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Dynamics of the two-frequency torus breakdown in the driven double scroll circuit

M. S. Baptista* and I. L. Caldas
Institute of Physics, University of Sa˜o Paulo, Caixa Postal 66318, CEP 05315-970 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 3 February 1997; revised manuscript received 6 April 1998!

In this work we numerically identify three scenarios for the two-frequency torus breakdown to chaos, using
the driven double scroll circuit, with varying driving parameters. Two of these scenarios follow the Curry-
Yorke route to chaos. For one scenario, we identify the transition to chaos through the onset of a heteroclinic
tangle and its heteroclinic points. In the other scenario, chaos appears via period-doubling bifurcations. The
third scenario is through the type-II intermittency for which a quasiperiodic torus grows in size, breaks by
touching external saddle points, and forms a heteroclinic saddle connection. These dynamic scenarios have
distinct structure evolutions: for the Curry-Yorke route, chaos appears softly and alternates with phase locking,
while, for the type-II intermittency, chaos appears abruptly and is preserved for a large range of the varying
driving parameter.@S1063-651X~98!05210-6#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The routes to chaos, found in nonlinear systems by va
ing control parameters, are important because they are
to predict the transition from regular to irregular oscillatio
@1,2#. One well known example of route to chaos is the in
nite sequence of period-doubling bifurcations@3,4#, universal
for a large class of one varying parameter systems.

Another possible route is the destabilization of the thr
frequency torus@5#. This route has a dynamical scenar
through which chaos can appear just after the third H
bifurcation, i.e., after the appearance of a third freque
into the system@6,7#. In this case, an arbitrarily small pertu
bation can lead to the destabilization of a three-freque
oscillation. However, for other scenarios, a three-freque
quasiperiodic movement can also persist under a large
turbation @8–10#. Indeed, chaos is more likely to appe
when there is a higher number of frequencies@9#.

Moreover, chaos can also occur directly through a de
bilization of a two-frequency torus as proposed by Curry a
Yorke @11,12#. This general route happens through differe
scenarios leading to typical folds and wrinkles in the brok
torus. In this particular situation chaos can appear for tw
parameter families of maps of the plane, through the de
bilization of a two-frequency phase-locked trajecto
@13,14#. After chaos appears, topological alterations are
sponsible for the loss of the smoothness of the two-freque
torus. In the same route, chaos also emerges from t
frequency torus through the period-doubling scenario@15#.
In this case, a phase-locked band chaos comes into sight
a rational rotation number.

Most of the literature about the two-frequency tor
breakdown does not address the topological transitions
duced by the driving parameters. These transitions are d
cult to recognize in dissipative systems since the homocl
and heteroclinic tangles contract along the stable direct
References@13,14# contain an overview of the possible top
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logical transitions for the two-frequency torus breakdown
chaos.

In this paper we report dynamical scenarios for the ro
to chaos found numerically for a driven electronic circu
Our investigation is motivated by the relevance of the o
served two-frequency torus breakdown to the general
namical systems theory.

We deal with Matsumoto’s electronic circuit@16# ~also
known as Chua’s circuit! perturbed sinusoidally. This is a
simple nonlinear circuit with a piecewise-linear resistor th
has been studied because of its electronic simplicity and
riety of nonlinear phenomena. The driven versions of t
circuit have been extensively investigated, and many bif
cation phenomena~not observed in the nonperturbed circu!
have been found@17–23#.

The onset of chaos by torus breakdown in Matsumot
circuit, describing a chaotic attractor known as double sc
@24#!, and driven by a sinusoidally perturbation, was inve
tigated in Refs.@17,20#. In this case, this circuit is known a
the driven double scroll circuit. However, no topological
dynamical analysis is presented, and until now the scena
for the appearance of chaos by torus breakdown in the dr
double scroll circuit remains unknown.

We show that chaos appears by the Curry-Yorke ro
through period-doubling or phase-locking scenarios. We a
show that chaos preceded by phase locking is due to
transversal cross of the strong stable foliations with
stable manifolds of the nodes in the phase-locked traject

In addition, we find that chaos, in the considered driv
circuit, can also appear through type-II intermittency@21#. In
this paper, a dynamical scenario for this destabilization
proposed, where the two-frequency quasiperiodic torus lo
its stability by touching external saddle points that form
heteroclinic saddle connection. This nonlinear mechan
@25# is responsible for the reinjection necessary for the ex
tence of type-II intermittency. Thus, in the driven doub
scroll circuit, chaos appears in two observable ways, cha
terized by distinct Lyapunov exponent evolutions and top
logical changes as a driving parameter is varied. For
Curry-Yorke route, these transitions occur softly in contr
with the hard transitions associated to type-II intermittenc

of
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4414 PRE 58M. S. BAPTISTA AND I. L. CALDAS
Details about the driven double scroll circuit are pres
in Sec. II. In Sec. III we dynamically analyze the Curr
Yorke route to the onset of chaos in this circuit. In Sec.
we present the scenario for which chaos appears, in the s
circuit, through a type-II intermittency, and conclusions a
given in Sec. V.

II. DRIVEN DOUBLE SCROLL CIRCUIT

The double scroll circuit@16# is shown in Fig. 1 with its
three energetic components: two capacitors,C1 andC2 , and
one inductor,L. It also has two resistorsR and r, and the
nonlinear resistorRNL , whose characteristic curve is show
in Fig. 2.

The RNL characteristic curve is mathematically repr
sented by

i NR~Vc1!5m0Vc110.5~m12m0!uVc11Bpu

10.5~m02m1!uVc12Bpu. ~1!

The driving force applied across the resistorr is repre-
sented by

q~ t !5V sin~2p f t !, ~2!

FIG. 1. The double scroll circuit. The electronic value comp
nents used in this paper areC150.0052 mF, C250.056 mF, R
51470V, L59.2 mH, andr 510 V.

FIG. 2. The characteristic curve of the nonlinear resistorRNL ,
whereBp51.0, m0520.5, andm1520.8.
t

me

whereV is the amplitude andf is the frequency.
We can simulate the circuit of Fig. 1 by applying Kir

choff’s laws with the resulting state equations

C1

dVC1

dt
5

1

R
~VC22VC1!2 i NR~Vc1!,

C2

dVC2

dt
5

1

R
~VC12VC2!1 i L , ~3!

L
diL
dt

52VC22q~ t !,

whereVC1 andVC2 are the voltage across the capacitorsC1
andC2 , respectively, andi L is the electric current across th
inductorL.

To avoid numerical problems we rescale Eqs.~3! gener-
ating dimensionless variables (VC1 ,VC2 ,i L) and parameters
(C1 ,C2 ,L,R). The dimensionless values of these para
eters, calculated in terms of the real values~given in Fig. 1!,
are 1/C1 510.0, 1/C2 51.0, 1/L 56.0, and 1/R50.6. The
initial conditions areVc1(0)50.152 64, Vc2520.022 81,
and i L(0)50.381 27, and the step size wasdt50.005. For
integrating Eqs.~3! we used the fourth-order Runge-Kut
algorithm.

For these parameter simulation values, and null perturb
amplitudeV50, the circuit behaves chaotically. As the ci
cuit is dissipative, its dynamic variables (VC1 , VC2 , andi L)
evolve on a chaotic attractor called double scroll@16#.

One of the most known tools for measuring chaos is
Lyapunov spectrum formed, in this case, by three Lyapun
exponentsln . Thus, for the considered system, depend
on the values of (l1 ,l2 ,l3), we can characterize the natu
of the attractor as follows: (1,0,2), a chaotic attractor;
(0,0,2), a quasiperiodic movement on a torusT2;
(0,2,2), a limit cycle; and (2,2,2), a fixed point. We
computed the three Lyapunov exponents, but we pres
only the first one, because our main interest is to determ
how chaotic the system is. The Lyapunov exponents w
computed by applying the Eckmann-Ruelle algorith
@12,26#, with a transientn5100, and a time stepdt50.005
during an integration timet53882 which corresponds ton
'700. The Gram-Schmidt orthonormalization was appl
every ten steps. Due to the imprecise computation of th
exponents, we consider the first Lyapunov exponent posi
if l1*0.005, within the numerical precision considered.

All results presented in this paper are the product of
merical simulations. Complementary information about t
considered experiments are given in Ref.@21#.

III. SOFT APPEARANCE OF CHAOTIC MOTION

A dynamical overview of the Curry-Yorke route can b
seen~for a rising frequencyf and a fixed amplitudeV) in the
bifurcation diagram of Fig. 3~A!, and by analyzing the firs
Lyapunov exponent of Fig. 3~B!. These figures show phas
locking of quasiperiodic tori, onset of chaos, and furth
phase-locking alternating with chaotic motion. For the co
sidered parameters, the Lyapunov exponent increases sl
with f. For f close to 0.1978, the exponent reaches a va
l*0.05, after which phase locking is no longer observed

-
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PRE 58 4415DYNAMICS OF THE TWO-FREQUENCY TORUS . . .
The four regions indicated in Fig. 3~A!, denoted byA1 ,
A2 , A3 , andA4 , have their corresponding attractors show
on the Poincare´ sections of Fig. 4. Thus, Fig. 4~A! shows the
quasiperiodic attractor indicated byA1 in Fig. 3~A!. Figure
4~B! shows the period-17 phase-locked attractor indicated
A2 in Fig. 3~A!. Finally, Figs. 4~C! and 4~D! show the cha-
otic attractor indicated byA3 andA4 in Fig. 3~A!.

As we see in Fig. 3~B!, after the onset of chaos, the fir
Lyapunov exponent increases slowly withf. Additionally,
the chaotic trajectory obtained in the Curry-Yorke scenario

FIG. 3. ~A! A bifurcation diagram for a rising amplitudef and a
fixed driving amplitudeV50.20, showing that phase-locked r
gions come into sight within quasiperiodic regimes and also in
chaotic regimes. We indicated five regions on which we will foc
our analysis. InA1 we have a quasiperiodic attractor, inA2 a
period-17 phase-locked attractor which coexists with other perioN
attractors, inA3 andA4 we have the onset of chaos through pha
locking, and inA5 we have one of the regions where we find we
chaos.~B! The first Lyapunov exponentl, for the same parameter
of ~A!. That means chaos forl.0. VC1521.5.

FIG. 4. ~A! Quasiperiodic two-frequency torus~region A1 in
Fig. 3!, ~B! Period-17 phase-locking~regionA2 in Fig. 3!, a chaotic
attractor with many folds~region A3 in Fig. 3!, and a nine-band
chaotic attractor~regionA4 in Fig. 3!. VC1521.5.
y

is

confined to the region previously occupied by the previo
stable quasiperiodic torus. Only for higher values off does
the trajectory escape the toroidal surface neighborhood.
cause of these characteristics, we refer to this transition
soft onset of chaos.

In Fig. 4~C! we see that the smooth and closed qua
periodic attractor@in Fig. 4~A!#, after phase-locking@Fig.
4~B!# and the onset of chaos, becomes a folded and ro
attractor. Further amplifications of these folds reveal a frac
structure, and also the stretching and folding characteris
of chaotic regimes. In this case, chaos can be better re
nized by analyzing the geometric structure of the attrac
than by computing the Lyapunov exponent. Consequen
this procedure could be considered when the first Lyapu
coefficient values cannot be distinguished from zero.

However, in the case of Fig. 4~D!, a small amplification
already reveals the mentioned geometric properties. This
ure shows also a phase-unlocked, nine-band, chaotic at
tor. The evolution of the regionn is given by the regionn
11. Thus, we clearly see that region 2 is the region 1 fold
along a direction transversal to the torus, and stretched a
a direction tangent to the torus surface.

The observed folding and stretching processes and
computed Lyapunov exponent assure us that the trajecto
chaotic. However, we want to see how the transition from
phase-locked trajectory to the chaotic trajectory happens.
this purpose we analyze the attractor when~for the used nu-
merical precision! we first observe the onset of chaos. In F
5 we see a toroidal-shaped attractor, which actually is c
otic. Although the Lyapunov exponent is positive, its value
very small. Thus, in this example, chaos should not be ch
acterized by analyzing only this exponent, and a geome
interpretation of this toroidal-shaped attractor must also
considered for characterizing the transition to chaos.

Before the onset of chaos shown in Fig. 5 happens,
period-17 phase-locked attractor is the only attractor
served. To examine the influence of this attractor on the tr
sition to chaos, in Fig. 6 we examine the amplification of t
box in Fig. 5, particularly the geometry nearby the unsta
period-17 attractor.

To guide that, let us introduce a mappingG that models

e

-

FIG. 5. Poincare´ section of the chaotic attractor forf indicated
by A5 in Fig. 3.
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4416 PRE 58M. S. BAPTISTA AND I. L. CALDAS
the trajectory in the Poincare´ section of Fig. 5. If we conside
each period-17 unstable point represented byPn ~with n
51, . . .,17), then,G17(Pn)5Pn , and G(Pn)5Pn11 . In
addition, for the case shown in Fig. 5,G is a
counterclockwise-oriented chaotic rotation. This means
given a pointP in between, for example,P4 and P17, for-
ward iterations ofP by G17 leads toP17. The reason for the
existence of this chaotic-oriented rotation will be explain
later in this paper, and is a consequence of the geom
patterns behind the onset of chaos.

To identify the chaotic characteristics of the trajecto
shown in Fig. 5, in Fig. 6 we plot the region around t
points P4 and P17. The points in the large black regio
denoted byX0 , when iterated byG17(X0), rest in the large
black region denoted byX17. The small box in this last re
gion is magnified and we see that the regionX17 is in fact
composed of two regions. The regionX0 under the mapping
G suffers a stretching along the unstable manifoldWu, and a
fold along the stable directionWs ~corresponding to the
strong stable foliation, represented in Fig. 7!, transversal to
Wu at the pointP17. The onset of chaos is due to the appe
ance of a horseshoe in the vicinity of each of the 17 po
that compose the period-17 orbit, the skeleton that sust
chaos.

Indeed, the chaotic torus that we see in Fig. 5 lies inWu,
and the period-17 orbit is one of the infinite unstable perio
orbits that a chaotic system possesses. However, this
very special orbit because there is a heteroclinic orbit c
necting this periodic orbit, and thus there is chaos around
period-17 orbit.

For a varying driving parameter, we see that chaos a
ally appears from a period-17 phase-locked trajectory tha
seen in the Poincare´ section as 17 nodes. Between each t
of these nodes, there is one saddle point. The unstable m
folds of these saddle points direct the trajectory toward th
nodes. The manner in which the unstable manifolds of th
saddle points cross the stable manifolds of the nodes ca

FIG. 6. Magnification of Fig. 5 showing a region~large gray
line! X0 that after 17 Poincare´ section crossings is transformed in
the regionX17. SoX0 stretches along the unstable manifold of t
point P17, and folds along the stable manifold of this point. With
the box we see a magnification of the regionX17.
at
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the appearance of a horseshoe around the 17 points o
period-17 trajectory.

To illustrate the geometrical scenario for the onset
chaos from a periodic orbit~soft transition!, suppose that
instead of a period-17 orbit we have a period-4 phase-loc
trajectory, as shown in Fig. 7~A!. In this figure, we represen
the phase-locked period-4 trajectory~the nodes! by circles,
and the saddle points by crosses. The strong stable foliat
are the stable manifolds both of the saddles and of the no
in the transversal direction. A strong stable foliation of o
node ~the lower one in this figure! is indicated by small
double lines in Fig. 7.

The existence of the saddle points are due to a sad
node bifurcation that creates the phase-locked traject
from a quasiperiodic torus. Just before the phase-locked
jectory loses its stability~that happens in the driven doub
scroll circuit due to changes in the driving parameters,f or V)
we observe that the saddle points approach the node
shown in Fig. 7. Eventually, the saddle points and the no
collide ~an inverse saddle-node bifurcation! and then a qua-
siperiodic torus is created.

However, another situation may arise, the onset of cha
In this case, the unstable manifold of one saddle point@indi-
cated in Fig. 7~B! by Wu] transversally crosses the stron
stable foliation@indicated in Fig. 7~B! by Ws] of one node as
shown in Fig. 7~C! @a magnification of the box in Fig. 7~B!#,
creating a horseshoe around this point. The existence of
scenario has been theoretically predicted in Ref.@13#.

Note that the saddle points in Fig. 7~B! go toward the
nodes in a noncounterclockwise rotation. As a conseque
their unstable manifolds that appear with chaos and cross
strong stable foliation are counterclockwise oriented. T
causes a counterclockwise-oriented chaotic trajectory to
pear. In Fig. 5, we show a case where the trajectory evo
in time following a counterclockwise-oriented rotatio
However, we also have observed chaotic noncounterclo
wise oriented rotation, in the driven double scroll circuit.
this case, the approach of the saddle points toward the n
occurs in a counterclockwise direction. This oriented rotat
disappears for a parameter far from the critical value
which the transition to chaos occurs.

FIG. 7. ~A! The phase-locked torus with four saddle poin
~crosses! and four nodes~filled circles!. ~B! The saddle points ap
proaching the nodes in an uncounterclockwise direction. Inside
dashed box we see the stable manifold of the node, the strong s
foliation Ws ~marked with double lines!, and the unstable manifold
of a saddle pointWu. ~C! Transversal crossing ofWu with Ws,
creating a horseshoe.
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After the onset of chaos, phase-locked trajectories m
still appear due to the occurrence of a saddle-node bifu
tion. Furthermore, chaos can also appear through an infi
sequence of period-doubling bifurcations, as seen in Fig
After that, chaotic bands appear with very small Lyapun
coefficients. The Lyapunov exponent increases its va
when the bands merge in only one chaotic band. In Fig. 8
also see the coexistence of two attractors@23# indicated by
attractors 1 and 2.

The spectral analysis of the soft onset of chaos is sho
in Fig. 9. Figure 9~A! shows the spectrum for the doub

FIG. 8. ~A! Bifurcation diagram showing coexistence of attra
tors and the onset of chaos through period doubling, by a ris
driving frequencyf and a fixed driving amplitudeV50.20. ~B! The
first Lyapunov exponentl, for the same parameters of~A!. VC1

521.5.

FIG. 9. Power spectra of the time evolution of the variableVC1 .
Spectra of the nonperturbed circuit~A! and for varying driving
frequency and fixed driving amplitudeV50.20; phase locking in
~B!, quasiperiodic oscillation in~C!, phase locking~D!, and chaos
in ~E!, ~F!, and~G!.
ht
a-
ite
8.
v
e
e

n

scroll circuit (V50). We see two main peaks, one corre-
sponding to the characteristic frequencyf c>0.29 @23# and
the other, indicated byf 1 , corresponding to the frequency
with which the trajectory jumps between the two rolls pre-
sented in the double scroll attractor@16#. For f 50.185 00
and V50.20, in Fig. 9~B!, the peaks atf 1 and f c are de-
stroyed and a peakf corresponding to the driving frequency
appears~the manner in which they are destroyed can be see
in Ref. @23#!. Increasing the frequency tof 50.195 00 an-
other incommensurable frequencyf 2 appears and thus we
have a quasiperiodic movement. In Fig. 9~D! the frequencies
f and f 2 become commensurable, and so phase locking o
curs. A low amplitude broadband appears in Fig. 9~E!, re-
vealing a chaotic attractor, also observed in Figs. 9~F! and
9~G!. Note that Figs. 8~C!–8~F! correspond respectively to
Figs. 4~A!–4~D!.

IV. ABRUPT APPEARANCE OF CHAOTIC MOTION

The abrupt appearance of chaos, via two-frequency toru
breakdown, has been investigated through numerical integr
tion of Eqs.~3!, for a fixed driving amplitudeV50.28. Thus
Fig. 10~A! shows a bifurcation diagram of the variableVC2 ,
when the trajectory crosses a Poincare´ section at VC1
521.5, as a function of the driving frequency,f. The abrupt
appearance of chaos, seen in this figure, is confirmed by t
first Lyapunov exponentl @Fig. 10~B!#. Chaos first appears
for f 50.168 97, leading tol.0.

In this bifurcation diagram, there are no periodic orbits
after the onset of chaos. In addition, the first Lyapunov ex
ponent has a large value at the onset of chaos, which
preserved by increasing the frequencyf.

For increasing values off andV fixed, in Fig. 11 we see a
sequence of four figures showing the modifications in th
attractor on the Poincare´ section atVC1521.5. The two-
frequency torus (T2) is created after a supercritical Hopf

g
FIG. 10. ~A! Bifurcation diagram showing the two-frequency

torus creation~via Hopf bifurcation! and its destruction, generating
chaotic behavior, by a rising driving frequencyf and a fixed driving
amplitudeV50.28. ~B! The first Lyapunov exponentl, for the
same parameters of~A!. VC1521.5.
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4418 PRE 58M. S. BAPTISTA AND I. L. CALDAS
bifurcation. In this situation, before the onset of chaos,
torus is a deformed circle with no folds or cuspides,
shown in Fig. 11~A! ( f 50.166 00). However, increasin
the frequency tof 50.168 99, the torusT2 grows in size and
folds in four parts resembling a four-sided polygon@Fig.
11~B!#. The torus breaks as shown in Fig. 11~C! ( f
50.169 00) leading to the appearance of type-II interm
tency @21#. This causes the trajectory to evolve spira
around the previously existing repelor focus point, localiz
close to the origin of the angular frame in Fig. 11~B!. Further
increasing the frequency, we can hardly recognize the pr
ous existing torus@Fig. 11~D!#.

In Fig. 11~B! the four folds of the T2 torus can be recog
nized by the numbers 1, 2, 3, and 4. These folds are
proaching four invisible saddle points~whose positions could
be determined by introducing noise!; each pair of saddle
points represents a period-2 basic cycle. So, in the vicinity
the fold 4, there is an invisible basic cycle that crosses
section again near the fold 2. The same occurs to the o
folds, and the cycle crosses from fold 3 to fold 1. Along t
torus, not yet destroyed, a quasiperiodic trajectory is co
terclockwise oriented with a winding number (w
50.4806 . . . ) close to the rational fractionw5 12

25 . Twelve
is the number of the trajectory rotations along the torus to
back near the same point, taking 25 complete poloi
cycles.

In Fig. 11~C!, after passing near each saddle point,
trajectory crosses this Poincare´ section two times before re
turning to the same saddle point. We can consider the fl
on this section as a mappingG. So, if cn where n
51, . . . ,4 are thesaddle points, thenG2(cn)5cn , G(c4)
5c2 , andG(c3)5c1 .

As a matter of fact, the laminar spiral trajectory is a fou
spiral trajectory, which means that the trajectory visits one
the four spirals each time . These spirals evolve approac
the saddle points asymptotically@Fig. 11~C!#. In fact, each
spiral tends to one of the four corners of the polygon. Th
corners, indicated by numbers, reach the saddle points w

FIG. 11. ~A! A quasiperiodic torus T2 for f 50.166 00.~B! The
four-sided quasiperiodic folded torus for the critical parametef
50.168 99.~C! The destruction of the torus, leading to a type
intermittency. ~D! A chaotic attractor with a heteroclinic sadd
disconnection forf 50.170 00.V50.28 andVC1521.5.
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chaos appears. These saddle points have two different
stable manifolds. Along one unstable manifold of the sad
point the trajectory is ejected outside the polygon, causin
chaotic burst, characteristic of intermittent regimes@21#.
Along the other unstable manifold the trajectory is direct
to the nearest saddle point in the counterclockwise direct
i.e., G2(c41e) leavesc4 to c1 , for example.

The angular frame shown in Fig. 11~B! is used to locate
the four folds in an angular space. So, in Fig. 12, the ang
period-2 return map shows that before the torus breaksf
50.168 00) there is no angular two period-2 fixed points
shown by the large black line~although the large line seem
to touch the identity straight line, it does not!. However, just
before the torus breaks (f 50.168 96), we see that two
period-2 fixed points are formed by an infinitesimal increa
of the parameterf.

Figure 13 shows a sketch of the flow of the mappingG2.
We see in Fig. 13~A! the stable two-frequency torus and th

FIG. 12. Angular period-2 return map for two values of th
parameterf indicated in figure. This is evidence that, increasingf,
the torus grows in size, approaching two period-2 saddle point

FIG. 13. The geometry behind the torus breakdown. In this
ure we see the flow of the mappingG2 for the stable two-frequency
torus ~A! and for its breakdown forming the heteroclinic sadd
connection~B!.
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PRE 58 4419DYNAMICS OF THE TWO-FREQUENCY TORUS . . .
surrounding invisible four saddle points. Then the tor
grows in size, folding and touching the four saddle poin
After the torus touches these points@Fig. 13~B!#, it is no
longer closed~since its breakdown has already occurred!; the
saddle points become visible and form a heteroclinic sad
connection@25#. This heteroclinic saddle connection is th
nonlinear mechanism responsible for the chaotic burst
reinjection around the repelor focus, typical of type-II inte
mittent behavior@21#.

After the heteroclinic saddle connection is created, furt
increasing the frequency generates the heteroclinic sa
disconnection where there is no longer the spiraling lami
behavior of the trajectory around the repelor focus. In fa
each of the four spirals turns into four straight lines. Th
means that, after the trajectory is reinjected around the re
lor focus, it approaches the saddle points along an orien
straight line, and there is no more spiraling.

The unstable manifolds responsible for the chaotic bu
are indicated in Fig. 13~B! by Wu

1 , and those responsible fo
the heteroclinic saddle connection~an orbit in G2 that con-
nects the two period-2 saddle points! are indicated byWu

2 .
So the unstable manifold of the saddle point 1@indicated in
Fig. 13~A!#, Wu

2(1), is thestable manifold of point 3@indi-
cated in Fig. 12~B!#, Ws

2(3). This heteroclinic loop is also
called a Poincare´ homoclinic contour@27#.

Amplifications of regions in the vicinity of points 1–
show that, in fact, we have a horseshoe surrounding th
points due to transversal crossings betweenWu and Ws.
However, for the sake of simplicity we have not shown the
crossings in Fig. 13.

In Fig. 14 we see a sequence of power spectra for a l
cycle @Fig. 14~A!# with frequencyf, that suffers a Hopf bi-
furcation with the appearance of a second frequencyf 2 ,
originating a quasiperiodic two-frequency tori@Figs. 14~B!–
14~D!# only with frequenciesn f1m f2 (n,mPN). Further-
more, in Fig. 14~E! we see the onset of chaos, and in F
14~F! a large chaotic band. So we see in these spectra tha
a very small change in the driving parameter, a large cha

FIG. 14. Sequence of power spectra, indicating phase loc
~A!, quasiperiodic two-frequency tori@~B!, ~C!, and ~D!#, onset of
chaos~E!, and a large chaotic band~F!.
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band appears. This is different from the soft onset of ch
for which a large parameter variation is required in order
make these chaotic bands noticeable.

V. CONCLUSIONS

We have numerically analyzed the oscillations and
onset of chaos induced in the sinusoidally driven dou
scroll circuit. For varying driving parameters, the attracto
are identified by power spectrum analyses, and by compu
bifurcation diagrams and the first Lyapunov exponent. W
also describe topological changes due to the onset of ch
through two-frequency torus breakdown.

We show that in the driven double scroll circuit chaos c
appear directly through the breakdown of a two-frequen
torus when a parameter is varied. Furthermore, we identi
three possible scenarios for this transition: two in the Cur
Yorke route, and one through type-II intermittency.

First, we find that, for the system considered in this wo
the torus can softly break to chaos through the route of Cu
and Yorke@11#. One scenario for this route is when phas
locked trajectories become unstable and heteroclinic ch
appears, as generally proposed in Ref.@13#. Moreover, in this
case we identify the geometry~a transversal crossing of th
strong stable foliation with the unstable manifold of a sad
point! in the vicinity of the heteroclinic point~the phase-
locked trajectory that loses its stability!. This is difficult to
realize for a dissipative system like the driven double sc
circuit. Second, another identified scenario for the onse
chaos in the Curry-Yorke route is the period-doubling bifu
cations, like for instance for the drivenp-n junction passive
resonators circuit@15#.

We have recently identified another scenario for the on
of chaos in the analyzed circuit@21#, namely, the abrupt ap
pearance of chaos through type-II intermittency. In this s
nario, a two-frequency quasiperiodic torus loses its stabi
by touching the saddle points and forming a heterocli
saddle connection. We identify this as the nonlinear mec
nism responsible for the reinjection of the trajectory, arou
the repelor focus that produces the laminar phase of
type-II intermittency.

These identified two-frequency torus breakdowns
chaos, for a varying parameter, have two distinct dynam
characteristics. Chaos appears softly in the Curry-Yo
route, through phase-locking and period-doubling scenar
and after the onset of chaos, phase-locking is again obse
due to a saddle-node bifurcation. On the other hand,
type-II intermittency, chaos appears abruptly and is p
served for a large range of the varying parameter. Furth
more, the two-frequency torus breakdown preceded b
torus doubling, as reported in Refs.@28,29# for other sys-
tems, has not been observed in this work.

Generally, the Curry-Yorke route has another possi
scenario for the onset of chaos through quasiperiodic t
frequency torus breakdown@14#, not yet observed in the
driven double scroll circuit. However, this scenario is dif
cult to observe since the attractors usually phase lock be
breaking. This happens because one must appropria
choose two parameter variations to maintain the attra
with the same irrational rotation~Thus avoiding phase lock
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ing!. We also have studied the case of fixed driving f
quency and varying driving amplitude, in which case t
same as above conclusions can be drawn. Finally, the
narios reported in this paper might be useful to determ
other scenarios for torus breakdown observed in other
tems with two or more basic frequencies@30#.
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