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Easy-to-implement method to target nonlinear systems

Murilo S. Baptista® and Iberé L. Caldas
Institute of Physics, University of 8&aulo, C. P. 66318, CEP 05315-970cSRaulo, S.P., Brazil

(Received 26 October 1996; accepted for publication 3 November)1997

In this work we present a method to rapidly direct a chaotic system, to an aimed state or target,
through a sequence of control perturbations, with few different amplitudes chosen according to the
allowed control-parameter changes. We applied this procedure to the one-dimensional Logistic map,
to the two-dimensional Hen map, and to the Double Scroll circuit described by a
three-dimensional system of differential equations. Furthermore, for the Logistic map, we show
numerically that the resulting trajectoffrom the starting point to the targegoes along a stable
manifold of the target. Moreover, using the htg map, we create and stabilize unstable periodic
orbits, and also verify the procedure robustness in the presence of noise. We apply our method to
the Double Scroll circuit, without using any low-dimensional mapping to represent its dynamics, an
improvement with respect to previous targeting methods only applied for experimental systems that
are mapping-modeled. @998 American Institute of Physid$$1054-150(08)02101-6

In general, the sensitivity of chaotic systems to small per- bations to eliminate chaos are large and, therefore, they
turbations can be used both to stabilize regular dynamic  modify the original dynamics.
behaviors and to rapidly direct chaotic orbits to an aimed In general, to apply some methods of chaos control the
state or target. Here we present a method to target non- trajectory of the system to be controlled needs to be on some
linear systemsvia a sequence of control perturbations, desired point, namely, in the vicinity of the unstable periodic
with a few different amplitudes chosen from the set of  orbit one wants to control. However, it may be necessary to
allowed values. Consequently, a large amount of memory wait a long time for a chaotic system to reach this point. So,
is not needed to determine this sequence. As examples, wWe targeting methods have been proposed to rapidly direct a
apply this method to target systems represented by maps, chaotic trajectory to some specific location.
differential equations, or a given set of data. This proce- The idea of targeting a chaotic trajectory is owned to
dure is also shown to be robust in the presence of noise. Shinbrotet al,®> who used the Agon map to demonstrate
their method. This method considers one determined initial
perturbation, which will direct a trajectory from a starting
I INTRODUCTION point to a desired target. If the dynamical equations are un-
Chaotic evolution of dynamic variables always reachesknown, the method can only be used if the system can be
any finite range of valuegwithin allowed variationsneces- ~accurately modele@*®
sary for particular interestsHowever, in general, the time For the Lorenz system, a three-dimensional flow with
intervals for that are too long for practical applications orone positive Lyapunov coefficient, Shinbret al!® applied
investigations. In order to decrease this waiting time, per- the method to direct flows to stationary states. However, this
turbations are applied to direct systems to desired statesmethod is not useful if the system is high dimensional, that
Particularly, chaotic systems present the advantage of beirig, the system has more than one positive Lyapunov
sensitive to any arbitraryeven small perturbation on their exponen£®?! So, in Ref. 22, a method is presented that can
control parameters, which may introduce enormous alterbe applied to high-dimensional systems with known equa-
ations in the dynamical variables evolutibtherefore, such tions, considering one determined perturbation for each posi-
property of chaotic systems can be used to target systetive Lyapunov coefficient.
variables to required values suitable to desired applications. These previously mentioned methods do not focus the
As practical applications we mention nave targefiigub-  question of targeting most efficiently a chaotic system. On
marine sensorsand communicatiofi. the other hand, in Refs. 23, 24 the authors use optimal con-
In Ref. 9 the authors applied small perturbations on arol theory to target the H®n map, in the fastest possible
parameter, without modifying the original dynamical system,way, by applying definite perturbations with non specified
to control an unstable periodic orbit. Since then, many otheamplitudes.
similar methods to control chaos have been propd%ed. However, the methods of Ref. 22 and Refs. 23 and 24
Some of these methods control chaos by applying a resonaréquire the system parameter to be changed by a very precise
perturbation that originates a stable phase lockedalue, not achievable in some real systems.
trajectory:®~'"However, in some cases, the resonant pertur- ~ So, we propose a method to target trajectories using only
a few different perturbation amplitudes. Furthermore, the

dpresently at the Institute for Physical Science and Technology, Universit>meth0d we p_resent does n(_)t need to use prescribed and high
of Maryland, College Park, MD 20742. precise amplitude perturbations, but rather a sequence of per-
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turbations with few different amplitudes. And to apply nu-

merically this idea only a simple computational program- E

ming is required, which makes this method easy to Z,,
implement. Net > |z, | Grous

In this work, to illustrate our target method, we use three ‘ -~ 15

dynamical systems, the Logistic map, thénda map, and -

the Double Scroll circuit, chosen because they present com- +5 Z +8 7,

mon phenomena also observed in many other systems. So, z, 0 Z,3 0 17 .| Growp2
the successful targeting of these three systems indicates that -5 \

the method can be straightforwardly applied to other sys- z

tems. Starting point
The Logistic map is a one-dimensional equation, pro-
posed to study a biological population groviff® Despite
the fact that the Logistic map is too simplistic to capture the Zo.
complexity of real systems, it is a good basis for investigat-

ing such system&.:%
The Henon map is a two-dimensional equation proposeoE'G.' 1. The path to reach the target, and the value of the constant pertur-
ations (+6,0,— 8) at each iteration. The starting point is indicatedzZy

in Ref. 29_t0 StUd_y Conservat'_ve dynam'c_al SySteij S_UCh_ 8%hd the target by, 5, which can be achieved by a set of two constant
the changing orbits of asteroids or satellites. Its dissipativgerturbations ¢ 5, + 5).

form, as used in this work, allows the appearance of a
strange attractor recently proved to be in fact chabltislso,
this mapping can be seen as a model for a, Gf3er with
modulated lossé$ and other systems. Furthermore, it is

much used as a prototype dissipative map for numericalia ing pointP; to a target located at the vicinity &, by

experiments? _ _ applyingN times these perturbations on theparameter.

_ T_hges last system studied here is the Double Scroll " pq 10 introduce our method, we perform the following
circuit,” an electronic circuit with a piecewise nonlinear re- procedure. Initially, we apply the map to the pointP;,
sistor that has three energetic elements, two capacitors, a'ﬂging three possible values of the paraméteSo, we get
one inductor. The presence of chaos in this circuit has beefm the first iterate three new point&; ,=F(b+8, Zo),
observed experimentally, verified by computer simulationsz1 —=F(b, Zo), Z,s=F(b—&, Z,). Note that the index

and also proven mathematically. In fact, this circuit is thej_k indicates the iteratiof and the positiork of the point
only real system to be proved to be chadfihesides the among the Bpoints of thisjth iteration.

Henon attractor. In addition, this circuit has been used for We keep performing this procedure, by applying the
communicating with chad8and to compose musit. map F to each of the three points obtained from the first
In Sec. Il we present a general idea of our method apjiarate @11, Z10 Z19), for the three possible parameter

plied to maps. o _ values. Thus, at the second iteration we get nine points
In Sec. Ill, using the Logistic map, we explaiasingthe (7 7 4 Furthermore, for theth iteration we can

manifold theory how the perturbation targets this chaotic get 3 points. We stop iterating the map when one of these

system. _ points reaches the vicinity &, , that is, a sphere with radius
In Sec. IV we use our targeting method to calculate a se} \yhose center i, .

of perturbations to direct the system trajectory from & point A get of perturbations that directs the trajectory from the
outside the nonperturbed Hen attractor to this same point. intp, to the target is represented in Fig. 1, which indicates
In this case, the obtained trajectory is an unstable periodig path to reach the target 2 5, after N=2 iterations.

orbit that can be stabilized. We also show the procedure " \yhenN is high the amount of memory needed to keep

robustness when noise is introduced into the system. | the points that form the"8paths is large. However, in our
In Sec. V we show how to target a three-dimensional,merical procedure, we do not need all this information. In

flow, namely the Double Scroll circutt without the neces- fact, at each iteratiof, we only need to know thel Points

sity of modeling the system or using the previous knowledgg,iained at this iteration, to proceed to the next iteration. Or,
of the dynamical equations. Although in this paper we onlyit \he target is reached, we need only to keep the numbers
present numerical results, the numerical targeting of this cir] —N andk=H of the index.

cuit is done as we were dealing with a real experiment. We
also use our method to targeting before applying the OGYp
method of contrdlin the Double Scroll system.

1.1 ]

2,5 | <~ Target

Group 1

andb— 46 . We want to show that with these three possible
parameter values we are able to direct a trajectory from a

In Fig. 1 we see the paths from the starting péint We
ut together the three point&€4 4, Z,,, Z, 3 obtained from
the pointZ;, and call this sefgroup 1. So, group 2 is
formed by the three pointsZg 4, Z,5, Z,¢) Obtained from
Il TARGETING MAPS theT pointzl_z and group 3 is for'med_ by the .other thrgg
points. Inside each group, the point with the highest position
Consider a one-parameter map, represented by the equasmberk in the index was obtained from the iteration of the
tionZ,..=F(b, Z,), whose parametdr can be changed by former point by applying a positive parameter perturbation
+ 4. So, the parametdy can assume three valudst 6, b, (+ 6), and the point that has the lowdstwas obtained by
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applying a negative parameter perturbationd). Thus, the 10 K .
index of each point gives its position in a vector that stores e s e A
the 3" points. Consequently, fad higher than two, the set of "f 3 Frep i"'—;f_

applied perturbationS (to reach the targgts easily obtained
by knowing only the numbersl andH in the index of the
point Zy y that reaches the target.

Next, we show how to determine the &tThus, imag-
ine that the target was reached by the pdpgt, at theNth
iteration and this point belongs group M.

The group M (formed at theNth iteration is obtained
by the iteration of the poinKy_; . This point, depending
on the perturbation{+ 8, 0, — 5}, generates the points
(Znav—0r Znav—1, Znav—2) that form group M. So, de-
pending on the position of the poidt y in group M we
know the value of the perturbathn. For exampl'ezm_H 00 pro P 3000
= Znav—2, We know that the poinZy_,y was iterated Iteration
using the perturbation- 6.

To know how the poinZy_, )\ was obtained, we have FiG. 2. The time(n=2446 that the Logistic map trajectory expends to go
to find out the group L to which this point belongs and itsfrom the starting point 0.33 to the target, without applying our targeting
position inside this group. So, in Fig. 1 the set of applied™ethod:
perturbation to the target iS={— 6, + &}.

To have a better idea of our method one can compare the
results shown in Fig. 1 with the trees calculated to apply thexf Eq. (1) with constantb, as the point withX;=0.750,
Kostelich’'s method? These trees contaiN-secondary which can be reached frod,=0.500 in 10 iterations, for
paths, formed byN-backward iteration& r_y, of the target b=3.78.

Z for different perturbing parameters. If the Kostelich’s Figure 3 shows the trajectory obtaineblid black ling

tree contained infinite secondary paths for infinite differentby applying the determined sequence of perturbations. This
perturbations, it would contain our paths obtained for thetrajectory is very close to a stable manifgttbtted gray ling
three perturbationst 8, 0, and —§. Therefore, it may be of the target aroun¥; . This means that the driven trajectory
more convenient to apply our method whenever restrictiongrom the starting point to the target is along a stable manifold
on the necessary parameter variations are present. of the target. Therefore, this stable manifold of the target and

In this section we showed how we can direct a systenthe targeting trajectory can hardly be distinguished.
using three possible perturbations. However, a different In fact, as pointed out in Ref. 24, the perturbations allow
number of perturbations can also be used and the previouke trajectory to shadow the stable manifold of the target
described derivation also apply. Zig-zagging it. Thus, the system is perturbed in such a way

In this pictorial exposition, we showed one path thatthat its trajectory either approach the stable manifold, the
directs the starting point to the target. However, more than
one path is possible and, in fact, the largeNishe higher is
the number of possible paths.

starting point

IIl. TARGETING THE LOGISTIC MAP 8 5 0/\ ® target
The equation of the Logistic map®fs
Xn+1=bXn(1—=Xy), (2)

whereb is the control parameter.

Following the procedure introduced in the previous sec- ‘
tion, we choose to change the paramdber3.78 by an \ o \/
amount §=0.005, to reach a target, ie., the interval o2 Setngpem :
[X—€, X+ €] with e=0.0001.

The necessity of the targeting procedure can be seen i ‘ ‘ ,
Fig. 2, where a mayl) trajectory takes 2406 iterations until 0 2 4 6 8
the trajectory goes fronX,=0.330 toX;=0.816. However, Hteration - n
using our method, after only eight iterations, through the set
of perturbationS={0,+ S5, +6,0+6 0,0, _5}' the trajec- FIG. 3. Using the targeting method we can direct the trajectory from the

. Xo=0.33 to the target positioned ®t=0.816 in only 8 iterations, applying
tory reaches the same target located on the PEiNt as set of 8 perturbations to the Logistic control parambteB.78. The am-

Sh‘_)W” i|_7 Fig. 3. We should emphasizt_a _that the perturbealitude perturbation is5=0.005. The trajectorysolid black ling is very
trajectories reach points that are never visited by the attractafose to a stable manifolttiotted gray ling of the target.
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preferable approachin this case the perturbation is of the
bang—bang type or get away from it(in this case the per- ’ S
turbation is not of the bang—bang type R
In Fig. 3, we see that the coordinatésandXg are close
to each other. In this case, one could iterate Xheusing a 0.2
special perturbatior- 5§+ A, instead of+ & (the perturbation
indicated in Fig. 3 to obtain X3=Xg. Consequently, the
targeting trajectory would reach the target in only five itera-
tions, a shorter time than applying only constant perturba-
tions. The orbit fromX5 to Xg, in Fig. 3, can be considered a
pseudo-periodic orbitthe one corresponding to an almost
closed loop,® and a carefully adjustment in the third pertur- 02 ¢ - ]
bation (+6+A) could eliminate such a pseudo-periodic or- - ,..{;r/;t
bit reducing even more the targeting time. In Refs. 23,24 the T
perturbations are computed by using a control optimal algo- ¢4 L : ‘
rithm, which probably reduces automatically the targeting -20 10 Q'no 10 2o
time by avoiding pseudo-periodic orbits. This was the proce-
dure used in Ref. 6 to reduce the targeting time.

0.0 +

FIG. 4. The targeting method applied to thérida map. Without using the
targeting 5039 iterations are necessary to direct the starting point to the
target. Using the targeting method only 7 iterations are needed.

IV. TARGETING THE HENON MAP

The equations of the Hen map aré iterations. However, if we considef=0.02 we can also
_ 2 reach the target in 11 iterations with the perturbing set
X =1t ¥n—aXy, 2 S={-6-6 0-6 0,0,5—5—5—5—0).
Yys1=bXy. Furthermore, while in Ref. 23 the same target is reached,
for €=0.002 andw=0.005, in 15 iterations, for the sanee
In this case, we consider that the control parameteand § we reach the target in 10 iterations. Besides, we find
a=1.40 can be changed by an amount&#0.01. So, the 3096 different ways to reach the target from the pdmt
parametera can assume the values=1.39,a=1.40, and one of these samples i$={—6,—6,—6,—6,—6, &,
a=1.41. Then, one example of the use of our method iss, §,—4, &}.
considering the starting poirit; ={0.3409, 0.254pand the Due to the ergodic property of strange attractors we can
target at the poinP;={0.0979, —0.2846. 5039 iterations always reach any target in these attractors. In a general way,
are necessary for the trajectory to go from the starting pointhe smaller iss the slower is the time to reach the target. In
P; to the vicinity of P¢, i.e., to reach a sphere with radius conclusion, for this map our method works as well as the
€=0.001 whose center i®;. However, with our method, previous one.
the trajectory reaches the target in only 7 iterations, by iterA Creati d li bi
ating Eqg.(2) with the following set of control perturbations: " reating and controlling orbits
S={+6,—-6,+68,—6,+65, 0,—68}. This example can be It is also possible to use the targeting method to create
seen in Fig. 4. The same initial and final poifitsa rescaled unstable periodic orbits. To do so, we choose the starting
different version of the Fgon map were used in Ref. 3, and point as the target. Since the starting point does not coincide
in that work 12 iterations were necessary to direct the initialexactly with the final point, and the metric distance between
point to the target. these two points are bounded, this trajectory is an almost
Using the same Heon map, in Ref. 23 the authors target closed cycle. Moreover this cycle does not exist in the non
the trajectory from P;={0.60000, 0.20000 to P; perturbed attractor, but it is rather a new trajectory. In addi-
={0.63135, 0.18941with a precisione and a perturbation tion, this trajectory is unstable, since the reapplication of the
bounded to a maximum valuge. In this paper the authors previous setS or the presence of a small noise level would
propose an optimal control approach to reach the target etake the system trajectory away from this aimed cycle. Even
ther fast targeting or choosing the best precision target.  so the system can be trapped along this cycle just computing
The fastest targeting presented in Ref. 23, §6r0.02 a new setS each time the system trajectory reaches the tar-
and u=0.04, directs the trajectory from the poiRt in only  get.
3 iterations. If we apply our method fer=0.02 and6=0.04, Thus, we apply our target method to direct the trajectory
we are able to reach the target in 9 iterations. However, fofrom the pointP;={0.2798;-0.2606 to the pointP;=P;
6=0.1 we can reach the target in only 2 iterations with thewith a precisione=0.001 and an amplitudé=0.01. To tar-
perturbing seS={6, — &}. get this point we need to apply eleven perturbations on the
On the other hand, in Ref. 23 the authors have directegparametera: S={-46,—6, 0,—4, 0, 0~6,—6,— 4, + 6,
from the same poinP;, with e=10° and x=0.01, in 11  + &}. This period-11 orbit can be seen in Fig. 5.
iterations. Applying our method foe=10"°, §=0.01, and To trap the trajectory of Eq.2) to this period-11 orbit
three different perturbations, we can reach the target in 18e have to apply a new set of perturbations for each cycle,
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FIG. 7. The 1767 targeted trajectories and the target enclosed by a circum-

FIG. 5. The new period-11 of the unstable periodic orbit created by apply-ference positioned &2, and radiuse

ing our targeting method to the systdg).

B. Noise

since this orbit is unstable. ThUS, in F|g 6, after targeting To study how our method is noise Sensitive, we app'y
from a generic poinP;={0.734362, 0.16353%0 the vicin-  Eq. (2) to calculate exact sets of perturbations to targeting
ity of the point P;={0.2798, —0.2606 which takes 12 it- and, after that, these sets are applied in the presence of noise.
erations, we start applying our targeting method to make the Thus, considering the samB;={0.60000, 0.20000
trajectory of Eq.(2) shadow the almost close period-11 orbit P;={0.63135, 0.18941used before, we find 1767 different
shown in Fig. 5. ways to reach the target in absence of noise, with 10 itera-
Another way for stabilizing this orbit could be by apply- tions ande=0.02. So, in Fig. 7, we see all these perturbed
ing the OGY method, adapted to the control of this long trajectories that leave the poif% and go to the target, the
period orbit(see Ref. 37 With this method one could make area inside the circumference with radiuand center aP; .
fine corrections to the sequence of computed perturbasions We see in this figure that the targeted points are at least

(to direct the poin®P; to P;), in order to stabilize the almost 0-008 away from the poir; . _ _
closed cycle. Next, we apply these 1767 possible sets of perturbations

into the Haon Map, considering that the perturbing set
(computed in the absence of nogiseay suffer changes due
to uniformly distributed random dynamical noise. So, after
adding noise, we analyze the performance of directing the
starting point, verifying if the target can still be reached. This

20 ' ' is done analyzing the spatial distance between the directed
points and the poinP; .
In Fig. 8 we apply noise with a randomic variation of
10 ¢ ] 3% in thed value. For that, 158 of the 1767 directed trajec-
X tories are outside the target region limited by the dashed line.
4 4 4 % . - In addition, though these points are not within the target,
< 00k i they are close to it. If we increase the noise to 5%, 273
‘ directed trajectories go outside the targeg. 9). Both Figs.
8 and 9 show that the minimum distance between the tar-
. geted points andP; is the same than when we do not apply
-1.0 - 1 noise.
“target - X, To see how much noise magnitudes affect our targeting
method we show in Fig. 10 the number of trajectories that
20 5 - - failed to reach the target with respect to the noise magnitude.

We see that for noise magnitudes until 26% the number of

failed trajectories increases linearly, and for higher magni-

FIG. 6. Controlling the orbit of Fig. 5 by applying five sucessive sets of tudes there is an inverse eXpone.mlal I’E.lte of_convergence to
perturbations, in order to maintain the trajectory close to the period-11 orbitthe total number 1767 of targe_tlng tr_aJeCt0r|e_S- Therefore,

after the target is reached in 12 iterations. our method is robust even for high noise amplitudes.
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FIG. 8. The 1767 targeting points when 3% of magnitude noise is added t&!G. 10. Number of exit trajectorie@irajectories that do not reach the tar-
the set of perturbations. In this case 158 points are above the target regided with respect to noise magnitude.
delimited by the dashed line.

current through., respectively, and is the voltage across

which is the external perturbation we consider to apply our
V. TARGETING FLUXES—THE DOUBLE SCROLL targeting method.

CIRCUIT The termiyg is the characteristic curve of the nonlinear

The Double Scroll circuitsee Fig. 11is an autonomous resistorRy,. qnd is the piecewise-linear function represented
nonlinear electronic circuit composed by two capacit@s, by the equation

and C,, one inductor,L, two linear resistorR, r, and a ing=MoVc1+ 3 (My—mo)(|Ver+Bpl—=[Vei—Byl).
nonlinear resistoRy, . The circuit dynamic is described by (

C1diVe1=(Vea— Ve /R—inr(Ver), Equations(3) were integrated using the following param-
eters:

C2diVeo=(Ver—Veo) IR+ L, ()

Ldi =—Vca—qa(t),

whereV,, Vo, andi| are the dynamical variables and rep-
resent the voltage acro€y;, the voltage acros€,, and the §:0_7' me=—0.5, m=—0.8, B,=1.0.

®)

- pl,_\
%

Figure 12 shows the Double Scroll chaotic attracto{ffor

q=0.
0.050 ;

0.045 B

' R
0.040 | :

0.035 | ]
0.030 | S . PR 1
0.025

)

0.020 r3 L

Distance to the point P,

0.015

0.010

0.005 1

0.000 : - :
0 500 1000 1500 2000

different ways i 4(:

FIG. 9. The 1767 targeting points when 5% of magnitude noise is added t&IG. 11. The Double Scroll circuit composed by two capacitGrsandC,,

the set of perturbations. In this case 273 points are above the target regi@ne inductor,L, two linear resistorsR andr, and one non-linear resistor
delimited by the dashed line. Ryl -
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So, we perturb the trajectory until it is in the vicinity of
the starting point, i.e., when the trajectory reaches a three-
dimensional sphere with center in the polt and radius
€;=0.0005. When that happens, we start applying our
method for a set of tentative parametefs N, 6) previously
chosen, and the perturbation is not anymore given by(Bg.
but is rather a series of constartsas introduced before.

_ Now, we estimate the numbed of perturbations we
apply into the system. To do that, we consider the area the
Double Scroll attractor occupies on the Poincarection. We find this area

(the maximum length times the maximum width of the at-
tractor on the sectigrto be A~0.0091. Thus, the minimum
numberN is found by

0.4 T

0.2 +

| A
40 -30 -20 -10 00 10 20 30 40 ﬁ< €f , 9

leading us toN=8.
FIG. 12. The nonperturbed Double Scroll attractor of the sys@npro- Now, we choose the time interval,, during which we
jected on the variablegc, andVc,. The line represents the chosen Poincare apply each perturbations. For that, we verify that the ap-
section we consider to apply our targeting method. proximated time interval the trajectory, starting from the
point P;, spend to return to the chosen Poincaeetion is
7=16. Then, the time interval is obtained from
In the chosen example, we want to direct the trajectory
of Eq. (3) to the target located at the point T=—, (10

N
f f o f

Ver=—1.500, V¢, =0.238, 1, =1.723, ©) which gives usT=2. Therefore, in this case the perturbation
with a precision ofe;=0.001. is appliedN=8 times during a Poincammapping cycle.

We consider that both the starting point and the target, In this work we choose=c=0.022, that is, the sinu-
are on a Poincarsurfacea,?° at the plane determined by soidal wave(in the phase-lockingand the targeting pertur-
Vci1=—1.5(see the line in Fig. 12 bation have the same amplitude. As a matter of fact, the

To apply our method to a three-dimensior(daD) flow, success of the targeting does not depend much on the ampli-
some adjustments to the original method are necessary. Fottade &.
map, the perturbation is introduced at each iteration, yet fora Summarizing the application of the targeting method to a
flow we choose a convenient time intervigl during which  flux we first stabilize the system until the trajectory crosses
the control perturbatiory, is applied. During the target, the the point P;, by applying a sinusoidal wavé&he phase-
trajectory crosses the sectianJ times. As in previous sec- locking targeting phage Then we applyN perturbations,
tions, we consider the number of timdd, we apply the each one during a tim€. After that, we still keep integrating
constant perturbatiory, which as before assume three pos-until the trajectory reaches the target on the Poinsaggion.
sible values:+ 4, 0, — 6. If so, we consider as the number of times the trajectory

Intending to simulate a real experiment, we do not set ugrosses the section when the perturbations are applied.
the system initial condition as it can be done for a system of For T=2, N=8, and§=0.022, we found that the target
known equations. So, before starting to apply our methodgan be reached by applying the following two sets of pertur-
we force the trajectory to oscillate in a periodic way. Thebations:{- 4, -8, 0, 0~ 6, 0, 0, 8§} with J=5 and{+4,
advantage of this procedure is the facility of determining the— &,+ 8,+ 8, 0,— 8,—8,— &} with J=6. For a high number
starting point, since a crossing on the Poincaetion of any  of perturbations, we find many ways to reach the target.
periodic orbit can be chosen as our starting point. However, we can use other parameters instead of the

So, initially, we choose a perturbatiay(t) that forces ones we have estimated. Thus if we consider the d4m8,
the circuit to oscillate periodically. This is done by a sinu- §=0.0022 butT=1.2, we find the following perturbation set
soidal wave of amplitude and frequencyf: that directs the system to the target:

q(t)=c sin(27ft). ) (=5, 0~8,—8,—8—5+05—5}, (11)

It is possible to suppress chaotic motion described bywith J=2. Figure 13 shows the resulting trajectory for this
Eq. (3) by perturbing it withq given by Eq.(7) (chaos is  set.
suppressed by phase-lockidg~*"* Then, we choose the
frequencyf=0.3 and amplitudee=0.022 to make EqQ(3)  v|. APPLICATION OF THE TARGETING PROCEDURE
behave periodically.

This point chosen as the starting poRytis The trajectory of Eqs(3) can be controlled by applying
. a perturbationq given by Eq.(7) (Ref. 38. But, there are

c1=—1.5000, V(,=0.3361, i;=2.0289. (8)  other ways of doing that, as using the O%Givethod. With
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1.0 T ' ' ' Controlled (unstable periodic) orbit
0.4 T T
0.8 Poincare section (o) E
Waiting for
0.6 - 1 \/ the system
Starting point { to reach the
0.4 - 4 vicinity of
- 02 r the unstable
periodic
0.2 r 1 orbit,
3
> 00 r E N
Q
> 00 r ]
-0.2 + 4
-0.4 g
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0.8 - b
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FIG. 13. Application of the targeting method to the Double Scroll circuit.

The starting point is reached by phase-locking the trajectory through afFIG. 15. The stabilization of the unstable periodic orbit by applying the
external sinusoidal perturbation. After that, the trajectory is target by apply-OGY method, after the trajectory reaches the vicinity of the unstable peri-
ing 8 perturbations. On the surfaaeis indicated in the region we can reach odic orbit.

from the starting point applying different sets of 8 perturbations.

this method it is possible to control a chosen unstable peri- 69=(0.1649, 0.1818 &0 —2y), (12
odic orbit, as the one that can be seen in Fig. 14. Howevervhereé represents the trajectory positi¢amvector represent-
this method requires the system trajectory to get closer to thing the variables/, andi,) when it crosses the Poincare
periodic orbit to be controlled. So, we can use our targetingection, and Zrepresents th¥, andi, coordinates of the
method to rapidly direct the trajectory of E() to a point  target. So, each time the trajectory crosses the section we
near the chosen unstable periodic orbit. After we reach thehange the value of the parametgby using Eq.(12). A
vicinity of this orbit, we apply the OGY method to stabilize detailed manner of obtaining the formuls2) can be found
it. The control of the unstable periodic orlfkig. 14 by the  in Ref. 9.
OGY method can be seen in Fig. 15. The point given by Eq(6) was chosen as the target
This orbit was controlled by applying small perturba- because it is in the vicinity of the crossing between the un-
tions on the parameter. Thus, after the trajectory of EQR) stable periodic orbifshown in Fig. 14 and the section.
reached the vicinity of the unstable periodic orbit, on theSo, we can use our method to direct the trajectory of(By.
PoincaresectionV,=—1.5, we varyq by 8q, according to  rapidly to the vicinity of this orbit, and then apply the OGY
the equation method. The result is shown in Fig. 16.

In this figure we first apply the sinusoidal perturbation to
induce the phase-locking. Then, when the trajectories
reaches the starting point we apply our method to direct it to

Unstable periodic.orbit ' the targe{see Eq(6)] (large black ling. When the target is
7= reached, we apply the OGY method to control the unstable

periodic orbit(gray line.

] In Fig. 17 we show this control using the time evolution

of the variableV¢4(t), indicating all the phases: the phase-

locking, the targeting procedure, and the control of the un-

stable periodic orbit.

0.4 T

VCZ
(=]
o

T

VII. CONCLUSIONS

In this work we presented a new method, for targeting a
Chaoﬁc attractbr chaotic trajectory, that uses only a sequence formed by few
different parameter perturbations. A large amount of
“30 2.0 10 0.0 10 2.0 3.0 memory is not needed to determine this sequence of pertur-
v bations. In fact, after applying this method, it is only neces-
sary to keep the number of required iterations and the rela-

FIG. 14. The non perturbed Double Scroll attractor and one of the infiniteliVe _position of the ta_rgeting trajeCtor)_/- among all the
unstable periodic orbits embedded in the attractor. considered paths, obtained at the last iteration. Therefore,

c1
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perturbations, determined by our targeting method. Even in
the presence of noise, this stabilization is possible since our
target method is very noise robust as shown for thedte
map.

To simulate the application of our method to a real ex-
periment, we neither set up the system initial conditigmst
regularly achievablenor work with a low-dimension map-
ping, as used in other targeting approaches. Instead, we
achieve the starting point forcing the system with an external
phase-locking sinusoidal perturbation. Once a convenient
starting point is reached, we can apply our targeting method
to direct the trajectory to the desired target.

. To illustrate a practical application of our target method
Targeting we rapidly directed a trajectory of the Double Scroll circuit
-06 ‘ - t . . to a point located at the vicinity of a chosen unstable periodic
~3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 . - .

orbit, that afterword was stabilized by applying the OGY
control method.
6. 16, Th _ hod g v direct the trai ) Although we presented results obtained with low-
o o e oo oy o e g sy imensional systemsonly one-positve Lyapunov coefi-
direct the trajectory to the target, located in the vicinity of an unstablec'enD preliminary results show that the method can be suc-
periodic orbit. Then, we apply the OGY method, stabilizing this orbit. cessfully applied to high-dimensional systems as the Double
Kicked Rotor (two positive Lyapunov coefficients and an

, , estimated Lyapunov dimension of 2)84
with our method only two integer numbers are enough to

reconstruct the determined targeting trajectory.
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