.
Nevertheless, we will show that although a monotonic safety
factor for the Ullmann map (equation (4)) does not imply a
global shearless magnetic surface, it may appear, secondarily,
in resonant islands close to some bifurcations.

3.2. Secondary shearless tori

Recently, the presence of one shearless torus was
analytically predicted for a generic Hamiltonian system in
the neighbourhood of the tripling bifurcation of an elliptic
fixed point [20]. Furthermore, numerical investigations [21]
suggest a specific profile containing two shearless tori near the
quadrupling (1/4) bifurcation.

As we are interested in localized regular islands immersed
in chaotic regions of the phase space of our model, it becomes
important to study the emergency of these secondary shearless
tori. Hence, we use the internal rotation number to measure
the torsion of each torus with respect to its elliptic fixed point.

Figure 4. Phase space of the Ullmann map with ǫ = 0.189 and
m = 6. The red box emphasizes the quadrupling bifurcation.

It is defined as

ωin = lim
n→∞

1

2πn

∞
∑

n=1

Pn(x, y)θ̂Pn+1(x, y), (8)

where Pnθ̂Pn+1 means the angle θ between two consecutive
points and (x, y) are the coordinates of the two-dimensional
map. The angle θ is normalized by 2π so that the values
returned belong to the range [0,1]. By equation (8) a rational
internal rotation number (n/m) describes a periodic orbit while
an irrational number represents a circular quasi-periodic orbit.
For a chaotic orbit, equation (8) does not converge.

Owing to the numerous resonant island chains in the
Ullmann map, the tripling or quadrupling bifurcation of a
elliptic fixed point may appear in the phase space over a large
range of ǫ. To illustrate the emergency of the secondary
shearless torus within the islands of stability, we choose a value
for ǫ that presents a phase space whose chaotic layer near the
border y = 0 is composed of only one visible remaining island
chain. See in figure 4 the period-5 island chain whose elliptic
fixed point has bifurcated in a period-4 one (amplification red
box).

The evolution of the internal rotation number profiles to
the highlighted island in figure 4 is shown in figure 5. The
internal rotation number is calculated following equation (8)
with initial conditions lying in the straight line indicated in
figure 5(a) (dashed line). For ǫ = 0.185 (figure 5(a)) the
internal rotation number profile is monotonic, i.e. each specific
value of ωin is related to only one circular invariant torus.
Increasing the parameter to ǫ = 0.187 is sufficient for the
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Figure 5. The quadrupling bifurcation in the Ullmann map. (a) ǫ = 0.185; (b) ǫ = 0.187; (c) ǫ = 0.188 and (d) ǫ = 0.189. Note that the
onset of two s-shearless tori arose for some value of ǫ between (a) and (b).

formation of bumps, as shown in figure 5(b). The presence of a
minimum and a maximum point in the rotation profile indicates
the existence of two tori without shear. Consequently, the same
rotation number may repeat up to three times.

Figure 5(c) emphasizes the growth of bumps as we
increase the perturbation parameter to ǫ = 0.188. For
ǫ = 0.189, figure 5(d), the maximum bump reaches the value
ωin = 1/4 yielding four stable fixed points, so long as the
minimum bump still exists and does not bifurcate for any
lower order rational number and ends colliding with the elliptic
fixed point. The scenario described previously matches with
the results presented in [21] for period-4 bifurcation in the
standard map.

In spite of the fact that secondary shearless tori are local
phenomena and, consequently, do not interfere in the global
properties of the chaotic layer, it is relevant, in the tokamak
context, to study the transport process while these secondary
shearless tori exist.

4. Transport

In order to investigate the dependence of the transport
properties on the initial conditions and the perturbation
parameter ǫ, chosen near the values for period-4 bifurcation,
we computed the average escape time of orbits by the following
numerical experiment. For a given value of ǫ, we tested
a large number of initial points (NP = 2 × 106) placed
on a regularly spaced grid of the same size as in figure 5.
Each initial condition was iterated until the corresponding
orbit crossed the reference boundary y = 0. The average

escape time is shown in figure 6. From figure 6 we observe
a strong dependence on ǫ with several peaks in the escape
time close to bifurcations. The higher peak, ǫ = 0.189 95,
corresponds to the lower order bifurcation ( 1

4
) observed in

the range ǫ ∈ [0.180 : 0.200] and represents the limit to the
existence of the secondary shearless torus shown in figure 5.
This atypical escape time around a specific value of ǫ indicates
some kind of trapping mechanism that hinders the transport.
To illustrate the transport for different choices of ǫ we show in
figure 7 fine details of the dependence of the escape time on the
initial conditions, for two values of ǫ: one of them corresponds
to short escape time (blue dotted line labelled (a) in figure 6)
and the second to long escape time (red dashed line labelled (b)
in figure 6). Each initial condition was iterated 3 × 106 times
and the different escape times are indicated by a logarithmic
colour scale. From figure 7 we see that points inside the
islands, evidently, do not escape and are identified with red
colour, but the orbits adjacent to them may spend long or short
time to reach the reference boundary y = 0. By comparing
figures 7(a) and (b) it becomes clear that both are composed,
mainly, of short and medium escape times. Nevertheless,
figure 7(b) presents a reasonable amount of initial conditions
that spend long times (≈1×106, orange colour) encircling the
island. Such a phenomenon is called stickiness and indicates
a long-term stay of the trajectories in the region performing
an almost regular motion. The type of stickiness interferes
in the average escape time and, consequently, in the global
transport of the system (see more about stickiness and transport
in [14, 26] and references therein).

A statistical distribution of the escape time in the phase
space can be used to characterize such a stickiness process.
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Figure 6. Escape time calculated for a grid of initial conditions in
the localized phase space studied in figure 5.

Figure 7. Escape time for initial conditions in the chaotic layer of
the Ullmann map with (a) ǫa = 0.187 75 and (b) ǫb = 0.189 95. The
colour scale represents short (1 iteration, dark blue) to long escape
times (3 × 106 iterations, red).

Thus, we computed the escape time statistic (ETS) for a large
number of chaotic initial conditions placed near the reference
boundary y = 0 and far from the island chain. We choose this
region for the initial conditions in order to understand whether
the island chain is able to capture trajectories initiated far from
it. The ETS is defined as

ρ(τ) =
Mn

M
, (9)

where Mn is the number of initial conditions that crossed the
boundary y = 0 with iteration numbers (time) n � τ and M

10
2

10
3

10
4

10
5

10
6

τ

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 ρ
(τ

)

ε
a
 = 0.18775

ε
b
 = 0.18995

Figure 8. ETS for a large number of initial conditions with
ǫa = 0.187 75 and ǫb = 0.189 95.

is the total number of initial conditions that actually crossed
the boundary. In fact, equation (9) is a cumulative distribution
function that decreases from ρ(0) = 1. Figure 8 shows the
ETS for both cases ǫa = 0.187 75 and ǫb = 0.189 95.

For times τ < 103, the ETS for ǫa = 0.187 75 and
ǫb = 0.189 95 has the same exponential decay. As the
exponential decay is related to the randomness of the chaotic
layer we can, initially, conclude that the chaotic extension of
both cases is quite similar. Nonetheless, for τ > 103 the ETS
decays as a power law, which indicates the presence of some
kind of trapping in the phase space. During 103 < τ < 105

the ETS for ǫa = 0.187 75 and ǫb = 0.189 95 presents the
same decay although the values are different. However, for
long times, τ > 105, the ETS indicates different behaviour
between both cases and according to figure 8 the island chain
that remains during the perturbation, ǫb = 0.189 95, captures
a larger amount of initial conditions, which spend long times
encircling it, than the case ǫa = 0.187 75, which explains the
modification in the tail of the ETS.

5. Conclusion

We addressed the chaotic transport of magnetic field lines in a
tokamak plasma edge. In our work, the resonant perturbations
that break the magnetic surfaces are those created by an
external ergodic limiter. In this case, the perturbed field
line mapping is approximately obtained, for large aspect ratio
tokamaks, from the symplectic Ullmann map [20]. The
Ullmann map allows us to analyse the influence of the relevant
control parameters, related to the equilibrium and perturbing
fields, on the transport of field lines. More specifically, we
use the obtained map to investigate the onset of secondary
shearless curves in equilibria with monotonic safety factor
profiles and how this bifurcation affects the plasma edge
transport. The results reported in this work due to external
resonant perturbations are also expected to be valid for
spontaneous resonant fluctuations commonly observed in the
confined plasma.

For a monotonic plasma current (or safety factor) profile,
i.e. for a twist mapping of field lines, we present examples of
secondary shearless invariant onset followed by bifurcations
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that create new secondary islands with high stickiness around
them. This stickiness that appears with the new islands reduces
the field line escaping to the wall. Thus, from our results,
we observe that whenever the secondary shearless curves
appear they may be followed by a reduction in transport if
the control parameter, the magnetic shear or the perturbation
amplitude, is properly altered. We would like to remember that
tripling and quadrupling bifurcations creating, respectively,
three and four islands, have been reported after the onset of
secondary shearless invariants [21]. Complementarily, other
examples of stickiness enhancement in symplectic maps due
to triple bifurcations, similar to those reported in this paper,
have been recently reported [27]. We should note that the
stickiness enhancement is not a phenomenon directly related
to the secondary shearless tori but it is a consequence of their
existence. Our results indicate that although higher order
bifurcations may also be found they should be less common.
Finally, we conjecture that an alteration of the amplitude of
spontaneous or external resonant perturbations may create
shearless curves and associated bifurcations significantly
reducing the particle transport at the plasma edge.
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