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Dynamics of the two-frequency torus breakdown in the driven double scroll circuit
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In this work we numerically identify three scenarios for the two-frequency torus breakdown to chaos, using
the driven double scroll circuit, with varying driving parameters. Two of these scenarios follow the Curry-
Yorke route to chaos. For one scenario, we identify the transition to chaos through the onset of a heteroclinic
tangle and its heteroclinic points. In the other scenario, chaos appears via period-doubling bifurcations. The
third scenario is through the type-Il intermittency for which a quasiperiodic torus grows in size, breaks by
touching external saddle points, and forms a heteroclinic saddle connection. These dynamic scenarios have
distinct structure evolutions: for the Curry-Yorke route, chaos appears softly and alternates with phase locking,
while, for the type-Il intermittency, chaos appears abruptly and is preserved for a large range of the varying
driving parameter] S1063-651X98)05210-6

PACS numbds): 05.45+b

I. INTRODUCTION logical transitions for the two-frequency torus breakdown to
chaos.

The routes to chaos, found in nonlinear systems by vary- In this paper we report dynamical scenarios for the route
ing control parameters, are important because they are uséd chaos found numerically for a driven electronic circuit.
to predict the transition from regular to irregular oscillations Our investigation is motivated by the relevance of the ob-
[1,2]. One well known example of route to chaos is the infi-served two-frequency torus breakdown to the general dy-
nite sequence of period-doubling bifurcatid8s4], universal  namical systems theory.
for a large class of one varying parameter systems. We deal with Matsumoto’s electronic circyil6] (also

Another possible route is the destabilization of the threeknown as Chua’s circuitperturbed sinusoidally. This is a
frequency torug5]. This route has a dynamical scenario, simple nonlinear circuit with a piecewise-linear resistor that
through which chaos can appear just after the third Hophas been studied because of its electronic simplicity and va-
bifurcation, i.e., after the appearance of a third frequencyiety of nonlinear phenomena. The driven versions of this
into the systenf6,7]. In this case, an arbitrarily small pertur- circuit have been extensively investigated, and many bifur-
bation can lead to the destabilization of a three-frequencgation phenomenénot observed in the nonperturbed cirguit
oscillation. However, for other scenarios, a three-frequenchave been foun@l17-23.
quasiperiodic movement can also persist under a large per- The onset of chaos by torus breakdown in Matsumoto’s
turbation [8—10]. Indeed, chaos is more likely to appear circuit, describing a chaotic attractor known as double scroll
when there is a higher number of frequendi@b [24]), and driven by a sinusoidally perturbation, was inves-

Moreover, chaos can also occur directly through a destatigated in Refs[17,20. In this case, this circuit is known as
bilization of a two-frequency torus as proposed by Curry andhe driven double scroll circuit. However, no topological or
Yorke [11,12). This general route happens through differentdynamical analysis is presented, and until now the scenarios
scenarios leading to typical folds and wrinkles in the brokerfor the appearance of chaos by torus breakdown in the driven
torus. In this particular situation chaos can appear for twodouble scroll circuit remains unknown.
parameter families of maps of the plane, through the desta- We show that chaos appears by the Curry-Yorke route
bilization of a two-frequency phase-locked trajectory through period-doubling or phase-locking scenarios. We also
[13,14. After chaos appears, topological alterations are reshow that chaos preceded by phase locking is due to the
sponsible for the loss of the smoothness of the two-frequenciransversal cross of the strong stable foliations with the
torus. In the same route, chaos also emerges from twastable manifolds of the nodes in the phase-locked trajectory.

frequency torus through the period-doubling scenatis). In addition, we find that chaos, in the considered driven
In this case, a phase-locked band chaos comes into sight withircuit, can also appear through type-Il intermittefizg]. In
a rational rotation number. this paper, a dynamical scenario for this destabilization is

Most of the literature about the two-frequency torusproposed, where the two-frequency quasiperiodic torus loses
breakdown does not address the topological transitions inits stability by touching external saddle points that form a
duced by the driving parameters. These transitions are diffineteroclinic saddle connection. This nonlinear mechanism
cult to recognize in dissipative systems since the homoclini§25] is responsible for the reinjection necessary for the exis-
and heteroclinic tangles contract along the stable directiortence of type-Il intermittency. Thus, in the driven double
Reference§13,14 contain an overview of the possible topo- scroll circuit, chaos appears in two observable ways, charac-

terized by distinct Lyapunov exponent evolutions and topo-

logical changes as a driving parameter is varied. For the

*Present address: Institute for Plasma Research, University dEurry-Yorke route, these transitions occur softly in contrast
Maryland, College Park, MD 20742. with the hard transitions associated to type-Il intermittency.
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R . whereV is the amplitude andlis the frequency.
We can simulate the circuit of Fig. 1 by applying Kir-
choff's laws with the resulting state equations
Lg YT G2 Vo G dVe, 1 _
q’t\ | R ClT = ﬁ(ch_Vcﬂ —inr(Ver),
r i
, § \ dVe, 1 .
© t ' CZT:§(V01_VC2)+|L1 ©)

+

FIG. 1. The double scroll circuit. The electronic value compo-
nents used in this paper a@,=0.0052 uF, C,=0.056 uF, R )
=1470Q, L=9.2 mH, andr=10 Q. whereV;, andV, are the voltage across the capacitGrs

andC,, respectively, and, is the electric current across the
Details about the driven double scroll circuit are preseninductorL.
in Sec. Il. In Sec. Il we dynamically analyze the Curry-  To avoid numerical problems we rescale E(@.gener-
Yorke route to the onset of chaos in this circuit. In Sec. IVating dimensionless variable¥ {;,V¢,,i|) and parameters
we present the scenario for which chaos appears, in the sant€,,C,,L,R). The dimensionless values of these param-
circuit, through a type-ll intermittency, and conclusions areeters, calculated in terms of the real valdgien in Fig. 3,

di,
LE: —Veo—q(t),

given in Sec. V. are 1€, =10.0, 1€,=1.0, 1L =6.0, and 1R=0.6. The
initial conditions areV.;(0)=0.152 64, V.,= —0.022 81,
Il. DRIVEN DOUBLE SCROLL CIRCUIT andi (0)=0.381 27, and the step size wds=0.005. For

integrating Egs(3) we used the fourth-order Runge-Kutta
The double scroll circuif16] is shown in Fig. 1 with its  algorithm.
three energetic components: two capacit@sandC,, and For these parameter simulation values, and null perturbing
one inductor,L. It also has two resistor® andr, and the amplitudeV=0, the circuit behaves chaotically. As the cir-
nonlinear resistoRy, , whose characteristic curve is shown cuit is dissipative, its dynamic variable¥{,;, Vc,, andi,)
in Fig. 2. evolve on a chaotic attractor called double sciab).
The Ry. characteristic curve is mathematically repre- One of the most known tools for measuring chaos is the
sented by Lyapunov spectrum formed, in this case, by three Lyapunov
exponentsh,. Thus, for the considered system, depending
inr(Ve1) =MV +0.5(my—mg)| Ve + Bpl on the values ofX;,\,,\3), we can characterize the nature
of the attractor as follows: €,0,—), a chaotic attractor;
+0.5(mo—my)|Vey — By (1) (0,0-), a quasiperiodic movement on a torut?;
(0,—,—), a limit cycle; and ,—,—), a fixed point. We
computed the three Lyapunov exponents, but we present
only the first one, because our main interest is to determine
how chaotic the system is. The Lyapunov exponents were
computed by applying the Eckmann-Ruelle algorithm
[12,26, with a transienn=100, and a time stedt=0.005
during an integration timé=3882 which corresponds to
~700. The Gram-Schmidt orthonormalization was applied
every ten steps. Due to the imprecise computation of these
exponents, we consider the first Lyapunov exponent positive

if A;=0.005, within the numerical precision considered.
m, All results presented in this paper are the product of nu-
B

The driving force applied across the resistois repre-
sented by

q(t)=V sin(27xft), (2

ine(Ver)

merical simulations. Complementary information about the
B considered experiments are given in R&fl].

it

lll. SOFT APPEARANCE OF CHAOTIC MOTION

A dynamical overview of the Curry-Yorke route can be
o seen(for a rising frequency and a fixed amplitud®) in the
bifurcation diagram of Fig. @), and by analyzing the first
Lyapunov exponent of Fig.(B). These figures show phase
locking of quasiperiodic tori, onset of chaos, and further
phase-locking alternating with chaotic motion. For the con-
sidered parameters, the Lyapunov exponent increases slowly
FIG. 2. The characteristic curve of the nonlinear resiftqr,  With f. For f close to 0.1978, the exponent reaches a value
whereB,=1.0,mp=—0.5, andm;=—0.8. A=0.05, after which phase locking is no longer observed.
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FIG. 5. Poincaresection of the chaotic attractor férindicated

FIG. 3. (A) A bifurcation diagram for a rising amplitudeand a by As in Fig. 3.
fixed driving amplitudeV=0.20, showing that phase-locked re-
gions come into sight within quasiperiodic regimes and also in the;onfined to the region previously occupied by the previous
chaotic reg_imes. We indicated five re_gion_s on which we \{Vi” focussigple quasiperiodic torus. Only for higher valuesf afoes
our analysis. InA; we have a quasiperiodic attractor, &% @  the trajectory escape the toroidal surface neighborhood. Be-
period-17 phase-locked attractor which coexists with other pé¥iod- ¢5,se of these characteristics, we refer to this transition as a
attractors, inA; andA, we have the onset of chaos through phase—soft onset of chaos.
locking, and inA_\5 we have one of the regions where we find weak In Fig. 4C) we see that the smooth and closed quasi-
g??ﬁ?'(_?_:];thr?]2;?;%’?232?&350\?%2 ioi t5he same parameters periodic attractor{in Fig. 4(A)], after phase-lockingFig.

’ nrel e 4(B)] and the onset of chaos, becomes a folded and rough
attractor. Further amplifications of these folds reveal a fractal
structure, and also the stretching and folding characteristics
of chaotic regimes. In this case, chaos can be better recog-
nized by analyzing the geometric structure of the attractor
than by computing the Lyapunov exponent. Consequently,
Yhis procedure could be considered when the first Lyapunov
coefficient values cannot be distinguished from zero.

However, in the case of Fig.(B), a small amplification
already reveals the mentioned geometric properties. This fig-
ure shows also a phase-unlocked, nine-band, chaotic attrac-
Yor. The evolution of the region is given by the regiom
. , , ‘ +1. Thus, we clearly see that region 2 is the region 1 folded
| i-0.19500 - 1 t=0.19600 12844 | along a direction transversal to the torus, and stretched along
P “6 o |7 a direction tangent to the torus surface.
ya 73 . 18 The observed folding and stretching processes and the

4 15 11 computed Lyapunov exponent assure us that the trajectory is
It o2 % chaotic. However, we want to see how the transition from a
[ 10 phase-locked trajectory to the chaotic trajectory happens. For
“ (A) 14 ®) this purpose we analyze the attractor witenw the used nu-
‘ ‘ - merical precisiopwe first observe the onset of chaos. In Fig.
23 - f=0.19683 . ¥ - =019700 77 5 we see a toroidal-shaped attractor, which actually is cha-
P P A otic. Although the Lyapunov exponent is positive, its value is
- A o 2 very small. Thus, in this example, chaos should not be char-
18t / L . acterized by analyzing only this exponent, and a geometric
r S 17 interpretation of this toroidal-shaped attractor must also be
£ i5 considered for characterizing the transition to chaos.
(©) &2 (D) B R
13 . . ‘ . . efore the onset of chaos shown in Fig. 5 happens, the
060 080 100 120 v period-17 phase-locked attractor is the only attractor ob-
- . served. To examine the influence of this attractor on the tran-

FIG. 4. (A) Quasiperiodic two-frequency torugsegion A; in sition to chaos, in Flg 6 we examine the amplification of the
Fig. 3, (B) Period-17 phase-lockingegionA, in Fig. 3), a chaotic ~ box in Fig. 5, particularly the geometry nearby the unstable
attractor with many foldgregion A; in Fig. 3, and a nine-band period-17 attractor.
chaotic attractofregionA, in Fig. 3). Vq;=—1.5. To guide that, let us introduce a mappigthat models

The four regions indicated in Fig.(&), denoted byA,,
A,, A3, andA,, have their corresponding attractors shown
on the Poincarsections of Fig. 4. Thus, Fig(A) shows the
quasiperiodic attractor indicated By in Fig. 3(A). Figure
4(B) shows the period-17 phase-locked attractor indicated b
A, in Fig. 3(A). Finally, Figs. 4C) and 4D) show the cha-
otic attractor indicated bz andA, in Fig. 3(A).

As we see in Fig. @), after the onset of chaos, the first
Lyapunov exponent increases slowly with Additionally,
the chaotic trajectory obtained in the Curry-Yorke scenario i
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FIG. 7. (A) The phase-locked torus with four saddle points
(crossesand four nodegfilled circles. (B) The saddle points ap-
proaching the nodes in an uncounterclockwise direction. Inside the
2.29_200 1.2‘10 1.2'20 1_2‘30 da;hgd box we see thej stable maplfold of the node, the stror?g stable
v foliation W° (marked with double lings and the unstable manifold
[e73

of a saddle poinW". (C) Transversal crossing ofv" with W°,
FIG. 6. Magnification of Fig. 5 showing a regidiarge gray  creating a horseshoe.
line) X, that after 17 Poincarsection crossings is transformed into
the regionX,;. SoX, stretches along the unstable manifold of the the appearance of a horseshoe around the 17 points of the
point P47, and folds along the stable manifold of this point. Within period-17 trajectory.
the box we see a magnification of the regdyy. To illustrate the geometrical scenario for the onset of
i chaos from a periodic orbitsoft transition), suppose that
the trajectory in the Poincasection of Fig. 5. If we consider instead of a period-17 orbit we have a period-4 phase-locked
each period-17 unstable point representedRy (with n trajectory, as shown in Fig.(&). In this figure, we represent
=1,...,17), then,G*(P,)=P,, and G(P,)=P,.1. In  the phase-locked period-4 trajectofthe nodes by circles,
addition, for the case shown in Fig. 5G is a and the saddle points by crosses. The strong stable foliations
counterclockwise-oriented chaotic rotation. This means thagre the stable manifolds both of the saddles and of the nodes
given a pointP in between, for example?, and P, for-  in the transversal direction. A strong stable foliation of one
ward iterations oP by G'’ leads toP,,. The reason for the node (the lower one in this figueis indicated by small
existence of this chaotic-oriented rotation will be explaineddouble lines in Fig. 7.
later in this paper, and is a consequence of the geometric The existence of the saddle points are due to a saddle-
patterns behind the onset of chaos. node bifurcation that creates the phase-locked trajectory,
To identify the chaotic characteristics of the trajectoryfrom a quasiperiodic torus. Just before the phase-locked tra-
shown in Fig. 5, in Fig. 6 we plot the region around thejectory loses its stabilitythat happens in the driven double
points P, and P,;. The points in the large black region scroll circuit due to changes in the driving parametecs,V)
denoted byX,, when iterated byG'(X), rest in the large we observe that the saddle points approach the nodes as
black region denoted b;;. The small box in this last re- shown in Fig. 7. Eventually, the saddle points and the nodes
gion is magnified and we see that the regiyy is in fact  collide (an inverse saddle-node bifurcatjcend then a qua-
composed of two regions. The regi®g under the mapping siperiodic torus is created.
G suffers a stretching along the unstable manifl and a However, another situation may arise, the onset of chaos.
fold along the stable directiomV® (corresponding to the In this case, the unstable manifold of one saddle pldiati-
strong stable foliation, represented in Fig, #ansversal to cated in Fig. B) by W"] transversally crosses the strong
W at the pointP,;. The onset of chaos is due to the appear-stable foliationindicated in Fig. ¥8) by W] of one node as
ance of a horseshoe in the vicinity of each of the 17 pointshown in Fig. TC) [a magnification of the box in Fig.(B)],
that compose the period-17 orbit, the skeleton that sustaingeating a horseshoe around this point. The existence of this
chaos. scenario has been theoretically predicted in RES).
Indeed, the chaotic torus that we see in Fig. 5 lieg\h Note that the saddle points in Fig(B) go toward the
and the period-17 orbit is one of the infinite unstable periodicnodes in a noncounterclockwise rotation. As a consequence,
orbits that a chaotic system possesses. However, this is their unstable manifolds that appear with chaos and cross the
very special orbit because there is a heteroclinic orbit constrong stable foliation are counterclockwise oriented. This
necting this periodic orbit, and thus there is chaos around thisauses a counterclockwise-oriented chaotic trajectory to ap-
period-17 orbit. pear. In Fig. 5, we show a case where the trajectory evolves
For a varying driving parameter, we see that chaos actun time following a counterclockwise-oriented rotation.
ally appears from a period-17 phase-locked trajectory that islowever, we also have observed chaotic noncounterclock-
seen in the Poincargection as 17 nodes. Between each twowise oriented rotation, in the driven double scroll circuit. In
of these nodes, there is one saddle point. The unstable marthis case, the approach of the saddle points toward the nodes
folds of these saddle points direct the trajectory toward theseccurs in a counterclockwise direction. This oriented rotation
nodes. The manner in which the unstable manifolds of thesdisappears for a parameter far from the critical value for
saddle points cross the stable manifolds of the nodes causesich the transition to chaos occurs.
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FIG. 8. (A) Bifurcation diagram showing coexistence of attrac-  FIG. 10. (A) Bifurcation diagram showing the two-frequency
tors and the onset of chaos through period doubling, by a risingorus creatior(via Hopf bifurcation and its destruction, generating
driving frequencyf and a fixed driving amplitud® =0.20. (B) The chaotic behavior, by a rising driving frequentgnd a fixed driving
first Lyapunov exponenk, for the same parameters O&). V¢, amplitude V=0.28. (B) The first Lyapunov exponent, for the
=-15. same parameters ¢A). Vo= —1.5.

After the onset of chaos, phase-locked trajectories mighgcroll circuit (V=0). We see two main peaks, one corre-
still appear due to the occurrence of a saddle-node bifurcasponding to the characteristic frequenfy=0.29[23] and
tion. Furthermore, chaos can also appear through an infinitthe other, indicated by,, corresponding to the frequency
sequence of period-doubling bifurcations, as seen in Fig. 8with which the trajectory jumps between the two rolls pre-
After that, chaotic bands appear with very small Lyapunovsented in the double scroll attractfi6]. For f=0.185 00
coefficients. The Lyapunov exponent increases its valuand V=0.20, in Fig. 9B), the peaks af, and f. are de-
when the bands merge in only one chaotic band. In Fig. 8 wetroyed and a peakcorresponding to the driving frequency
also see the coexistence of two attrac@3] indicated by  appeargthe manner in which they are destroyed can be seen
attractors 1 and 2. in Ref. [23]). Increasing the frequency tb=0.195 00 an-

The spectral analysis of the soft onset of chaos is showather incommensurable frequenéy appears and thus we
in Fig. 9. Figure 9A) shows the spectrum for the double have a quasiperiodic movement. In FigDJ the frequencies

f and f, become commensurable, and so phase locking oc-

f, ; V=0 curs. A low amplitude broadband appears in Fi¢E)9 re-
¢ A vealing a chaotic attractor, also observed in Fig§) &nd
> @ 9(G). Note that Figs. 8)—8(F) correspond respectively to
=0.18500 Figs. 4A)—4(D).
(B)
f . -
f2 2, =0.19500 IV. ABRUPT APPEARANCE OF CHAOTIC MOTION
o 2121, 2t © .
F t=0.19600 The abrupt appearance of chaos, via two-frequency torus
2 =0. ) . L
@ Jt JL JL\ D) breakdown, has been investigated through numerical integra-
% | J tion of Egs.(3), for a fixed driving amplitudé/=0.28. Thus
e 1=0.19653 Fig. 100A) shows a bifurcation diagram of the variaiMg,,
n N B when the trajectory crosses a Poincasection atVc,
£20.19700 = —1.5, as a function of the driving frequendy,The abrupt
) appearance of chaos, seen in this figure, is confirmed by the
A “ first Lyapunov exponenk [Fig. 10B)]. Chaos first appears
WW #=0.20000 for f=0.168 97, leading ta.>0.
" © In this bifurcation diagram, there are no periodic orbits
0.0 0.1 0.2 0.3 0.4 after the onset of chaos. In addition, the first Lyapunov ex-
frequency ponent has a large value at the onset of chaos, which is
FIG. 9. Power spectra of the time evolution of the variayg. ~ Preserved by increasing the frequericy
Spectra of the nonperturbed circui#) and for varying driving For increasing values dfandV fixed, in Fig. 11 we see a

frequency and fixed driving amplitudé=0.20; phase locking in ~sequence of four ﬁ_gU[GS Sh'OWing the modifications in the
(B), quasiperiodic oscillation ifC), phase lockingD), and chaos attractor on the Poincarsection atVc;=—1.5. The two-
in (E), (F), and(G). frequency torus T?) is created after a supercritical Hopf
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o FIG. 12. Angular period-2 return map for two values of the
FIG. 11. (A) A quasiperiodic torus Tfor f=0.166 00.(B) The parametef indicated in figure. This is evidence that, increasing

four-sided quasiperiodic folded torus for the critical paraméter he torus grows in size, approaching two period-2 saddle points.
=0.168 99.(C) The destruction of the torus, leading to a type-ll

intermittency. (D) A chaotic attractor with a heteroclinic saddle

chaos appears. These saddle points have two different un-
disconnection foif =0.170 00.V=0.28 andV;= —1.5. PP P

stable manifolds. Along one unstable manifold of the saddle

bifurcation. In this situation, before the onset of chaos, thé?0int the trajectory is ejected outside the polygon, causing a
torus is a deformed circle with no folds or cuspides, aschaotic burst, characteristic of intermittent regimigl].
shown in Fig. 11A) ( f=0.166 00). However, increasing Along the other unstable manifold the trajectory is directed
the frequency td =0.168 99, the torug? grows in size and 10 the nearest saddle point in the counterclockwise direction,
folds in four parts resembling a four-sided polygfFig. i.e., G*(cy+ €) leavesc, to ¢, for example.
11(B)]. The torus breaks as shown in Fig. (C1 (f The angular frame shown in Fig. @) is used to locate
=0.169 00) leading to the appearance of type-lI intermit-the_four folds in an angular space. So, in Fig. 12, the angular
tency [21]. This causes the trajectory to evolve spirally P€riod-2 return map shows that before the torus bredks (
around the previously existing repelor focus point, localized™ 0-168 00) there is no angular two period-2 fixed points as
close to the origin of the angular frame in Fig.(BL Further ~Shown by the large black lin@lthough the large line seems
increasing the frequency, we can hardly recognize the previ© touch the identity straight line, it does fotlowever, just
ous existing torugFig. 11(D)]. befpre th_e torus_ breaksf€0.168 96),_vv_e_ see thz_it two
In Fig. 11(B) the four folds of the T torus can be recog- period-2 fixed points are formed by an infinitesimal increase
nized by the numbers 1, 2, 3, and 4. These folds are agf the parametef.
proaching four invisible saddle pointwhose positions could _ Figure 13 shows a sketch of the flow of the mapp@r
be determined by introducing nojseeach pair of saddle We see in Fig. 13\) the stable two-frequency torus and the

points represents a period-2 basic cycle. So, in the vicinity of
the fold 4, there is an invisible basic cycle that crosses the / (A) \j/ (B)
<\4. \ T~
\ 1
[]
A6
/ Wl
L]
/]

section again near the fold 2. The same occurs to the other
folds, and the cycle crosses from fold 3 to fold 1. Along the
torus, not yet destroyed, a quasiperiodic trajectory is coun-
terclockwise oriented with a winding numberw(
=0.48G . . .) close to the rational fractiow=3Z. Twelve
is the number of the trajectory rotations along the torus to go
back near the same point, taking 25 complete poloidal
cycles.

In Fig. 11(C), after passing near each saddle point, the
trajectory crosses this Poincasection two times before re-
turning to the same saddle point. We can consider the flow \ >
on this section as a mappin®. So, if ¢, where n ) / W
=1,...,4 are thesaddle points, thei®?(c,)=c,, G(c,) 7 /\

As a matter of fact, the laminar spiral trajectory is a four- /\
spiral trajectory, which means that the trajectory visits one of
the four spirals each time . These spirals evolve approaching FIG. 13. The geometry behind the torus breakdown. In this fig-
the saddle points asymptoticallfFig. 11C)]. In fact, each ure we see the flow of the mappi®f for the stable two-frequency
spiral tends to one of the four corners of the polygon. Theseorus (A) and for its breakdown forming the heteroclinic saddle
corners, indicated by numbers, reach the saddle points wheamnnection(B).

=c,, andG(cz)=c;.
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‘ P ' band appears. This is different from the soft onset of chaos
JL 1=0.16000 for which a large parameter variation is required in order to
: ‘ : ) make these chaotic bands noticeable.
‘#—//)\i\\—& =0.16600
f, 21,
A i L = V. CONCLUSIONS
f 2 £=0.16880
s o ot-af Sf,k We have numerically analyzed the oscillations and the
8 L2 U — — © onset of chaos induced in the sinusoidally driven double
g 1=0.16890 scroll circuit. For varying driving parameters, the attractors
CL% A L . ©) are ider_1tified_ by power spectrur_n analyses, and by computing
' ‘ ' bifurcation diagrams and the first Lyapunov exponent. We
1=0.16897 also describe topological changes due to the onset of chaos
(E) through two-frequency torus breakdown.
' ‘ ' We show that in the driven double scroll circuit chaos can
WW =0.17000 appear directly through the breakdown of a two-frequency
o (F) torus when a parameter is varied. Furthermore, we identified
.0 0.1 0.2 0.3

0 0.4

three possible scenarios for this transition: two in the Curry-
Yorke route, and one through type-Il intermittency.

FIG. 14. Sequence of power spectra, indicating phase locking First, we find that, for the system considered in this work,
(A), quasiperiodic two-frequency tof(B), (C), and(D)], onset of  the torus can softly break to chaos through the route of Curry
chaos(E), and a large chaotic bar(#). and Yorke[11]. One scenario for this route is when phase-

L . locked trajectories become unstable and heteroclinic chaos
surrounding invisible four saddle points. Then the torus

LS X . - ““appears, as generally proposed in R&8]. Moreover, in this
grows in size, folding and touching the four saddle points..o e we identify the geometfa transversal crossing of the
After the torus touches these poirftsig. 13B)], it is no ty g b J

I | . its breakd h read " strong stable foliation with the unstable manifold of a saddle
ondgdelrcosedsgnce Its r'eabl owr:j fas areﬁ yocclg);e eddl oint) in the vicinity of the heteroclinic pointthe phase-
saddle points become visible and form & heteroclinic sa cked trajectory that loses its stabilityThis is difficult to
connection[25]. This heteroclinic saddle connection is the

. . : . realize for a dissipative system like the driven double scroll
nonlinear mechanism responsible for the chaotic burst an

SR ) ; ircuit. Second, another identified scenario for the onset of
reinjection around the repelor focus, typical of type-Il inter- .p,o s in the Curry-Yorke route is the period-doubling bifur-
mittent behaviof21].

.- L cations, like for instance for the drivgnn junction passive
After the heteroclinic saddle connection is created, furthe esonators circuif15].

increasing the frequency generates the heteroclinic saddle We have recently identified another scenario for the onset

disconnection where there is no longer the spiraling laminag; <405 in the analyzed circyi21], namely, the abrupt ap-

behavior of the trajectory around the repelor focus. In fact 1 . .

each of the four sJ iralsyturns into four IZtrai ht lines Thispea_rance of chaos through t.ype_-ll |.nterm|ttency. I_n this soe-
P 9 ' nario, a two-frequency quasiperiodic torus loses its stability

means that, after the trajectory is reinjected around the rep%—y touching the saddle points and forming a heteroclinic

lor f'ocus', it approaches the saddle p_oin.ts along an OrienteQaddle connection. We identify this as the nonlinear mecha-
straight line, and there is no more spiraling. . nism responsible for the reinjection of the trajectory, around

oo I 1 ) fhe repelor focus that produces the laminar phase of the
are indicated in Fig. 1®8) by W, and those responsible for type-Il intermittency.

the heteroclinic saddle connectigan orbit in G? that con- These identified two-frequency torus breakdowns to
nects the two period-2 saddle pointre indicated bYVj.  chaos, for a varying parameter, have two distinct dynamic
So the unstable manifold of the saddle poirfiridicated in  characteristics. Chaos appears softly in the Curry-Yorke
Fig. 13A)], Wi(1), is thestable manifold of point 3indi-  route, through phase-locking and period-doubling scenarios,
cated in Fig. 12B)], W§(3). This heteroclinic loop is also and after the onset of chaos, phase-locking is again observed
called a Poincar@omoclinic contouf27]. due to a saddle-node bifurcation. On the other hand, via

Amplifications of regions in the vicinity of points 1-4 type-Il intermittency, chaos appears abruptly and is pre-
show that, in fact, we have a horseshoe surrounding thesserved for a large range of the varying parameter. Further-
points due to transversal crossings betwéigh and W°. more, the two-frequency torus breakdown preceded by a
However, for the sake of simplicity we have not shown theseorus doubling, as reported in Ref8,29 for other sys-
crossings in Fig. 13. tems, has not been observed in this work.

In Fig. 14 we see a sequence of power spectra for a limit Generally, the Curry-Yorke route has another possible
cycle [Fig. 14A)] with frequencyf, that suffers a Hopf bi- scenario for the onset of chaos through quasiperiodic two-
furcation with the appearance of a second frequeficy frequency torus breakdowfl4], not yet observed in the
originating a quasiperiodic two-frequency tpFigs. 14B)—  driven double scroll circuit. However, this scenario is diffi-
14(D)] only with frequenciemf+mf, (n,meN). Further- cult to observe since the attractors usually phase lock before
more, in Fig. 14E) we see the onset of chaos, and in Fig.breaking. This happens because one must appropriately
14(F) a large chaotic band. So we see in these spectra that fohoose two parameter variations to maintain the attractor
a very small change in the driving parameter, a large chaotiwith the same irrational rotatiofThus avoiding phase lock-

ﬂequéncy
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ing). We also have studied the case of fixed driving fre-
guency and varying driving amplitude, in which case the
same as above conclusions can be drawn. Finally, the sc
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