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In this paper, we analyzed the three-dimension parameter space of the Kicked Logistic Map
(KLM), which is the Logistic Map perturbed by periodic kicks with constant amplitude. In
this space parameter, diagrams are numerically determined, identifying the regions with finite
attractors and their topology. For the identified periodic regions, isoperiodic diagrams are
also computed. Examples of these diagrams are presented for fixed kick periods. Dynamical
properties of the KLM are characterized by the forms observed in these diagrams. Furthermore,
the considered map has different basins of attraction. Thus, for the kick period ¢ = 2, an
analytical analysis shows the coexistence of two basins of attraction. In addition, for this kick
period, a stability diagram is presented for the period-two orbits, without iterating the KLM,
reproducing the corresponding regions in the isoperiodic diagrams. Lastly, the coexistence of
two basins, one for a periodic and another for a chaotic attractor, causes, in critical regions of

the parameter space, the appearance of a type of crisis named transfer crisis.

1. Introduction

For the specific purpose of controlling chaos, dif-
ferent methods of perturbing a dynamical system
can be applied, as small parameter perturbations
[Ott et al., 1990; Shimbrot et al., 1993], parametric
perturbations [Loskutov & Shishmarev, 1994], or
additive terms [Jackson & Hiibler, 1990] as consid-
ered in this work. Generally, these finite perturba-
tions alter the dynamics of the unperturbed system.
However, if this is not possible or convenient, a sys-
tem can still be controlled by slightly changing the
appropriate control parameter, as was proposed by
Ott—Grebogi-Yorke [1990]. Other methods to con-
trol chaos are mentioned in [Shimbrot et al., 1993;
Ott, 1993; Kapitaniak, 1992].

A broad variety of papers have considered uni-
modal maps, such as the Logistic one, to study how
a chaotic system depends on the control parameters
[Rosler, 1989]. In particular, the value of a control
parameter can be varied in a previously established
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sequence to induce attractors independent of the
initial conditions [Sanju, 1993]. Maps can also
be modulated by an additive periodic forcing,
sometimes creating different basins of attraction
[Jackson & Hiibler, 1990]. To identify the changes
caused by the application of such perturbations, one
can compute usual investigating tools, as bifurca-
tion diagrams, for the perturbation parameter.

However, there are systems for which more than
one parameter can be varied, or, as considered by
Réssler [1989], where one parameter is assuming
two different values. In these cases, one should try
to make up a new kind of diagram, showing the
values of the perturbed parameters and the effect
these variations have on the system.

Thus, two-dimensional diagrams were com-
puted with the control parameter values on the axis
and pixels with different ¢olors showing the studied
attractor properties or characteristics. One of the
most used investigating tools is the signal of the
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Lyapunov function (to represent the attractor topol-
ogy), or the magnitude of this function to show
the strength of the sensibility to initial conditions
[Cvitanovic, 1989]. Another example is the indica-
tion of the period in the so-called isoperiodic
diagrams [Gallas, 1993, 1994].

In this paper we consider the Kicked Logistic
Map (KLM) [Baptista & Caldas, 1993, 1996] which
is the Logistic Map perturbed by a sequence of kicks
with a constant amplitude, ¢, and a period, ¢

Xpp1 = bXn(1 = Xp)

ont = 1 if — is an integer
+ qén,t t (1)
0n,t = 0 otherwise
where
0<X <1 (2)

The purpose of this paper is not ounly to ad-
dress the control of the Logistic Map trajectories,
but also to discuss the bidimensional parameter dia-
grams and stability analysis for the perturbed orbits
described by the KLM. Thus, these tools are used
to investigate, in the parameter space, phenomena
such as creation of chaos, abrupt disruption of the
attractor, crisis, and bifurcation scenarios.

In Sec. 2 we consider the KLM, for ¢t = 3, and
present bidimensional parameter diagrams, b x ¢, to
discern regions of chaotic, periodic, and non-finite
attractors. In Sec. 3 we show how the period p
of the KLM orbits are related to the kick period.
Moreover, an equation is derived to obtain these
periodic orbits. Finally, in Sec. 4, we studied the
case with ¢ = 2, to show the existence of more than
one basin of attraction and to study their stability.
As we showed [Baptista & Caldas, 1996], this coex-
istence of different basis of attraction is responsible
for a new type of crisis called transfer crisis [Yam-
aguchi & Sakai, 1983]. In this paper these basins
are presented. Finally, discussion is given in Sec. 5.

2. The Parameter Space Structure

As we can see in Eq. (1), we have three parameters,
namely, ¢, b, and ¢t. The first two, ¢ and b, have a
wide range to be varied, but ¢ assumes only integer
values.

For a fixed kick period ¢, the trajectories ob-
tained from (1), by setting different values of the
other two parameters, can be classified in three

different ways: chaotic, non-chaotic, and non-finite
attractor (in this last case Eq. (2) is not satisfied).
To get a global view of these orbits, we made dia-
grams that show for each pair of values (p, ¢) the
observed kind of motion, and, in addition, the
period p of the periodic orbits.

In fact, instead of showing these characteristics
in only one diagram, we made two kinds of dia-
grams: one to discern if the orbit is chaotic, periodic
or non-finite, and the other one to show the most
observed low-periods p. Comparisons of these two
diagrams confirm the relevance of the shown peri-
ods. As mentioned before, this last one is named
an isoperiodic diagram [Gallas, 1993, 1994].

The quantification of chaos and order is
obtained by computing the Lyapunov exponent
[Cvitanovic, 1989], for the kicked logistic map tra-
jectories. This is computed from the following ex-
pression obtained from Eq. (1):

N=co N
n=1

N
A= lim — > Inb(1 - 2X,)] (3)
where X, is obtained from Eq. (1). The order
(i.e. predictability) is indicated by A < 0, and the
chaos (i.e. sensitive dependence on initial condi-
tions) is indicated by A > 0.

For each pair of values (b, ¢), we iterate Eq. (1)
and compute the Lyapunov exponent (considering
3000 iterations), after a transient of 1000 iterations.
Much attention is paid to obtain highly precision
figures. Thus, for parameters near critical values,
as that corresponding to abrupt attractor changes
or bifurcations, longer transients were considered
(approximately 100000 iterations).

Then, setting the black color corresponding to
chaotic attractors, the white to periodic ones, and
the gray to non-limited ones, we obtain diagrams
like that shown in Fig. 1. This diagram is obtained
by setting ¢ = 3 and the initial condition Xy =
0.2. The computed regions are complex and highly
interleaved. The figures obtained for other ¢ values
present similar patterns. In these diagrams, there
is a basin of attraction for non-finite attractors only

for parameters satisfying ‘' > condition:
b
Z +qg>1 (4)

To identify the petiod of Eq. (1), whenever we
get a negative Lyapunov exponent, we keep one
hundred iterations to find out the oscillation period,
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Fig. 1. Attractor regions in the parameter space for kick

period t = 3 with black and white pixels representing chaotic
and non-chaotic attractors. Gray pixels represent points
without limited attractor.
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Fig. 2. Isoperiodic diagram (¢t = 3) showing some of the

periods p indicated by numbers and by the letter o for higher
periods. Following the horizontal line we can get period
doubling and inverse cascades.
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Fig. 3. (A) Magnification of the Fig. 2, showing some of the

periods p indicated by numbers and by the letter o for higher
periods. (B) Magnification of the Fig. 3(A), showing some of
the periods p indicated by numbers and by the letter o for
higher periods.

which is represented by pixels with different gray
levels in the isoperiodic diagrams (Figs. 2 and 3).

Some important characteristics of these dia-
grams are the shrimp-shaped isoperiodic areas,
which appear aligied along one direction, and
a “structure-parallel-to-structure” of these areas.
These results are similar to those reported for other
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Fig. 4. Attractor regions in the parameter space for kick

period t = 3, and ¢ < 0 with black and white pixels rep-
resenting chaotic and non chaotic attractors. Gray pixels
represent points without limited attractor.

nonlinear maps [Gallas, 1993, 1994]. Furthermore,
the magnifications of Fig. 2 (see Fig. 3) show no
structure-within-structure characteristic of fractal
systems [Cvitanovic, 1989].

In some experiences of control through impul-
sive perturbations it may be more convenient to
apply negative kicks [Braun et al., 1992; Braun &
Lisboa, 1995]. Therefore, Fig. 4 shows another
space-parameter diagram for the same kick period,
t = 3, and initial condition, Xy = 0.2, but with sub-
tracting perturbations, i.e. considering in Eq. (1)
a kick with amplitude —g. The main topological
difference between this figure and Fig. 1 is that the
basin of attraction for non-finite attractors is given
by the condition

b
19> 1. (5)
Consequently, part of the chaotic region in Fig. 1
becomes periodic in Fig. 4, and part of the region
without finite attractor in the first figure becomes
chaotic in the last one.

The main period-p regions of the periodic
regions of Fig. 4 are shown in the isoperiodic di-
agram of Fig. 5. Figure 6 shows the magnifica-
tion of the box showed in Fig. 5. Similarly to the
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Fig. 5. Isoperiodic diagram showing some of the periods p
indicated by numbers and by the letter o for higher periods.
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Fig. 6. Magnification of a region of the Fig. 5 showing some

of the periods p indicated by numbers and by the letter o for
higher periods.

observed in Fig. 3 for the positive kick, no structure-
within-structure, characteristic of fractal systems
[Cvitanovic, 1989], was observed.
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All figures from 1 to 5 were made using the
initial condition Xy = 0.2. However, for different
conditions we may not obtain the same diagram,
since we have different basins of attraction for the
system described by Eq. (1), as described in Sec. 4.

3. The Trajectory Periods

From the isoperiodic diagrams showed in Figs. 2, 3,
5 and 6, we can get a global view of the sequences of
the period-doubling and inverse cascades [Dawson,
1991], as the b and ¢ parameters change. Thus,
the relevant critical attractor changes may be in-
vestigated in the appropriate bifurcation diagrams
figured out from the corresponding roads observed
in the computed isoperiodic diagrams.

As an example, a bifurcation diagram could be
made following the road indicated by the line in
Fig. 2, for a fixed b and increasing ¢. Thus, in this
diagram we would observe the following sequence of
period-p orbits: 6, 12, higher than 12, chaos, 12, 6,
3. So, we get both doubling and inverse cascades in
the same diagram.

Another bifurcation diagram could be obtained
by increasing b and fixing g, as can be seen following
the line in Fig. 5. Here the sequence of period-p
orbits is: 3, 6, 12, higher than 12, chaos, 9, 18,
chaos, 3, 12,..., 6, 12.

Though period doubling can be obtained by in-
creasing either b or ¢, the same does not occur for
inverse cascades obtained only by increasing g.

All the driven period-p orbits indicated in the
previous isoperiodic diagrams are, in fact, multiple
of t, with p > t. As a matter of fact, for any period-
p orbit,

p=Nt, where N=1,23,..., (6)
there are other period-p’ orbits that appear after
m period-doubling bifurcations of the initially con-
sidered period-p orbit. Therefore, each sequence of
periods p’ given by the following equation

p'=2Mp, wherem=1,2,3,..., (7)
may describe a road to chaos.

These periodic orbits can be determined by solv-
ing equations derived from (1). So, with F' as the
first term of the right side of (1) (therefore F is the
Logistic Map function), the equation that gives us
a trajectory with period p =t (given b and ¢) is:

Ft(Xn) +q=Xn (8)

where F! is the tth iteration of the function F.
Similarly, the orbits with period p = 2t, can be
determined from

FYFY(Xn)+q)+q=Xn (9)

The stability of the solutions obtained by these
equations will be considered in the next section.

Thus, we could go further and write equations
whose solutions would correspond to all periodic
trajectories with p = Nt. Moreover, the solutions of
these equations would be a 2Nt order polynomium
with period Nt.

4. Basins of Attraction
and Stability

It was shown in the reference [Baptista & Caldas,
1996] that, for parameters satisfying the condition
(4), there are basins of attraction for finite (either
chaotic or periodic) and non-limited attractors.
Moreover, the regions shown in the isoperiodic dia-
grams may also have their own basins of attraction.

To show the existence of more than one basin
of attraction, we analyzed the period-two regions in
the isoperiodic diagrams of Figs. 2 and 3. The value
t = 2 was chosen since we wanted to make an ana-
lytical study to compare with the results obtained
by the iteration of Eq. (1), and this analysis would
be difficult for periods higher than two.

Then, the period-two regions of two isoperiodic
diagrams for different initial conditions Xo = 0.3
and X = 0.5 were computed (Fig. 7), showing that
different diagrams can be obtained. The gray color
is now used to indicated values of b and ¢ that gives
a period-two orbit (p = 2), of Eq. (1), for t = 2.

To determine all possible period-two regions
(for fixed b and ¢), without specifying the initial
condition X, we obtain from (8) the equation whose
solutions give the periodic trajectories of (1) with
t=2:

F*(Xn) +q=Xn (10)
Therefore, with this equation, it is possible to
obtain four real or complex period-two fixed points,
X7, of (1). From (10), we get the following
equation

B X 4 op3 X — (8% 4 b2 X
+(b2 —1)Xj*+q=0,

(11)
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Fig. 7. Isoperiodic diagram for t = 2 and p = 2. In (a) the
initial condition is 0.3 and 0.5 in (b).

whose solutions correspond to the desired fixed
points.

However, only the real and stable solutions of
Eq. (11) are relevant to compute the isoperiodic di-
agrams. For a real fixed point X7* to be stable, it
must satisfy the following condition

F%(X)

In the case considered here, for ¢ = 2, there
may be none, one, or two stable fixed points

b - Control parameter

0.05 0.10

g - Perturbation amplitude

Fig. 8. Stability regions of the period p = 2 fixed points
X% and X™*, in the parameter space, for t = 2.

(designated by X?* and X**), depending on the
control parameters b and ¢. With respect to the
other two solutions, one (X1*) does not satisfy con-
dition (2), that is, it is in the basin of attraction of
a non-finite attractor. The other (X3*) never sat-
isfy condition (12), that is, it is always unstable as
it can be seen in Figs. 9-12.

The existence of these stable values explains
the existence of basins for the period-two attrac-
tors. So, Fig. 8 shows, for each pair of parameters
(b, q), whether the fixed points, X?* and X**, are
stable or not. In this figure, the white regions corre-
spond to (b, ¢) with no period-two attractors. The
gray regions correspond to (b, ¢) with one or two
stable period-two attractors, as it is shown in the
figure. All the period-two regions obtained in any
isoperiodic diagram (for different initial conditions
Xop), for t = 2, are within the gray regions of Fig. 8.

It is important to point out that the Fig. 7 was
done by iterating (1) and verifying the period p of
the obtained orbits, whereas Fig. 8 was done con-
sidering the stability of the fixed point of the map
(1) by using Eq. (12).

Four points showed by the letters A, B, C, D
in Fig. 7 were chosen to analyze the basins of at-
traction. For each of these points we studied their
basins of attraction and the stability of the cor-
responding solutions of Eq. (11). To do that, we
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Fig. 9. (a) Graphical solution of Eq. (10), for b = 3.3 and ¢ = 0.02, showing two stable fixed points and their basins of
attraction. The function plotted with thin line represents the derivative of Eq. (10). (b) KLM attractors with the same

parameters of (a), for different initial conditions.

computed two kinds of figures (Figs. 9-12) intro-
duced in the next paragraphs.

Each part (a) of Figs. 9-12 shows the depen-
dence of three different functions on the position
X. So, the dark black line represents the left side
of Eq. (10), for each g and b chosen in Fig. 7. Then,
the straight gray line represents the identity func-
tion and the dashed line represents the left side of
relation (10), that is, the derivative of the left side
of Eq. (10) with respect to the position X. Fur-
thermore, in the part (a) of these figures, the fixed
points, X j*, are localized by the crosses between

the straight gray line and the dark black one. To
verify if this fixed point X7* is a stable or an unsta-
ble one, we look at the value of the function shown
by the dashed line. Thus, it is possible to identify
the period-two fixed points of Eq. (1) and their sta-
bility, that is, whether the condition (12) is satisfied
or not.

Complementarily, each part (b) of these fig-
ures represents the attractors of (1), for the same b
and g considered in each part (a), that is, the X,
values assumed by the orbits (after the transient)
for each indicated initial condition Xy. Thus, in
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(a) Graphical solution of Eq. (10), for b = 3.5 and ¢ = 0.05, showing the fixed point X2* and its basins of attraction.

Fig. 10.

The function plotted with thin line represents the derivative of Eq. (10). (b) KLM attractors with the same parameters of

(a), for different initial conditions.

these figures, it is possible to identify the basins of
attractions.

The KLM iterated for parameters correspond-
ing to the point A in Fig. 7(a) has two period-
two stable fixed points X2* and X** indicated in
Fig. 9(a). In this figure, the basins of attraction
of these two stable points can be identified by the
huge black and black lines, respectively, that show
the set of initial conditions whose orbits reach one
of the two fixed points. The two X, values assumed
(after the transient) by the orbits associated to each
fixed point can be seen, in Fig. 9(b), for each initial
conditions Xj.

Similarly, for the point B, in Fig. 7(a), we ob-
tain Fig. 10 with only one period-two stable fixed
point, X2*. Here, however, there is also a chaotic
attractor. The basins of these two attractors are
shown in this figure, and the corresponding X,
values are shown in Fig. 10(b).

The coexistence of these two basins of attrac-
tion may lead to transfer crises. This happens when,
for increasing the control parameter b, the basin as-
sociated with the chaotic attractor became part of
the basin associatetl with the periodic one. So, ini-
tial conditions, Xy, initially in the basin associated
with the chaotic attractor but very close to the edge
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which contains all initial condition (b).

between these two basins, goes to the basin of the
periodic attractor. Thus, increasing b, chaotic at-
tractors are suddenly transferred to periodic ones.
This transfer crisis can be seen by comparing bi-
furcation diagrams computed for b near the criti-
cal values [Baptista & Caldas, 1993, 1996]. Thus,
this crisis has characteristics different from other
crises also observed in the KLM [Baptista & Caldas,
1996] or in other low-dimensional systems [Pomeau
& Manneville, 1980; Grebogi et al., 1982].

By increasing b further, we can transfer all the
chaotic attractors to periodic ones. This can be seen
in Fig. 11, obtained for the point C in Fig. 7(a).
Accordingly, in this case, Eq. (1) is not dependent

(b)

(a) Graphical solution of Eq. (10), for b = 3.5 and ¢ = 0.1, showing the stable point X2* and its basin of attraction,

on initial conditions and there is only one stable
attractor.

Finally, for the point D in Fig. 7(a), there is
only one stable periodic finite attractor, X2*. How-
ever, here, since b and ¢ satisfy the condition (4),
there is also a non-finite attractor. Thus, Fig. 11
shows the basin of X2* as well as X intervals with-
out finite attractor.

5. Conclusions

In this paper we considered the Kicked Logistic Map
(KLM) [Baptista & Caldas, 1993, 1996], which is
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Fig. 12.  (a) Graphical solution of Eq. (10), for b = 3.55 and ¢ = 0.125, showing the main regions where the KLM is not
limited. In (b), empty spaces correspond to initial conditions for which the attractor is not limited.

the Logistic Map perturbed by a sequence of kicks
with a constant amplitude, ¢, and a period, . We
presented a global view of how the KLM attractors
depend on the control parameters, ¢, b, and t. To
show that, we made two kinds of diagrams, obtained
by varying the Logistic control parameter, b, and
the kick amplitude, g, for each fixed discrete kick
period ¢.

One kind of the presented diagrams show the
periodic, chaotic, and the non-finite attractor re-
gions in the parameter space b x q. These regions
form complex and highly interleaved structures in

the parameter space. As a matter of fact, frac-
tal structure evidences were observed in broken bi-
furcation diagrams, that is diagrams with intervals
without finite attractor.

The other kind of diagram shows, in the same
bx g parameter space, the isoperiodic regions. Some
important characteristics of these isoperiodic dia-
grams are the shrimp-shaped isoperiodic areas,
which appear aligned, along one direction, and a
“structure-parallel-to-structure” of these areas.
These results are similar to those reported for other
unimodal two-parameter non linear maps [Gallas,
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1993, 1994]|. Furthermore, magnifications show no
structure-within-structure characteristic of fractal
systems [Cvitanovic, 1989].

From the isoperiodic diagrams we presented a
global view of the sequences of the period-doubling
and inverse cascades [Dawson, et al., 1991], as the
b and ¢ parameters change. Thus, the relevant crit-
ical attractor changes may be investigated in the
appropriate bifurcation diagrams figured out from
the corresponding roads observed in the computed
isoperiodic diagrams. Though period doubling can
be obtained by increasing either b or ¢, the same
does not occur for inverses cascades that are ob-
tained only by increasing gq.

The period-p fixed points, p = Nt (N integer),
could be determined by solving polynomial equa-
tions of order 2Vt. The stability of these solutions
can be determined from a condition obtained by lin-
earizing the KLM in the fixed point neighborhoods.
As an example, we solve the polynomial equation
for ¢ = 2 and determine the period-two stable re-
gions in the parameter space b X ¢q. This result ex-
plains the shape of the p = 2 regions obtained in
the isoperiodic diagrams for that ¢ value.

The KLM has basins of attraction of finite
(either chaotic or periodic) and non limited attrac-
tors. The coexistence of two basins, one for a
periodic and other for a chaotic attractor, can cause
the appearance, in critical regions of the space pa-
rameter, of a type of crisis named transfer crisis
[Baptista & Caldas, 1996; Yamaguchi & Sakai,
1983]. This happens when, varying the control
parameter b, the basin associated with the chaotic
attractor became part of the basin associated with
the periodic one.
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