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Abstract

We analyze the return of the S & P 500 index and characterize its evolution as being typical
of a low-dimensional recurrent deterministic system. The �rst Poincar�e return time of the chaotic
logistic mapping trajectories is used to model the return evolution. The e�ciency of the model
is demonstrated by daily predictions over an interval of time since January, 1950 of this index,
and long-term prediction for a period of 150 days. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

At present, there is no consensus about the dynamics of the stock market oscillations.
Models used to derive stock quotes are based on empirical mathematics [1] which tries
to mimic the single net return, de�ned as the rate that an asset changes its value
over an interval of time. Variation of stock prices is usually considered a random
process. From this point of view, there are di�erent alternatives considering that the
distribution of the return should be described by a normal distribution [2,3], a L�evy
stable process [4–6], a leptokurtic distribution generated by a mixture of distributions
[7], or by ARCH=GARCH models [8,9]. In Ref. [10], the authors speculate that the
market dynamics could be turbulent, and thus higher dimensional, due to the fact that
the return has a time scaling law similar to that found in the classical picture of
turbulence by Kolmogorov. On the other hand, in Ref. [11], it is shown how to use
multi-fractals in order to create a more realistic deterministic picture of the evolution
of some market stocks.
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Fig. 1. (A) Distribution of the return Rn of the S & P index for a period from January 1950 up to October
1999. (B) Distribution of the simulated data generated by Eq. (5).

The purpose of this paper is to present a deterministic dynamical model for the
return. We propose that the return is recurrent, i.e., it eventually comes back to the
starting value (see Ref. [12]). Even though the returning time cannot be precisely
determined, its average value over a large series of the returning time measurements,
and other statistical variables like the variance of this distribution, are precisely de-
termined. Consequently, our model is designed to mimic dynamically the evolution of
any stock quote or index through the modeling of its return of a particular economic
index. Here we use the Standard & Poor’s 500 (S & P 500), Yn, measured in time
intervals, �, spanning from 1 min up to two days. This article deals with the dynamics
of stock market rather than speci�c risk analysis that will be considered in another
publication.
The task of modeling the stock market boils down to the task of modeling the return

of an asset, Rn, between the dates n and n+1, for a constant time interval �, which is

Rn =
Yn+1 − Yn

Yn
: (1)

Considering the daily evolution of S & P 500 since the year of 1950, deated using
the Consumer Price Index, the return gives the typical probability distribution �(R(n))
shown in Fig. 1 A. The function �(R(n)) has the same shape independently of �.
Two assertions about the distribution � have been proposed: It is non-Gaussian, and
its variance should be �nite. However, the determination of such distribution is cur-
rently a problem in econophysics. Recently, a proposal presented in Ref. [6] describes
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such distribution as being well modeled by a L�evy stable process. However, the L�evy
distribution fails in describing the tails of the distribution.
In this work we present the function �(Rn) as a sum of two Poisson distributions.

Thus,

�(Rn) = �1 exp
(
Rn − 〈Rn〉

〈R+n 〉
)
+ �2 exp

(−Rn − 〈Rn〉
〈R+n 〉

)
; (2)

where for Rn positive, �1 = 0 and, for Rn negative, �2 = 0. Furthermore, for �1 and
�2 6= 0 they assume the same value proportional to 1=〈R+n 〉. Complementarily, we
observe that

〈R+n 〉˙ ��; (3)

where R+n is the Rn bigger than 〈Rn〉. Where 〈Rn〉 is the average of the Rn’s.
Inspired by these facts, we propose a recurrent low-dimension dynamical model for

the oscillation of the stock market assets. To model the stock market we look for a
function Qn that is equivalent to Rn, i.e., presenting the same statistics, given by a
distribution g, and scaling properties veri�ed in the stock market asset oscillations. So,

�(Rn) = g(Qn) (4)

and the model for the discrete evolution of the index for a time interval � is

Zn+1 = Zn(1 + Qn) : (5)

Note that Eq. (5) is Eq. (1) for Rn = Qn and Yn = Zn.
We conjecture that the return Rn can be modeled by a recurrent process. Thus, the

proper type of system to model the return are the ergodic [13] ones, once all ergodic
systems are recurrent. So, we model the return using the chaotic Logistic map,

xi+1 = 4xi(1− xi) : (6)

Further, it is shown how chaos theory is used to describe the nature of the stock market.
From this theory, a few concepts are withdrawn from Eq. (6) as the existence and
properties of the in�nite number of periodic orbits embedded in its chaotic attractor, the
existence of an invariant probability measure of the trajectories, and the correspondence
of a few average quantities with its fractal dimension.
The relation between this chaotic dynamics and the return Rn is done through the

Poincar�e �rst return time Pn(�) of a chaotic trajectory, where n = {1; 2; : : : ; M} is the
number of times the trajectory of (6) falls in a x interval I of length �, and Pn gives
the time this trajectory takes to return to I . If x0 belongs to I , and iterating (6) with
x0, the �rst point to fall in I is xi, then the return time for n = 1 is P1 = i. In this
paper, we choose I as the interval [0:100; 0:105]. Numerically, we �nd that

〈Pn(�)〉˙ �−0:99193 : (7)

By Ref. [14] the average value 〈Pn〉 ˙ �−1=D0 , where D0 is the fractal dimension
(capacity dimension) of Eq. (6). The result of Eq. (7) agrees with this power law
prediction because D0 ≈ 1:017 (computed with the box counting algorithm of
Ref. [15]) for Eq. (6).
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Eq. (7) lead us to scaling properties in Rn, representing the existence of a hidden
dynamical process. If we assume that the interval length � is related to � such that
�˙ 1=�, we �nd that �= k=D0 in Eq. (3). Therefore, the hidden dynamics of the stock
market should be low-dimensional once the dimension D0 is close to one.
For a speci�c interval length �, the probability distribution g(Pn) is obtained by

the knowledge that the number of periodic orbits, embedded in the chaotic attractor,
that pass through the interval length �, with period lower than T , is N (T ) ≈ exp hT ,
where h is the Kolmogorov–Sinai entropy (see Ref. [16]). Thus, following Ref. [16],
we obtain the Poisson distribution

g(Pn) = (1=〈Pn〉)exp(−Pn=〈Pn〉) : (8)

The distribution of a series composed by the linear combination of two Poincar�e
return time

Qn = [aPn − Pn+1]=F (9)

gives for Qn the same type of distribution of Eq. (2), where a is the shift of the
distribution on Qn = 0 and reects the asset rise=fall tendency whether a¿ 1 or a¡ 1
over a given period of time m�, and F is a scaling factor. In order to have the value
given by Qn in the same units of Rn, and so �(Rn)=g(Qn), as required by Eq. (4), we
use the scaling factor F , where F is a function of m� and �, calculated analyzing the m
previous values Rn(�) in the past, with m6n. Choosing a and F to satisfy 〈Q+n 〉=〈R+n 〉
(Q+n is the average of the Qn’s that are bigger than 〈Qn〉) and 〈Qn〉= 〈Rn〉, we obtain

a=
1

1− 〈Rn〉=〈R+n 〉
(10)

and

F = a
〈Pn〉
〈R+n 〉

: (11)

〈R+n 〉 and 〈Rn〉 are the average values calculated for an assembling of the m successive
previous values. 〈Pn〉 is given by Eq. (7).
To obtain Eqs. (10) and (11) we use the fact that the probability measure of data

from Eq. (9) given by
∫
g(Qn) dQn is �=F , where � de�ned by � =

∫
g(Pn) dPn is

invariant, it does not depend on the initial condition x0 of Eq. (6). Thus, from Eq.
(9) and as a consequence of the invariability of the probability measure of Qn and
Pn; 〈Pn〉=〈Pn+1〉; 〈Qn〉=(a−1)〈Pn〉=F , and Q+n =〈Qn〉+〈Pn〉=F . Even though the series
of Qn’s is obtained by a low-dimensional system, such numbers present stochastic-like
properties and thus g is a distribution of a higher-dimensional set of numbers Qn, and
Eqs. (9)–(11) are derived from average statistical analysis.
Considering the period of time � = 1 day, m = 12592 values, relative to the S &

P 500, 〈R+n 〉= 0:00586911915; 〈Rn〉= 0:000239843459. So, using Eqs. (10) and (11)
for 〈Pn〉= 189:8102; a= 1:04260645 and F = 33718:4058. As expected from Eq. (9)
〈Qn〉= 0:000243619956 and 〈Q+n 〉= 0:00592876648. Fig. 1B shows the distribution of
the data generated by Eq. (5) iterated 12 592 times, for any typical initial condition. We
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Fig. 2. The index S & P 500, since January 1950 till October 1999 is shown with a dashed line. The thin
line shows a one day prediction for all the days of this period. Zn (for a previous time m� = 150 d) is
changed only in the beginning of the prediction.

see that the index return Yn and the modeled index return Zn have the same statistics.
Also in this �gure, we �t for values Q+n a Poisson of form (8), and we �nd that the
term inside the exponential is 179.15, which is a value very close to 1=〈Q+n 〉 as it is
expected, once g(Q+n ) is a distribution of the form of Eq. (8).
In order to use the proposed model to make a prediction that corresponds to a

possible evolution of a certain index, or any stock (we have shown that the model is
suitable to a large number of di�erent stocks), two parameters must be adjusted. Those
are a and F . We keep � constant, and set m = 150, and � = 1 day. Thus, to obtain a
one day prediction using (5), we set Z150 = Y150 and obtain Z151 by calculating F and
a, using (11) and (10), respectively, where 〈R+n 〉 and 〈Rn〉 are calculated considering
a set of m past data: R150; R150−1; R150−2; : : : ; R1. To obtain the prediction for the day
152, we calculate a and F from the set of data R151; R151−1; : : : ; R2, and so on. In Fig. 2
we show the index S & P, since January 1950, with a dashed line. The thin full line
shows a one day prediction for the whole data (from 1950 up to 1999). We clearly see
how good the model is (5). We do not exclude for the calculations of a and F the data
corresponding to the crash of 1987. Therefore, we see that the model adjusts itself for
the index value after the crash. In fact, disregard of this period a�ects prediction for
the period after the crash. The determination of a proper value for m(t) for keeping the
desired predictability, depends on the economic situation and has still to be explored.
For long-term prediction, we calculate the parameters a and F , using a high value for

m. To predict the index in the day p+1, throughout a 150 days period (with p varying
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Fig. 3. One hundred and �fty days prediction of the index S & P 500 from December 9, 1998 until July 16,
1999, using Eq. (5) shown by the �lled boxes and the S & P index shown with thin line (for a previous
time m� = 1000 days).

from 1 to 149), a and F are calculated considering the set Rp−m; Rp−m−1; : : : ; Qp−1;
Qp. Thus, the previously predicted index values are used for future predictions. In
Fig. 3, we predict the index from December 9, 1998 until July 16, 1999, using Eq.
(5). We set m= 1000. We emphasize that Z0 in Figs. 2 and 3 is changed only in the
beginning of the prediction.
Another way of prediction is by averaging a few sets of solutions of Eq. (5), each

one computed for either di�erent values m, or for di�erent values x0. However, this is
subject for further exploration.
We illustrated the model for �= 1 day. However, any other interval of time can be

considered. In fact, a power-law scale of 〈R+n 〉 with � can be obtained, and this would
correspond to a signature of the particular index or stock. This scaling would give us
enough information to adjust model (5) in order to start making predictions.
We have found that 〈Pmn 〉 scales with �m=3, like observed in Ref. [10]. Due to

the invariability of the distribution g(Pn) for any initial condition, we emphasize that
the non-linear function used to obtain the �rst Poincar�e time return can be any, with the
condition that is ergodic. � can be adjusted to obtain a particular Qn by Eq. (7), and
the initial condition can be arbitrary. Qn can be treated as being almost a series of
random numbers, as currently believed, but in fact, these numbers were generated by
a dynamical process.
We �nish by concluding that the market is dynamically recurrent and a combination

of the �rst Poincar�e return time is a suitable model to predict future evolutions of some
market index or stock.
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