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Easy-to-implement method to target nonlinear systems
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In this work we present a method to rapidly direct a chaotic system, to an aimed state or target,
through a sequence of control perturbations, with few different amplitudes chosen according to the
allowed control-parameter changes. We applied this procedure to the one-dimensional Logistic map,
to the two-dimensional He´non map, and to the Double Scroll circuit described by a
three-dimensional system of differential equations. Furthermore, for the Logistic map, we show
numerically that the resulting trajectory~from the starting point to the target! goes along a stable
manifold of the target. Moreover, using the He´non map, we create and stabilize unstable periodic
orbits, and also verify the procedure robustness in the presence of noise. We apply our method to
the Double Scroll circuit, without using any low-dimensional mapping to represent its dynamics, an
improvement with respect to previous targeting methods only applied for experimental systems that
are mapping-modeled. ©1998 American Institute of Physics.@S1054-1500~98!02101-6#

In general, the sensitivity of chaotic systems to small per-
turbations can be used both to stabilize regular dynamic
behaviors and to rapidly direct chaotic orbits to an aimed
state or target. Here we present a method to target non-
linear systemsvia a sequence of control perturbations,
with a few different amplitudes chosen from the set of
allowed values. Consequently, a large amount of memory
is not needed to determine this sequence. As examples, we
apply this method to target systems represented by maps,
differential equations, or a given set of data. This proce-
dure is also shown to be robust in the presence of noise.

I. INTRODUCTION

Chaotic evolution of dynamic variables always reaches
any finite range of values~within allowed variations! neces-
sary for particular interests.1 However, in general, the time
intervals for that are too long for practical applications or
investigations.2 In order to decrease this waiting time, per-
turbations are applied to direct systems to desired states.3

Particularly, chaotic systems present the advantage of being
sensitive to any arbitrary~even small! perturbation on their
control parameters, which may introduce enormous alter-
ations in the dynamical variables evolution.4 Therefore, such
property of chaotic systems can be used to target system
variables to required values suitable to desired applications.
As practical applications we mention nave targeting,5,6 sub-
marine sensors,7 and communication.8

In Ref. 9 the authors applied small perturbations on a
parameter, without modifying the original dynamical system,
to control an unstable periodic orbit. Since then, many other
similar methods to control chaos have been proposed.10–14

Some of these methods control chaos by applying a resonant
perturbation that originates a stable phase locked
trajectory.15–17However, in some cases, the resonant pertur-

bations to eliminate chaos are large and, therefore, they
modify the original dynamics.

In general, to apply some methods of chaos control the
trajectory of the system to be controlled needs to be on some
desired point, namely, in the vicinity of the unstable periodic
orbit one wants to control. However, it may be necessary to
wait a long time for a chaotic system to reach this point. So,
targeting methods have been proposed to rapidly direct a
chaotic trajectory to some specific location.

The idea of targeting a chaotic trajectory is owned to
Shinbrot et al.,3 who used the He´non map to demonstrate
their method. This method considers one determined initial
perturbation, which will direct a trajectory from a starting
point to a desired target. If the dynamical equations are un-
known, the method can only be used if the system can be
accurately modeled.7,18

For the Lorenz system, a three-dimensional flow with
one positive Lyapunov coefficient, Shinbrotet al.19 applied
the method to direct flows to stationary states. However, this
method is not useful if the system is high dimensional, that
is, the system has more than one positive Lyapunov
exponent.20,21 So, in Ref. 22, a method is presented that can
be applied to high-dimensional systems with known equa-
tions, considering one determined perturbation for each posi-
tive Lyapunov coefficient.

These previously mentioned methods do not focus the
question of targeting most efficiently a chaotic system. On
the other hand, in Refs. 23, 24 the authors use optimal con-
trol theory to target the He´non map, in the fastest possible
way, by applying definite perturbations with non specified
amplitudes.

However, the methods of Ref. 22 and Refs. 23 and 24
require the system parameter to be changed by a very precise
value, not achievable in some real systems.

So, we propose a method to target trajectories using only
a few different perturbation amplitudes. Furthermore, the
method we present does not need to use prescribed and high
precise amplitude perturbations, but rather a sequence of per-
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turbations with few different amplitudes. And to apply nu-
merically this idea only a simple computational program-
ming is required, which makes this method easy to
implement.

In this work, to illustrate our target method, we use three
dynamical systems, the Logistic map, the He´non map, and
the Double Scroll circuit, chosen because they present com-
mon phenomena also observed in many other systems. So,
the successful targeting of these three systems indicates that
the method can be straightforwardly applied to other sys-
tems.

The Logistic map is a one-dimensional equation, pro-
posed to study a biological population growth.25,26 Despite
the fact that the Logistic map is too simplistic to capture the
complexity of real systems, it is a good basis for investigat-
ing such systems.27,28.

The Hénon map is a two-dimensional equation proposed
in Ref. 29 to study conservative dynamical systems such as
the changing orbits of asteroids or satellites. Its dissipative
form, as used in this work, allows the appearance of a
strange attractor recently proved to be in fact chaotic.30 Also,
this mapping can be seen as a model for a CO2 laser with
modulated losses31 and other systems. Furthermore, it is
much used as a prototype dissipative map for numerical
experiments.32

The last system studied here is the Double Scroll
circuit,33 an electronic circuit with a piecewise nonlinear re-
sistor that has three energetic elements, two capacitors, and
one inductor. The presence of chaos in this circuit has been
observed experimentally, verified by computer simulations,
and also proven mathematically. In fact, this circuit is the
only real system to be proved to be chaotic,34 besides the
Hénon attractor. In addition, this circuit has been used for
communicating with chaos35 and to compose music.36

In Sec. II we present a general idea of our method ap-
plied to maps.

In Sec. III, using the Logistic map, we explain~using the
manifold theory! how the perturbation targets this chaotic
system.

In Sec. IV we use our targeting method to calculate a set
of perturbations to direct the system trajectory from a point
outside the nonperturbed He´non attractor to this same point.
In this case, the obtained trajectory is an unstable periodic
orbit that can be stabilized. We also show the procedure
robustness when noise is introduced into the system.

In Sec. V we show how to target a three-dimensional
flow, namely the Double Scroll circuit,33 without the neces-
sity of modeling the system or using the previous knowledge
of the dynamical equations. Although in this paper we only
present numerical results, the numerical targeting of this cir-
cuit is done as we were dealing with a real experiment. We
also use our method to targeting before applying the OGY
method of control9 in the Double Scroll system.

II. TARGETING MAPS

Consider a one-parameter map, represented by the equa-
tion Zn115F(b, Zn), whose parameterb can be changed by
6d. So, the parameterb can assume three values,b1d, b,

and b2d . We want to show that with these three possible
parameter values we are able to direct a trajectory from a
starting pointPi to a target located at the vicinity ofPf , by
applyingN times these perturbations on theb parameter.

Thus, to introduce our method, we perform the following
procedure. Initially, we apply the mapF to the pointPi ,
using three possible values of the parameterb. So, we get
from the first iterate three new points:Z1.15F(b1d, Z0),
Z1.25F(b, Z0), Z1.35F(b2d, Z0). Note that the index
j .k indicates the iterationj and the positionk of the point
among the 3j points of thisj th iteration.

We keep performing this procedure, by applying the
map F to each of the three points obtained from the first
iterate (Z1.1, Z1.2, Z1.3), for the three possible parameter
values. Thus, at the second iteration we get nine points
(Z2.1,... , Z2.9). Furthermore, for thej th iteration we can
get 3j points. We stop iterating the map when one of these
points reaches the vicinity ofPf , that is, a sphere with radius
e whose center isPf .

A set of perturbations that directs the trajectory from the
point Pi to the target is represented in Fig. 1, which indicates
a path to reach the target atZ2.3, afterN52 iterations.

WhenN is high the amount of memory needed to keep
all the points that form the 3N paths is large. However, in our
numerical procedure, we do not need all this information. In
fact, at each iterationj , we only need to know the 3j points
obtained at this iteration, to proceed to the next iteration. Or,
if the target is reached, we need only to keep the numbers
j 5N andk5H of the index.

In Fig. 1 we see the paths from the starting pointPi . We
put together the three points (Z2.1, Z2.2, Z2.3) obtained from
the point Z1.1 and call this setgroup 1. So, group 2 is
formed by the three points (Z2.4, Z2.5, Z2.6) obtained from
the point Z1.2 and group 3 is formed by the other three
points. Inside each group, the point with the highest position
numberk in the index was obtained from the iteration of the
former point by applying a positive parameter perturbation
(1d), and the point that has the lowestk was obtained by

FIG. 1. The path to reach the target, and the value of the constant pertur-
bations (1d,0,2d) at each iteration. The starting point is indicated byZ0,
and the target byZ2.3, which can be achieved by a set of two constant
perturbations (2d,1d).
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applying a negative parameter perturbation (2d). Thus, the
index of each point gives its position in a vector that stores
the 3N points. Consequently, forN higher than two, the set of
applied perturbationsS ~to reach the target! is easily obtained
by knowing only the numbersN and H in the index of the
point ZN.H that reaches the target.

Next, we show how to determine the setS. Thus, imag-
ine that the target was reached by the pointZN.H at theNth
iteration and this point belongs togroup M .

The group M ~formed at theNth iteration! is obtained
by the iteration of the pointXN21.M . This point, depending
on the perturbation$1d, 0, 2d%, generates the points
(ZN.3M20, ZN.3M21, ZN.3M22) that form group M . So, de-
pending on the position of the pointZN.H in group M we
know the value of the perturbation. For example, ifZN.H

5 ZN.3M22, we know that the pointZN21.M was iterated
using the perturbation2d.

To know how the pointZN21.M was obtained, we have
to find out the group L to which this point belongs and its
position inside this group. So, in Fig. 1 the set of applied
perturbation to the target isS5$2d,1d%.

To have a better idea of our method one can compare the
results shown in Fig. 1 with the trees calculated to apply the
Kostelich’s method.22 These trees containN-secondary
paths, formed byN-backward iterationsZ(T2N) of the target
Z(T) for different perturbing parameters. If the Kostelich’s
tree contained infinite secondary paths for infinite different
perturbations, it would contain our paths obtained for the
three perturbations1d, 0, and 2d. Therefore, it may be
more convenient to apply our method whenever restrictions
on the necessary parameter variations are present.

In this section we showed how we can direct a system
using three possible perturbations. However, a different
number of perturbations can also be used and the previous
described derivation also apply.

In this pictorial exposition, we showed one path that
directs the starting point to the target. However, more than
one path is possible and, in fact, the larger isN the higher is
the number of possible paths.

III. TARGETING THE LOGISTIC MAP

The equation of the Logistic map is26

XN115bXN~12XN!, ~1!

whereb is the control parameter.
Following the procedure introduced in the previous sec-

tion, we choose to change the parameterb53.78 by an
amount d50.005, to reach a target, i.e., the interval
@X2e, X1e# with e50.0001.

The necessity of the targeting procedure can be seen in
Fig. 2, where a map~1! trajectory takes 2406 iterations until
the trajectory goes fromX050.330 toXf50.816. However,
using our method, after only eight iterations, through the set
of perturbationS5$0,1d, 1d, 0,1d, 0, 0, 2d%, the trajec-
tory reaches the same target located on the pointXf , as
shown in Fig. 3. We should emphasize that the perturbed
trajectories reach points that are never visited by the attractor

of Eq. ~1! with constantb, as the point withXf50.750,
which can be reached fromX050.500 in 10 iterations, for
b53.78.

Figure 3 shows the trajectory obtained~solid black line!
by applying the determined sequence of perturbations. This
trajectory is very close to a stable manifold~dotted gray line!
of the target aroundXf . This means that the driven trajectory
from the starting point to the target is along a stable manifold
of the target. Therefore, this stable manifold of the target and
the targeting trajectory can hardly be distinguished.

In fact, as pointed out in Ref. 24, the perturbations allow
the trajectory to shadow the stable manifold of the target
zig-zagging it. Thus, the system is perturbed in such a way
that its trajectory either approach the stable manifold, the

FIG. 2. The time~n52446! that the Logistic map trajectory expends to go
from the starting point 0.33 to the target, without applying our targeting
method.

FIG. 3. Using the targeting method we can direct the trajectory from the
X050.33 to the target positioned atXf50.816 in only 8 iterations, applying
a set of 8 perturbations to the Logistic control parameterb53.78. The am-
plitude perturbation isd50.005. The trajectory~solid black line! is very
close to a stable manifold~dotted gray line! of the target.
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preferable approach~in this case the perturbation is of the
bang–bang type!, or get away from it~in this case the per-
turbation is not of the bang–bang type!.

In Fig. 3, we see that the coordinatesX3 andX6 are close
to each other. In this case, one could iterate theX2 using a
special perturbation1d1D, instead of1d ~the perturbation
indicated in Fig. 3!, to obtain X35X6. Consequently, the
targeting trajectory would reach the target in only five itera-
tions, a shorter time than applying only constant perturba-
tions. The orbit fromX3 to X6, in Fig. 3, can be considered a
pseudo-periodic orbit~the one corresponding to an almost
closed loop!,6 and a carefully adjustment in the third pertur-
bation ~1d1D) could eliminate such a pseudo-periodic or-
bit reducing even more the targeting time. In Refs. 23,24 the
perturbations are computed by using a control optimal algo-
rithm, which probably reduces automatically the targeting
time by avoiding pseudo-periodic orbits. This was the proce-
dure used in Ref. 6 to reduce the targeting time.

IV. TARGETING THE HÉNON MAP

The equations of the He´non map are29

XN11511Yn2aXN
2 ,

~2!

YN115bXN .

In this case, we consider that the control parameter
a51.40 can be changed by an amount ofd50.01. So, the
parametera can assume the valuesa51.39, a51.40, and
a51.41. Then, one example of the use of our method is
considering the starting pointPi5$0.3409, 0.2546% and the
target at the pointPf5$0.0979, 20.2846%. 5039 iterations
are necessary for the trajectory to go from the starting point
Pi to the vicinity of Pf , i.e., to reach a sphere with radius
e50.001 whose center isPf . However, with our method,
the trajectory reaches the target in only 7 iterations, by iter-
ating Eq.~2! with the following set of control perturbations:
S5$1d,2d,1d,2d,1d, 0,2d%. This example can be
seen in Fig. 4. The same initial and final points~in a rescaled
different version of the He´non map! were used in Ref. 3, and
in that work 12 iterations were necessary to direct the initial
point to the target.

Using the same He´non map, in Ref. 23 the authors target
the trajectory from Pi5$0.60000, 0.20000% to Pf

5$0.63135, 0.18941% with a precisione and a perturbation
bounded to a maximum valuem. In this paper the authors
propose an optimal control approach to reach the target ei-
ther fast targeting or choosing the best precision target.

The fastest targeting presented in Ref. 23, fore50.02
andm50.04, directs the trajectory from the pointPi in only
3 iterations. If we apply our method fore50.02 andd50.04,
we are able to reach the target in 9 iterations. However, for
d50.1 we can reach the target in only 2 iterations with the
perturbing setS5$d,2d%.

On the other hand, in Ref. 23 the authors have directed
from the same pointPi , with e51025 and m50.01, in 11
iterations. Applying our method fore51025, d50.01, and
three different perturbations, we can reach the target in 13

iterations. However, if we considerd50.02 we can also
reach the target in 11 iterations with the perturbing set
S5$2d,2d, 0,2d, 0, 0, d,2d,2d,2d,2d%.

Furthermore, while in Ref. 23 the same target is reached,
for e50.002 andm50.005, in 15 iterations, for the samee
andd we reach the target in 10 iterations. Besides, we find
3096 different ways to reach the target from the pointPi ;
one of these samples isS5$2d,2d,2d,2d,2d, d,
d, d,2d, d%.

Due to the ergodic property of strange attractors we can
always reach any target in these attractors. In a general way,
the smaller isd the slower is the time to reach the target. In
conclusion, for this map our method works as well as the
previous one.

A. Creating and controlling orbits

It is also possible to use the targeting method to create
unstable periodic orbits. To do so, we choose the starting
point as the target. Since the starting point does not coincide
exactly with the final point, and the metric distance between
these two points aree bounded, this trajectory is an almost
closed cycle. Moreover this cycle does not exist in the non
perturbed attractor, but it is rather a new trajectory. In addi-
tion, this trajectory is unstable, since the reapplication of the
previous setS or the presence of a small noise level would
take the system trajectory away from this aimed cycle. Even
so the system can be trapped along this cycle just computing
a new setS each time the system trajectory reaches the tar-
get.

Thus, we apply our target method to direct the trajectory
from the pointPi5$0.2798,20.2606% to the pointPf5Pi

with a precisione50.001 and an amplituded50.01. To tar-
get this point we need to apply eleven perturbations on the
parametera: S5$2d,2d, 0,2d, 0, 0,2d,2d,2d,1d,
1d%. This period-11 orbit can be seen in Fig. 5.

To trap the trajectory of Eq.~2! to this period-11 orbit
we have to apply a new set of perturbations for each cycle,

FIG. 4. The targeting method applied to the He´non map. Without using the
targeting 5039 iterations are necessary to direct the starting point to the
target. Using the targeting method only 7 iterations are needed.
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since this orbit is unstable. Thus, in Fig. 6, after targeting
from a generic pointPi5$0.734362, 0.163519% to the vicin-
ity of the point Pf5$0.2798, 20.2606% which takes 12 it-
erations, we start applying our targeting method to make the
trajectory of Eq.~2! shadow the almost close period-11 orbit
shown in Fig. 5.

Another way for stabilizing this orbit could be by apply-
ing the OGY method,9 adapted to the control of this long
period orbit~see Ref. 37!. With this method one could make
fine corrections to the sequence of computed perturbationsS
~to direct the pointPi to Pf), in order to stabilize the almost
closed cycle.

B. Noise

To study how our method is noise sensitive, we apply
Eq. ~2! to calculate exact sets of perturbations to targeting
and, after that, these sets are applied in the presence of noise.

Thus, considering the samePi5$0.60000, 0.20000%,
Pf5$0.63135, 0.18941% used before, we find 1767 different
ways to reach the target in absence of noise, with 10 itera-
tions ande50.02. So, in Fig. 7, we see all these perturbed
trajectories that leave the pointPi and go to the target, the
area inside the circumference with radiuse and center atPf .
We see in this figure that the targeted points are at least
0.008 away from the pointPf .

Next, we apply these 1767 possible sets of perturbations
into the Hénon Map, considering that the perturbing set
~computed in the absence of noise! may suffer changes due
to uniformly distributed random dynamical noise. So, after
adding noise, we analyze the performance of directing the
starting point, verifying if the target can still be reached. This
is done analyzing the spatial distance between the directed
points and the pointPf .

In Fig. 8 we apply noise with a randomic variation of
3% in thed value. For that, 158 of the 1767 directed trajec-
tories are outside the target region limited by the dashed line.
In addition, though these points are not within the target,
they are close to it. If we increase the noise to 5%, 273
directed trajectories go outside the target~Fig. 9!. Both Figs.
8 and 9 show that the minimum distance between the tar-
geted points andPf is the same than when we do not apply
noise.

To see how much noise magnitudes affect our targeting
method we show in Fig. 10 the number of trajectories that
failed to reach the target with respect to the noise magnitude.
We see that for noise magnitudes until 26% the number of
failed trajectories increases linearly, and for higher magni-
tudes there is an inverse exponential rate of convergence to
the total number 1767 of targeting trajectories. Therefore,
our method is robust even for high noise amplitudes.

FIG. 5. The new period-11 of the unstable periodic orbit created by apply-
ing our targeting method to the system~2!.

FIG. 6. Controlling the orbit of Fig. 5 by applying five sucessive sets of
perturbations, in order to maintain the trajectory close to the period-11 orbit,
after the target is reached in 12 iterations.

FIG. 7. The 1767 targeted trajectories and the target enclosed by a circum-
ference positioned atPf and radiuse.
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V. TARGETING FLUXES—THE DOUBLE SCROLL
CIRCUIT

The Double Scroll circuit~see Fig. 11! is an autonomous
nonlinear electronic circuit composed by two capacitors,C1

and C2, one inductor,L, two linear resistor,R, r , and a
nonlinear resistorRNL . The circuit dynamic is described by

C1dtVC15~VC22VC1!/R2 i NR~Vc1!,

C2dtVC25~VC12VC2!/R1 i L , ~3!

Ldti L52VC22q~ t !,

whereVC1, VC2, andi L are the dynamical variables and rep-
resent the voltage acrossC1, the voltage acrossC2, and the

current throughL, respectively, andq is the voltage acrossr ,
which is the external perturbation we consider to apply our
targeting method.

The termi NR is the characteristic curve of the nonlinear
resistorRNL and is the piecewise-linear function represented
by the equation

i NR5m0VC11 1
2 ~m12m0!~ uVC11Bpu2uVC12Bpu!.

~4!

Equations~3! were integrated using the following param-
eters:

1

C1
59.0,

1

C2
51.0,

1

L
57.0,

~5!
1

R
50.7, m0520.5, m1520.8, Bp51.0.

Figure 12 shows the Double Scroll chaotic attractor of~3! for
q50.

FIG. 8. The 1767 targeting points when 3% of magnitude noise is added to
the set of perturbations. In this case 158 points are above the target region
delimited by the dashed line.

FIG. 9. The 1767 targeting points when 5% of magnitude noise is added to
the set of perturbations. In this case 273 points are above the target region
delimited by the dashed line.

FIG. 10. Number of exit trajectories~trajectories that do not reach the tar-
get! with respect to noise magnitude.

FIG. 11. The Double Scroll circuit composed by two capacitors,C1 andC2,
one inductor,L, two linear resistors,R and r , and one non-linear resistor
RNL .
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In the chosen example, we want to direct the trajectory
of Eq. ~3! to the target located at the point

VC1
f 521.500, VC2

f 50.238, i L
f 51.723, ~6!

with a precision ofe f50.001.
We consider that both the starting point and the target,

are on a Poincare´ surfacea,20 at the plane determined by
VC1521.5 ~see the line in Fig. 12!.

To apply our method to a three-dimensional~3D! flow,
some adjustments to the original method are necessary. For a
map, the perturbation is introduced at each iteration, yet for a
flow we choose a convenient time intervalT, during which
the control perturbation,q, is applied. During the target, the
trajectory crosses the sectiona J times. As in previous sec-
tions, we consider the number of times,N, we apply the
constant perturbation,q, which as before assume three pos-
sible values:1d, 0, 2d.

Intending to simulate a real experiment, we do not set up
the system initial condition as it can be done for a system of
known equations. So, before starting to apply our method,
we force the trajectory to oscillate in a periodic way. The
advantage of this procedure is the facility of determining the
starting point, since a crossing on the Poincare´ section of any
periodic orbit can be chosen as our starting point.

So, initially, we choose a perturbationq(t) that forces
the circuit to oscillate periodically. This is done by a sinu-
soidal wave of amplitudec and frequencyf :

q~ t !5c sin~2p f t !. ~7!

It is possible to suppress chaotic motion described by
Eq. ~3! by perturbing it withq given by Eq.~7! ~chaos is
suppressed by phase-locking!.15–17,38 Then, we choose the
frequency f 50.3 and amplitudec50.022 to make Eq.~3!
behave periodically.

This point chosen as the starting pointPi is

VC1
i 521.5000, VC2

i 50.3361, i L
i 52.0289. ~8!

So, we perturb the trajectory until it is in the vicinity of
the starting point, i.e., when the trajectory reaches a three-
dimensional sphere with center in the pointPi and radius
ei50.0005. When that happens, we start applying our
method for a set of tentative parameters (T, N, d) previously
chosen, and the perturbation is not anymore given by Eq.~7!,
but is rather a series of constantsd as introduced before.

Now, we estimate the numberN of perturbations we
apply into the system. To do that, we consider the area the
attractor occupies on the Poincare´ section. We find this area
~the maximum length times the maximum width of the at-
tractor on the section! to beA'0.0091. Thus, the minimum
numberN is found by

A

3N
,e f

2 , ~9!

leading us toN58.
Now, we choose the time interval,T, during which we

apply each perturbationsq. For that, we verify that the ap-
proximated time interval the trajectory, starting from the
point Pi , spend to return to the chosen Poincare´ section is
t516. Then, the time intervalT is obtained from

T5
t

N
, ~10!

which gives usT52. Therefore, in this case the perturbation
is appliedN58 times during a Poincare´ mapping cycle.

In this work we choosed5c50.022, that is, the sinu-
soidal wave~in the phase-locking! and the targeting pertur-
bation have the same amplitude. As a matter of fact, the
success of the targeting does not depend much on the ampli-
tuded.

Summarizing the application of the targeting method to a
flux we first stabilize the system until the trajectory crosses
the point Pi , by applying a sinusoidal wave~the phase-
locking targeting phase!. Then we applyN perturbations,
each one during a timeT. After that, we still keep integrating
until the trajectory reaches the target on the Poincare´ section.
If so, we considerJ as the number of times the trajectory
crosses the section when the perturbations are applied.

For T52, N58, andd50.022, we found that the target
can be reached by applying the following two sets of pertur-
bations:$2d, -d, 0, 0,2d, 0, 0, d% with J55 and $1d,
2d,1d,1d, 0,2d,2d,2d% with J56. For a high number
of perturbations, we find many ways to reach the target.

However, we can use other parameters instead of the
ones we have estimated. Thus if we consider the sameN58,
d50.0022 butT51.2, we find the following perturbation set
that directs the system to the target:

$2d, 0,2d,2d,2d,2d,1d,2d%, ~11!

with J52. Figure 13 shows the resulting trajectory for this
set.

VI. APPLICATION OF THE TARGETING PROCEDURE

The trajectory of Eqs.~3! can be controlled by applying
a perturbationq given by Eq.~7! ~Ref. 38!. But, there are
other ways of doing that, as using the OGY9 method. With

FIG. 12. The nonperturbed Double Scroll attractor of the system~3! pro-
jected on the variablesVC1 andVC2. The line represents the chosen Poincare´
section we consider to apply our targeting method.
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this method it is possible to control a chosen unstable peri-
odic orbit, as the one that can be seen in Fig. 14. However,
this method requires the system trajectory to get closer to the
periodic orbit to be controlled. So, we can use our targeting
method to rapidly direct the trajectory of Eq.~3! to a point
near the chosen unstable periodic orbit. After we reach the
vicinity of this orbit, we apply the OGY method to stabilize
it. The control of the unstable periodic orbit~Fig. 14! by the
OGY method can be seen in Fig. 15.

This orbit was controlled by applying small perturba-
tions on the parameterq. Thus, after the trajectory of Eq.~3!
reached the vicinity of the unstable periodic orbit, on the
Poincare´ sectionVC1521.5, we varyq by dq, according to
the equation

dq5~0.1649, 0.1818!~jn2Zf !, ~12!

wherej represents the trajectory position~a vector represent-
ing the variablesVC2 and i L) when it crosses the Poincare´
section, and Zf represents theVC2 and i L coordinates of the
target. So, each time the trajectory crosses the section we
change the value of the parameterq by using Eq.~12!. A
detailed manner of obtaining the formula~12! can be found
in Ref. 9.

The point given by Eq.~6! was chosen as the target
because it is in the vicinity of the crossing between the un-
stable periodic orbit~shown in Fig. 14! and the sectiona.
So, we can use our method to direct the trajectory of Eq.~3!
rapidly to the vicinity of this orbit, and then apply the OGY
method. The result is shown in Fig. 16.

In this figure we first apply the sinusoidal perturbation to
induce the phase-locking. Then, when the trajectories
reaches the starting point we apply our method to direct it to
the target@see Eq.~6!# ~large black line!. When the target is
reached, we apply the OGY method to control the unstable
periodic orbit~gray line!.

In Fig. 17 we show this control using the time evolution
of the variableVC1(t), indicating all the phases: the phase-
locking, the targeting procedure, and the control of the un-
stable periodic orbit.

VII. CONCLUSIONS

In this work we presented a new method, for targeting a
chaotic trajectory, that uses only a sequence formed by few
different parameter perturbations. A large amount of
memory is not needed to determine this sequence of pertur-
bations. In fact, after applying this method, it is only neces-
sary to keep the number of required iterations and the rela-
tive position of the targeting trajectory, among all the
considered paths, obtained at the last iteration. Therefore,

FIG. 13. Application of the targeting method to the Double Scroll circuit.
The starting point is reached by phase-locking the trajectory through an
external sinusoidal perturbation. After that, the trajectory is target by apply-
ing 8 perturbations. On the surfacea is indicated in the region we can reach
from the starting point applying different sets of 8 perturbations.

FIG. 14. The non perturbed Double Scroll attractor and one of the infinite
unstable periodic orbits embedded in the attractor.

FIG. 15. The stabilization of the unstable periodic orbit by applying the
OGY method, after the trajectory reaches the vicinity of the unstable peri-
odic orbit.
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with our method only two integer numbers are enough to
reconstruct the determined targeting trajectory.

The chosen perturbation sequence for targeting may not
be unique. For any of these sequences the trajectory evolves
along a stable manifold of the target.

With this method we showed that the Logistic and
Hénon maps, and the Double Scroll circuit can have their
trajectories rapidly directed, from a starting point to a chosen
target. For that, only three possible parameter perturbations
were considered, but we also obtained similar results apply-
ing more than three different perturbations. Therefore, al-
though the number of different perturbations is not so criti-
cal, it is convenient to use a small number of them.

With the targeting method we created new unstable pe-
riodic orbits that were not present in the attractor of the non-
perturbed system. These new periodic orbits are unstable;
however, they were stabilized by applying successive sets of

perturbations, determined by our targeting method. Even in
the presence of noise, this stabilization is possible since our
target method is very noise robust as shown for the He´non
map.

To simulate the application of our method to a real ex-
periment, we neither set up the system initial conditions~not
regularly achievable! nor work with a low-dimension map-
ping, as used in other targeting approaches. Instead, we
achieve the starting point forcing the system with an external
phase-locking sinusoidal perturbation. Once a convenient
starting point is reached, we can apply our targeting method
to direct the trajectory to the desired target.

To illustrate a practical application of our target method
we rapidly directed a trajectory of the Double Scroll circuit
to a point located at the vicinity of a chosen unstable periodic
orbit, that afterword was stabilized by applying the OGY
control method.

Although we presented results obtained with low-
dimensional systems~only one positive Lyapunov coeffi-
cient! preliminary results show that the method can be suc-
cessfully applied to high-dimensional systems as the Double
Kicked Rotor ~two positive Lyapunov coefficients and an
estimated Lyapunov dimension of 2.84!.37
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