A long traveling wave tube used to investigate wave-particle interactions in plasmas

Meirielen Caetano de Sousa,^{1,2} Fabrice Doveil,² Yves Elskens,² Iberê Luiz Caldas¹

¹Universidade de São Paulo, Instituto de Física, São Paulo, Brazil ²Aix-Marseille Université, CNRS, PIIM - UMR 7345, Marseille, France

Introduction

- Industrial traveling wave tubes (TWTs): from 2 to 30 cm in length. Mainly used as signal amplifiers for wireless communications, such as space telecommunication
- Some meters long TWTs: used for basic plasma physics research G. Dimonte, J. H. Malmberg, Phys. Fluids 21, 1188 (1978) F. Doveil et al., Phys. Rev. Lett. 94, 085003 (2005)
- Equations describing TWT are the same characterizing beam-plasma instability in small cold beam limit
- Electromagnetic waves interact with electron beam in vacuum:

Possible to experimentally mimic beam-plasma system without background plasma effects, and we properly identify effects due to beam dynamics

Motivation

- Wave-particle interactions have many applications in particle acceleration and particle heating
 M. C. de Sousa, I. L. Caldas, *Phys. Plasmas* 25, 043110 (2018)
 T. M. Corrêa da Silva *et al.*, *Phys. Rev.* E 88, 013101 (2013)
- Fundamental process in plasmas, particle beams, and accelerators P. K. Shukla *et al.*, *Phys. Rep.* **138**, 1 (1986)
- Basis for electromagnetic radiation amplifiers, such as free electron lasers, gyrotrons, TWTs, etc.
 A. S. Gilmour Jr., *Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons* (Artech House Radar Library, Boston, 2011)

• Use an upgraded TWT to simulate one-dimensional beam-plasma systems, which represent a paradigm for instabilities in plasmas:

Objectives

- Use an upgraded TWT to simulate one-dimensional beam-plasma systems, which represent a paradigm for instabilities in plasmas:
 - Develop theoretical model for wave propagation
 - Analyze linear and nonlinear effects arising from beam-wave interaction:

Modulation of electron beam

Wave growth and saturation

Development of electron bunches and consequent oscillations in wave amplitude along the device

TWTs used for basic research

- First TWT used for plasma physics research (no longer in operation):
 3 m long University of California in San Diego
 G. Dimonte, J. H. Malmberg, *Phys. Rev. Lett.* 38, 401 (1977)
 G. Dimonte, J. H. Malmberg, *Phys. Fluids* 21, 1188 (1978)
- Second research TWT (upgraded to next item):
 4 m in length PIIM Laboratory, CNRS and Aix-Marseille University
 C. Chandre *et al.*, *Phys. Rev. Lett.* 94, 074101 (2005)
 F. Doveil, A. Macor, Y. Elskens, *Chaos* 16, 033103 (2006)
- Third TWT used for research (presented in this talk):
 4 m in length PIIM Laboratory, CNRS and Aix-Marseille University M. C. de Sousa *et al.*, *Phys. Plasmas* 27, 093108 (2020)

TWT at PIIM Laboratory

- a) TWT structure: (1) helix; (2) electron gun;
 (3) trochoidal velocity analyzer;
 (4) movable antenna; (5) glass vacuum tube; (6) slotted rf ground cylinder;
 (7) main magnetic coil; (8) resistive rf termination to reduce reflections
- b) 4 m long TWT: (7) main coil producing magnetic field B_z to confine the beam; (9) rectangular coils generating B_x and B_y for beam tilt correction

M. C. de Sousa *et al.*, *Phys. Plasmas* **27**, 093108 (2020)

TWT upgrade

- TWTs used for research: specifically conceived to study wave-particle interactions in plasmas
- Long enough for nonlinear effects to take place
- Previous TWTs: helix held inside glass tube by three alumina rods

- Upgraded PIIM TWT: helix wrapped in and rigidly held by dielectric polyimide tape, ensuring nearly constant helix pitch along whole device length
- Results obtained with upgraded helix are much more precise
- New experiments are possible

M. C. de Sousa *et al., Phys. Plasmas* **27**, 093108 (2020)

The only TWT for plasma physics research currently in operation

- In [M. C. de Sousa *et al.*, *Phys. Plasmas* 27, 093108 (2020)], we introduced theoretical model describing wave propagation in upgraded TWT
- Amplitude of each component of (a) electric and (b) magnetic fields through radial plane in slow wave structure for wave at 30 MHz
- Near axis (r = 0 mm): electric and magnetic fields present only longitudinal components; electrons interact with electrostatic field similar to the ones in plasmas
- Close to helix (*r* = 16.355 mm): total amplitudes reach maximum value
- Near ground cylinder (r = 57.5 mm): all field components decay to zero

- Phase velocity: decreases rapidly for frequencies 0 < f < 40 MHz; constant for f > 50 MHz
- Group velocity: presents a minimum around $f \sim 27$ MHz

- Excellent agreement between theoretical model and experimental data
- Temporal signal registered by oscilloscope for propagating wave at 30 MHz along the axial direction *z* of the TWT
- Black solid line indicates theoretical phase velocity obtained from model

M. C. de Sousa *et al.*, *Phys. Plasmas* **27**, 093108 (2020)

M. C. de Sousa et al., Phys. Plasmas **27**, 093108 (2020)

- Fast Fourier Transform (FFT) (green curve) of temporal signal shown in previous slide
- Presence of 60 MHz harmonics for z > 1600 mm
- Total signal (green) decomposed into propagating (red) and reflected (blue) waves

- Error bars are within the marker size
- Upgraded TWT is very precise: it is possible to obtain accurate experimental data, and to carry out new experiments that require fine adjustment of parameters

Beam-wave interaction

- Mainly characterized by interaction impedance, or coupling impedance: coupling between electron beam and wave electric field E_z in direction beam propagates
- Very good agreement between theory and experiments: robustness of theoretical model and accuracy of experimental measurements for upgraded TWT
- Higher frequencies: electromagnetic field gets more concentrated near helix and far from beam
- Impedance strongly decreases with wave frequency: coupling between particles and waves is less efficient above 20 MHz

M. C. de Sousa *et al.*, *Phys. Plasmas* **27**, 093108 (2020)

Beam-wave interaction: Beam modulation

- Electron gun generates initially monokinetic beam
- (a) 30 MHz wave, initial beam voltage V_{b0} = 19 V (beam velocity v_{b0} approximately equal to wave phase velocity v_φ) After interaction with wave: 2 peaks in distribution function, V_{b1} = 16.4 V and V_{b1} = 21 V
- (b) 15 MHz wave, initial beam voltage $V_{b0} = 30 \text{ V} (v_{b0} < v_{\phi})$ After interaction with wave: 2 peaks, $V_{b-} = 25.6 \text{ V}$ and $V_{b+} = 40.4 \text{ V} (v_b \text{ close to } v_{\phi})$
- Difference between peaks: estimate wave amplitude disregarding damping effects

$$V_{0}=\Bigl(\sqrt{V_{\mathrm{b}+}}-\sqrt{V_{\mathrm{b}-}}\Bigr)\Bigl|\sqrt{V_{\mathrm{b}0}}-\sqrt{V_{\mathrm{b}\varphi}}\Bigr|$$

• (a) $V_0 = 0.0036$ V; (b) $V_0 = 1.07$ V

Beam-wave interaction: Wave growth and saturation

- Initial beam velocity slightly higher than wave phase velocity
- Wave receives momentum and energy from beam, its amplitude increases (0 < axial position *z* < 1500 mm)
- Operation mechanism for industrial TWTs used as signal amplifiers
- PIIM TWT is long enough for development of electron bunches after wave saturates (z > 1500 mm)
- Electrons are trapped by wave, moving back and forth in its potential
- Momentum and energy conservation implies that
 wave amplitude oscillates along TWT

M. C. de Sousa *et al.*, *Phys. Plasmas* **27**, 093108 (2020)

Beam-wave interaction: Wave growth and saturation

- 40 MHz wave in figures
- Wave amplitude grows exponentially as $V \sim e^{k_g z}$
- For $I_{\rm b} \lesssim 100 \mu {\rm A}$: growth coefficient and saturation amplitude increase with beam current
- Experimental data (red dots) agree very well with theoretical predictions (blue solid curve) $k_{\rm g} \sim I_{\rm b}^{1/3}$ and $V_{\rm sat} \sim I_{\rm b}^{2/3}$ (wave saturates due to nonlinear development of electron bunches trapped by wave potential)
- For $I_{\rm b}\gtrsim 100 \mu {\rm A}$: nonlinear space charge effects become important, parameters deviate from linear prediction, tending to constant value

Beam current I_b (μ A)

Beam-wave interaction: Pierce linear parameters

• Four Pierce linear parameters:

Completely characterize linear regime of interaction between waves and beam in TWT

J. R. Pierce, Traveling Wave Tubes (Van Nostrand, New York, 1950)

• Detuning parameter *b*:

Measures normalized difference between initial beam velocity and wave phase velocity in absence of electrons

• Damping parameter d:

Damping rate of slow wave structure in absence of electrons normalized with wave frequency, initial beam velocity, and gain parameter

(a) Detuning 9 Detuning 100 10^{1} 10^{2} (b) Damping Damping d 10^{-1} 10^{2} 10^{1} Beam current I_b (μ A)

Beam-wave interaction: Pierce linear parameters

• Gain parameter *C*:

Defines wave gain as it interacts with beam

High currents: wave extracts more energy and momentum from beam, resulting in higher growth coefficient and saturation amplitude

• Space charge parameter *QC*:

Accounts for TWT geometry, and repulsive electrostatic force between beam electrons

Sufficiently high currents: electrostatic force acting on beam electrons increases, nonlinear effects caused by beam space charge become important and predictions of linear theory lose accuracy

Conclusions and perspectives

- Upgraded TWT: accurate experimental data agree very well with theoretical predictions
- Possible to mimic beam-plasma system with low noise; analyze nonlinear effects after saturation

Conclusions and perspectives

- Upgraded TWT: accurate experimental data agree very well with theoretical predictions
- Possible to mimic beam-plasma system with low noise; analyze nonlinear effects after saturation
- New experiments are possible in upgraded TWT:
 M. C. de Sousa *et al.*, *Phys. Plasmas* 27, 093108 (2020)

Pulsed beam instead of continuous one

Synergy between chaos and self-consistent effects

Warm beams to investigate quasilinear theory predictions for chaotic diffusion of electrons in broad wave spectrum

Experimental data used to benchmark numerical model DIMOHA

Thank you!

