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We investigate the magnetic field line transport for tokamak equilibria with monotonic magnetic

shear perturbed by resonant fields. We show that when the local profile is flat at the plasma edge a

transport barrier can be created leading to a field line transport reduction. This transport reduction is

due to the field lines topological modifications, caused by a local flattened profile that reduces the

global field lines escape pattern. The results are obtained by applying a symplectic map that describes

perturbed magnetic field lines in large aspect ratio tokamaks. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4923016]

I. INTRODUCTION

In the last decades, a lot of effort has been dedicated to

the improvement of plasma confinement in tokamak devices.

A favorable mechanism to improve plasma confinement is the

creation of an internal transport barrier (ITB) to reduce the

field line escape through the tokamak vessel and, conse-

quently, decrease the local ion thermal diffusivity.1–3 Among

the factors responsible for the existence of ITBs, the shape of

the safety factor profile has been shown crucial.4 One of the

ways to investigate ITBs is to consider nonmonotonic safety

factor profiles, which gives rise to reversed magnetic shear

and the formation of shearless magnetic surfaces. Some

experiments using reversed shear related to ITBs can be seen

in Ref. 5, where inductive current is used to control the safety

factor profile, and in Refs. 6 and 7 for reversed shear gener-

ated by neutral beam injection in TFTR and DIII-D tokamaks,

respectively. However, evidences support that the formation

of ITBs may be also correlated with some local flattening of

the otherwise monotonic safety factor.8,9 In this later case,

Hamiltonian models for the magnetic field lines have been

shown that a local safety factor profile modification creates a

low-shear zone where transport barriers can emerge.

Our main goal with the present paper is to investigate

the effects imposed by a safety factor with local flatness,

arising either from internal plasma modifications or caused

by perturbing external currents, on the transport of magnetic

field lines in tokamaks. For that, we perform numerical simu-

lations using a symplectic map introduced to describes cha-

otic field lines in tokamaks with ergodic limiter.10 Nonlinear

maps have been studied in the context of plasma physics in

tokamaks.10–14 These maps are useful because we do not

need to integrate the field line equations over the toroidal

revolution; therefore, large scale analysis can be quickly

developed. We should note that maps describing the field

line transport is a rough approximation of the fast particle

transport that neglects the slow drift particles,15 turbulence

fluctuations, and the plasma response.16 In spite of neglect-

ing these effects, we show that an eventual local flattening in

the magnetic shear profile can locally modify the invariant

curves distribution in phase space, modifying significantly

the field line transport.

The paper is organized as follows. Section II presents

the basic magnetic field line equations, the symplectic map

used throughout the paper (Subsection II A), and the intro-

duction of a safety factor with a local flatness point

(Subsection II B). We compare the phase spaces obtained by

both profiles in Sec. III. Using numerical analysis of the

escape pattern and the statistic of the escaping, we discuss in

Sec. IV the impact on the transport caused by the safety fac-

tor profile with a local flatness point. Section V is devoted to

discussions and conclusions.

II. MAGNETIC FIELD LINES

The toroidal geometry of tokamaks is determined by its

major, R0, and minor, b, radii (see scheme in Fig. 1). For

large aspect-ratio, R0=b� 1, we may consider the approxi-

mation: periodic cylinder of length 2pR0 in coordinates

(r; h; z), whose axis of symmetry, z, is related with the toroi-

dal angle / by z ¼ R0/. A point in the tokamak is located by

its cylindrical coordinates. However, to study the plasma

edge, i.e., the plasma region near the wall, it turns out that

even the poloidal curvature does not change the results

noticeably, so that a rectangular system can be found by

defining the following coordinates: x0 ¼ bh and y0 ¼ b� r
(Ref. 17) as indicated in Fig. 1(b).

The unperturbed field, B0, is a superposition of two

magnetic fields: (i) the toroidal field B/ ¼ Bz, created by

external coils and (ii) the poloidal field Bh, due to the plasma

current Ip. In the periodic cylinder approximation, we

assume that the toroidal equilibrium field is uniform,

B0
/ ¼ B0, resulting in the equilibrium magnetic field,

B0ðrÞ ¼ ðB0
r ¼ 0;B0

hðrÞ;B0Þ, that represents helical field line

curves on a cylindrical surface. Now, consider magnetic per-

turbations introduced by external magnetic devices of the

form B1ðr; h;/Þ ¼ ðB1
r ðr; h;/Þ;B1

hðr; h;/Þ;B1
/ ¼ 0Þ. Thus,

the magnetic field lines given by B� dl ¼ 0 are

dr

B1
r

¼ rdh
B1

h

¼ R0d/

B0
/

¼ dz

B0
/
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In this paper, we consider perturbations caused by an er-

godic magnetic limiter (EML), which consists of a grid-shaped

ring of length l with m pairs of wires toroidally oriented carry-

ing a current Ih disposed in the poloidal direction (see Fig. 1).

Basically, the main role of the EML is to generate external

magnetic fields for destruction of boundary magnetic surfaces.

A. The symplectic map

We consider a symplectic map that describes the behavior

of equilibrium magnetic field lines in the presence of a perturb-

ing magnetic field due to an ergodic limiter. In the absence of

perturbation, the magnetic field lines are described by the map10

F1 :

rnþ1 ¼
rn

1� a1 sin h

hnþ1 ¼ hn þ
2p

qeq rnþ1ð Þ
þ a1 cos hn

;

8>><
>>: (2)

where a1 is introduced to take into account a correction for the

toroidal geometry. The function qeq is the equilibrium safety

factor that determines the shear of helical magnetic fields, i.e.,

the mean value of toroidal turns after a complete poloidal turn.

The perturbation map emerges from the effect of the er-

godic limiter on the equilibrium configuration. For our pro-

poses, the action of the EML is approximated by a sequence

of delta function pulses at each piercing of a field line in the

surface of section. In cylindrical approximation, the map is

described by10

F2 :
rnþ1 ¼ r�nþ1 þ

mC�b

m� 1

r�nþ1

b

� �m�1

sin mhnþ1ð Þ;

h�nþ1 ¼ hnþ1 � C�
rnþ1

b

� �m�2

cos mhnþ1ð Þ;

8>>><
>>>:

(3)

where C ¼ 2mla2=R0qab2 is the control parameter deter-

mined by the experimental set up and � ¼ Ih=Ip is the pertur-

bation calculated by the ratio between the perturbing current

on the limiter and the equilibrium plasma current. The entire

field line mapping is given by the convolution of both maps,

F̂¼F1 � F2. The mapping F̂ is area—preserving, and

although this map preserves the magnetic flux only approxi-

mately, it is convenient and practical, because we do not

have to numerically integrate the field line equations over

the toroidal revolution.

B. Monotonic profile with local flatness

To investigate the effects on the transport caused by

local modifications, due either to internal plasma adjustments

or external perturbations, we create a local flatness point in

the safety factor profile, keeping the profile monotonicity

elsewhere. Evidences indicate that the flatness of the rotation

profile leads to robustness of the associated invariant

curve.19,20 Indeed, the low shear near to the flatness region is

associated with a transport barrier in plasma confined in

tokamaks, as experimentally observed in Ref. 9. Here, we

intend to modify the monotonic profile proposed in Ref. 18

qr
eq rð Þ ¼

qa
r2

a2
1� 1� r2

a2

� �5
( )�1

0 � r � að Þ;

qa
r2

a2
a � r � bð Þ;

8>>>><
>>>>:

(4)

where qa is the safety factor at the plasma edge r¼ a. For nu-

merical simulations, we fixed qa¼ 5.

In Ref. 19, the authors proposed a procedure to create a

flatten local position in a monotonic safety factor profile. To

introduce a local modification, the safety factor function should

depend on three values of r, namely, r1 < r0 < r2, where r1

and r2 are the local limits and r0 is the local flatness point. The

new smooth function ql
eq must match qr

eq on the intervals ½0; r1�
and ½r2; 1�. And, the derivative in r0 vanishes, defining the flat-

ness local point. So, a candidate for the safety factor is

ql
eq rð Þ ¼

qa
r2

a2
1� 1� r2

a2

� �5
( )�1

0 � r � r1ð Þ;

q0 � c1 r � r0ð Þ7 � c2 r � r0ð Þ5 � c3 r � r0ð Þ3 r1 � r � r2ð Þ;

qa
r2

a2
r2 � r � bð Þ;

8>>>>>><
>>>>>>:

(5)

FIG. 1. (a) Tokamak scheme showing the main coordinate systems. (b) The

2pR0-periodic cylindrical approximation where l is the length of the wires of

the EML.
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where the coefficients q0, c1, c2, and c3 are obtained using

the continuity and derivability of Eq. (5) at the point r1 and

r2. In Fig. 2, we show the safety factor profile locally modi-

fied in comparison with the monotonic profile qr
eq. We point

out that the flatness point, y0 ¼ 1� r0=b with r0 ¼ 0:0824

was placed between the plasma edge and the wall (y¼ 0) to

induce a transport barrier and alter the plasma-wall interac-

tion. The values r1 ¼ 0:099 and r2 ¼ 0:077, corresponding

to y¼ 0.1 and y¼ 0.3 in Fig. 2, are used throughout our

simulations.

III. COMPARING PHASE SPACES

To demonstrate the topological modification caused by

the local barrier, we compare the phase spaces for both pro-

files qr
eq and ql

eq using different numbers of coils m of the er-

godic limiter. The amplitude perturbation � influences

mainly the region situated in the vicinity of the m-mode

resonant region, i.e., the parameter m, related to the number

of coils of the ergodic limiter, is fundamental with respect to

the onset of resonances in the phase space. Figure 3 shows

six phase spaces for the symplectic map F̂ with experimental

set up given by: R0 ¼ 0:3 (tokamak major radius), a1

¼ �0:04 (toroidal correction), a¼ 0.08 (plasma radius),

b¼ 0.11 (tokamak minor radius), and l¼ 0.08 (length of the
EML). The first three phase spaces (a)–(c) are obtained with

monotonic profile qr
eq (Eq. (4)) and the last, (d)–(f), using the

profile with one flatness point ql
eq (Eq. (5)). In all cases, we

kept the perturbation � ¼ 0:2, and the number of coils of the

EML for comparison are (a)/(d) m¼ 4; (b)/(e) m¼ 5; and

(c)/(f) m¼ 7. The first applications, shown in Fig. 3, are

obtained for a high value of the perturbation parameter � in

order to emphasize the robustness of the magnetic topology

due to the safety factor flattening. In the chosen examples,

the ratio between the external coil current and the plasma

current is � ¼ 0:2.

In the first case with m¼ 4, corresponding to phase

spaces of Figs. 3(a) and 3(d), we observe that the locally

modified profile has changed the region close to the bound-

ary (y¼ 0) and the flatness point has induced a regular region

composed by invariant curves acting as a barrier to the cha-

otic layer around the period-four islands. A similar topologi-

cal changing with respect to the boundary region can be

observed in the comparison between Figs. 3(b) and 3(d) for

m¼ 5. Nevertheless, in this case, the perturbation parameter

� ¼ 0:2 is sufficient to destroy any possible barrier caused by

the flatness of the safety factor profile. It happens because

the mode, m¼ 5, generates period-five islands where the flat-

ness point is located.

For m¼ 7, the resonant islands are far enough from the

flatness position. Observing Fig. 3(c), we see that the pertur-

bation � ¼ 0:2 is quite strong for the system guided with qr
eq.

FIG. 3. Phase spaces for the symplectic map F̂ using (a)–(c) monotonic profile, qr
eq; (d)–(f) monotonic profile with one flatness point, ql

eq. For � ¼ 0:2, we vary

the number of coils m and the relation to compare the phase spaces are (a)/(d) m¼ 4; (b)/(e) m¼ 5; (c)/(f) m¼ 7.

FIG. 2. Monotonic safety factor qr
eq (Eq. (4)) and the safety factor with a

local flatness point ql
eq (Eq. (5)).
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Indeed, all the invariants between the plasma boundary and

the wall are destroyed and no effective barrier is present to

avoid the escape of trajectories coming from the internal

plasma. The introduction of a flatness local point in the

safety factor profile changes the phase space, as can be seen

in Fig. 3(f). Although the perturbation has destroyed most of

the invariants, it was not enough to break the region related

to the local flatness point. The remaining invariants curves

close to the plasma boundary act as effective transport bar-

riers, isolating the orbits of the region y< a.

IV. IMPACT ON THE TRANSPORT

Our main goal here is to measure the impact caused by

local modifications of the safety factor on the transport of

orbits. Hence, to quantify such a modification, we compare

the transport properties in the phase space guided by ql
eq and

qr
eq-monotonic profiles. In this case, we set the parameters:

m¼ 7 and � ¼ 0:2. Note that by choosing the number of pairs

of coils in the ergodic limiter as m¼ 7, the perturbation acts

mainly on the period-7 resonance, located between the

plasma edge and the wall.

To determine the impact of the monotonic profile with

local flatness on the transport, we investigate the escape pat-

tern of Figs. 3(c) and 3(f). The region close to the border,

y¼ 0, is composed by fast escape initial conditions, owing to

the perturbation � and the number of wires m of the ergodic

limiter. Most of the initial conditions close to the border

escape in the first 10 iterations of the map. Therefore, a clear

observation of the escape pattern for this region should be

associated with fewer iterations. Hence, we have calculated

the escape pattern, considering small ranges of 10 iterations,

as shown by the color palette of Fig. 4. In this case, the initial

conditions that spend more than 100 iterations to hit the

tokamak wall have received the same color (dark red).

Figure 4 indicates that the region close to the border of

the system is almost entirely filled by initial conditions with

fast escape, 1 < n < 100. However, we observe two impor-

tant modifications: (i) the escape pattern of Fig. 4(a), which

refers to the map F̂ with monotonic profile, shows a region

close to the plasma boundary ðx; yÞ ¼ ð0:6; 0:2727Þ that is

not observed in Fig. 4(b) due to the existence of the barrier

imposed by the local flatness of the safety factor profile; (ii)

comparing the amplification of a certain region of Figs. 4(a)

and 4(b), we note a significant change in the escape pattern.

Indeed, the local flatness has increased the fastest escape

regions (1 < n < 20) and the thin layer of escapes with

n> 100, on a first examination, cannot be observed anymore

in Fig. 4(b).

Finally, to characterize the escape process of the mag-

netic field lines close to the tokamak wall (y¼ 0), we study

the distribution of the escape times of an ensemble of initial

conditions. Thus, we computed the escape time statistic

(ETS) for a large number of chaotic initial conditions placed

within the white square in the left panel of Figs. 4(a) and

4(b). The ETS is defined as

q sð Þ ¼ Mn

M
; (6)

where Mn is the number of initial conditions that crossed the

boundary y¼ 0 with iterations numbers (time) n 	 s and M
is the total number of initial conditions that actually crossed

the boundary. In fact, Eq. (6) is a cumulative distribution

function that decreases from qð0Þ ¼ 1. Figure 5 shows the

ETS for both cases considering a set of 108 initial conditions

each one iterated 2� 106 times.

As indicated in Fig. 5, the ETS in both cases decays as a

power-law with exponents floating in the range 1 < c < 2.

For short times, s < 100, both cases present a fast decay and

fewer initial conditions remain after 100 iterations of the

FIG. 4. Escape pattern of the region

close to the tokamak border. Phase

spaces (a) and (b) can be compared

with Figs. 3(c) and 3(f), respectively.

The right side of each figure is the

amplification of the white square.
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map. Analyzing the range, 103 < s < 3� 103, we see that

the ETS for the monotonic safety factor with a flatness point

(Eq. (5)) decays slower than the monotonic safety factor (Eq.

(4)), i.e., the probability of finding initial conditions with

time escape belonging to this range is greater for the case

with flatness point. Nevertheless, for s > 104, the ETS con-

cerning the monotonic safety factor (Eq. (4)) dominates the

range of long time escape. It means that the phase space of

Fig. 4(b) has a structure that leads some initial conditions to

experience up to 106 iterations without hitting the border

y¼ 0. These long times escape occurs due to the thin layers

in the escape pattern of Fig. 4(a) acting as a channel towards

the internal region, y> a (plasma region).

In order to make our approach feasible for experiments

in tokamaks, let us consider a smaller perturbation coil cur-

rent that, e.g., represents 8% of the plasma current, � ¼ 0:08.

Indeed, the alteration in the safety factor introducing a single

flatness point also modifies the topology of the phase space

for weak perturbation as shown in Figs. 6(a) and 6(b).

Namely, the area covered by invariant curves around y¼ 0.2

increases. Moreover, the ETS indicates that the set of initial

conditions embedded in the chaotic region of the case with

safety factor presenting one flatness point tends to escape a

little faster than observed in the monotonic case.

V. CONCLUSIONS

The impact on the transport of magnetic field lines

guided by a safety factor with a flatness point (low shear)

has been analyzed in the context of symplectic maps. Safety

factor profiles with local flatness point generates robust bar-

riers in the phase space.19 We have seen that the plasma-wall

iteraction is modified by the local flatness point, because it

changes the topology of the magnetic surfaces close to the

border leading to a fast escape pattern of the trajectories.

Comparing phase spaces and analyzing the escape pattern

for both: monotonic safety factor (Eq. (4)) and monotonic

safety factor with one flatness point (Eq. (5)), we conclude

that when the flatness point induces an effective barrier, it

may impose two consequences on the dynamics: (i) increase

in the confinement, since orbits with r < r0 do not transpose

the barrier and (ii) topological changing of the escape pattern

of the magnetic field lines. In this last case, we study the

ETS and we identify a specific situation where the onset of

the barrier induced a fast escape of the magnetic surfaces,

destroying long time channels that lead the trajectories expe-

rience long times in the phase space before they hit the

border.

From an experimental point of view, particles close to

the border that follow the magnetic field lines towards the

plasma core and, eventually, escape to the tokamak border

are harmful to the plasma confinement.

The power-law decay of the ETS is related to stickiness

effects in a certain region or regular structures in the phase

FIG. 5. ETS for a set of initial conditions within the white square in the left

panel of Fig. 4(a) monotonic safety factor, qr
eq (Eq. (4)) and (b) monotonic

with a flatness point, ql
eq (Eq. (5)).

FIG. 6. Phase space of the Ulmann

Map with � ¼ 0:08 and monotonic

safety factor, qr
eq in (a) and monotonic

with a flatness point, ql
eq (Eq. (5)) in

(b). In (c), we show the ETS for a set

of initial conditions spread in the cha-

otic region, but not touching the regu-

lar islands, for both cases (a) and (b).
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space.21–23 Moreover, the fluctuation of the curves suggests

different kinds of dynamical trapping.24 In our simulation,

the stickiness effects are related to the escape channels (see

Fig. 4), and the extinction of the long time channels was

clearly captured by the ETS.

In principle, the considered local flattening of the safety

factor profile could arise as a result of an internal plasma

arrangement or be caused by an external perturbation to con-

trol the plasma. In such cases, the decrease in transport pre-

dicted by this work should be observed for some critical

parameters even considering the MHD plasma response,

changes in fluctuation, rotation, and a variety of other plasma

effects that are not simply understood based on the vacuum

field line topology.
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