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Abstract

We elucidate on several empirical statistical observations of stock market returns. More-
over, we 0nd that these properties are recurrent and are also present in invariant measures
of low-dimensional dynamical systems. Thus, we propose that the returns are modeled by the
0rst Poincar2e return time of a low-dimensional chaotic trajectory. This modeling, which cap-
tures the recurrent properties of the return 5uctuations, is able to predict well the evolution of
the observed statistical quantities. In addition, it explains the reason for which stocks present
simultaneously dynamical properties and high uncertainties. In our analysis, we use data from
the S&P 500 index and the Brazilian stock Telebr2as. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

It is clear that the return distributions of stock market indexes does not have a
Gaussian shape as proposed in Ref. [1], mainly due to the pronounced tail of these
distributions. In Ref. [2] it is shown that the distribution of the 5uctuations in cotton
price is a stable L2evy distribution. However, due to the fact that the stable L2evy dis-
tribution has in0nite variance, it does not 0t well the decay of the distribution tail of
the return indexes. The fact is that the asymptotic behavior of the return distribution
shows faster decay than the one predicted by a L2evy distribution. Recently, a trun-
cated unstable L2evy distribution, a L2evy distribution in the central part followed by an
approximately exponential truncation, was proposed to describe the distribution of the
return [3–5].
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Although a truncated L2evy distribution 0ts a return distribution, its tails follow
a power-law asymptotic behavior, characterized by an exponent � ≈ 3, well outside
the condition required for the Levy distribution stability (0¡ � ¡ 2), as reported in
Ref. [6].
Therefore, besides the relevant progress achieved in the statistical description of these

5uctuations, a complete description of the return distributions has not been given in
the previous works.
In recent works we showed that the return of the S&P 500 index has a Poisson-like

distribution [7,8]. In agreement with this 0ndings, in Ref. [9] the distribution of the
increments of the British Pound=U.S.$ time series was found to decay as an exponen-
tial, a process whose distribution is a Poisson. Moreover, the observed Poisson-like
distribution is equivalent to a Poisson-like distribution of the 0rst Poincar2e return time
of a low-dimensional deterministic system. The 0rst Poincar2e return time measures the
time a chaotic trajectory takes to return to a given reference interval in phase space.
One of the purposes of this work is to show that the distribution of the return of a

stock index is the same for the recurrent time, i.e., the time the return takes to return
to a speci0ed interval of values. Furthermore, the other statistical properties of these
two 5uctuations can be simulated by measures of the 0rst Poincar2e return time of
a low-dimensional trajectory. This equivalence, between the 5uctuations of the return
and a measure typical of chaotic dynamical systems, suggests that the stock market
is dynamically recurrent, that is, there is a dynamical process ruling out the stock
oscillations.
The use of dynamical tools, as the 0rst Poincar2e return time, can explain many

empirical observations, described in the next section, for the return of a stock index
[6,9,10]. In particular, the reason for the preservation, for long time scales, of the return
distribution functional form. The model also describes very well how the average time
intervals in which high return values occur (rare events) is related with the width of
the return distribution (proportional to what is called volatility).
With the proposed procedure we explain properties and scales of the distributions for

the return and the recurrent time of the S&P index and the Brazilian stock Telebr2as.
This paper is organized as follows. In Section 2, we describe the many empirical

observation for the index S&P 500 and the Brazilian stock Telebr2as. In Sections 3–5,
we describe that these observations can be well reproduced by using the 0rst Poincar2e
return time, a dynamical variable, to simulate the returns. In Section 6, we present the
conclusions of this work.

2. Data analysis

This paper shows and explain several empirical statistical manifestations observed in
the stock market. These manifestations are: (i) The return distribution is a Poisson-like
distribution; (ii) the return distribution functional form is preserved for long time
periods, and therefore, it has a slow convergence to the Gaussian behavior; (iii) the
asymptotic behavior of the return distribution follows a power law; (iv) the ampli-
tude variation of the return with respect to time follows a typical scaling power law;
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Fig. 1. (A) The closing daily S&P 500 index for a period from January of 1950 up to July 2000.

(v) there is a long persistence in the linear correlation function of the amplitude vari-
ation of the return (which is related to the volatility of the return); and (vi) the sign
of the return changes with high uncertainty. In addition to explaining these empirical
observations, in this work we also explain other empirical observations described in
Refs. [7,8,11]: (vii) The distribution of the recurrent time is a Poisson distribution;
(viii) the recurrent time follows a power law with respect to the size of the reference
interval with characteristic exponent close to one (typical of super-diKusive systems);
(ix) the average amplitude of the recurrent time with respect to time is a linear func-
tion; and (x) The average interval of time the return of the index takes to assume
again the same value, within a reference interval �, is inversely dependent on the �,
for smaller return values, and exponentially dependent (with exponent proportional to
the return value) for higher return values.
Part of the data to be analyzed is shown in Fig. 1, where we show the trading daily

evolution of the closing value of the S&P 500 index, Y (t), for a period from January of
1950 to July 2000. This 0gure also shows a magni0cation of the small box indicated
on it. We deal with Y (nLt), indicated by Yn, where Lt is the sampling rate (in
Fig. 1 Lt = 1 day).
The appropriate variable to analyze a stock index 5uctuation is the return of Yn:

Rn(	) =
Yn+	 − Yn

Yn
; (1)

where the time interval 	 represents the interval of time we want to analyze the
fall=down of the index value, and 	¿Lt. Fig. 2 shows the values of Rn, corresponding
to the Yn shown in the magni0cation of Fig. 1.
Next, we show a few properties of the data Rn(	) which led us to our modeling of

the stock index, as well as modeling of any 0nancial stock.
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Fig. 2. A sample of the return of the data within the small box in Fig. 1.
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Fig. 3. Distribution of the return, de0ned in Eq. (1), of the S&P 500 index.

Fig. 3 shows the distribution �(Rn) of the data shown in Fig. 1. This result can
be described by a convolution of two Poisson distributions (property (i)). For Rn ¿ 0,
�[Rn(	)]= exp−(Rn=〈R+

n 〉) and for Rn ¡ 0, �[Rn(	)]= exp(Rn=〈R+
n 〉). The convolution
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Fig. 4. Distribution of the return, de0ned in Eq. (1), of the Brazilian Stock Telebr2as collected every 15 min
(A) and collected every 30 min (B).

led us to

�[Rn(	)] =  exp− (|Rn − 〈Rn〉|=〈R+
n 〉) ; (2)

where R+
n denotes values of Rn bigger than its average 〈Rn〉, and  is proportional to

1=〈R+
n 〉. Assigning  to be equal to 1

2 〈R+
n 〉, Eq. (2) represents the probability distribution

of the Rn[(	)]. In Fig. 3, 〈R+
n 〉= 0:00592188011, 〈Rn〉= 0:000385249611, and 〈R−

n 〉=
−0:00604495901.
There are two important measurements of Rn. One is 〈Rn〉 (the tendency of the

index), the average of the Rn’s. The other is 〈R+
n 〉 (proportional to what is called

volatility of the index), the average value of all the Rn’s bigger than 〈Rn〉. These
quantities de0ne the observed Poisson-like distribution of the return. Therefore, the
return standard deviation, sometimes given in the literature, is not a proper measure of
the return because it describes not a Poisson-like distribution width but the width of a
Gaussian distribution.
For the S&P 500, we veri0ed that the distribution �[Rn(	)] preserves its form for 	

till about 7 days (property (ii)). In Ref. [6] it was shown that the same distribution
preserves its form up to about 4 days.
In Fig. 4 we show, for the Brazilian Stock Telebr2as, that its return distribution form

is preserved for distributions of diKerent sampling time of 15 and 30 min, with data
covering the period from 12=02=1999 to 11=09=1999. Note that the distribution form
is the same as the one in Fig. 3. For Fig. 4A (15 min) 〈Rn〉 ∼= 0, 〈R+

n 〉 = 0:00335,
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Fig. 5. Scaling power law for 〈R+
n (	)〉 (squares) and 〈Rn(	)〉 (circles) with respect to 	. Lines represent

0tting curves. Data of the S&P 500.

〈R−
n 〉=−0:00266, and for Fig. 4B (30 min) 〈Rn〉=0:000121, 〈R+

n 〉=0:00481, 〈R−
n 〉=

−0:00411.
We now show the variation of the return distribution with 	 (iv), that is, the variations

of the positive width 〈R+
n (	)〉 and the average 〈Rn(	)〉 with 	. Thus, in Fig. 5 (for the

S&P 500) we show in squares 〈R+
n (	)〉, and in circles 〈Rn(	)〉. The lines are the 0tted

power-scaling laws

〈R+
n 〉(	) = �1	�1 ; (3)

〈Rn〉(	) = �2	 ; (4)

where �1=0:00612, �1=0:524, �2=0:000393. We note that while 〈R+
n 〉 grows following

a random walk criteria (once �1 ≈ 0:5), 〈Rn〉 changes linearly with 	. For the data of
the Brazilian stock Telebr2as with 	 = 15 min we obtained �1 ≈ 0:55.
To show the long persistence in the linear correlation function of the amplitude vari-

ation of the return, we introduce the variations of the distribution �(Rn). To determine
these variations, we initially calculate the averages 〈Rn〉 and 〈R+

n 〉 on each window of
length l (which corresponds to l data points), as we shift forward this window for a
time interval 	. The evolution of these averages are represented by the variations 〈̃Rn〉
and 〈̃R+

n 〉, obtained in days for the S&P 500, and in minutes for the stock Telebr2as.
In Figs. 6 and 7, we show the variations of ]〈Rn(l	)〉 and ]〈R+

n (l	)〉, for the S&P 500
(Lt=1 day) and for the Telebr2as (Lt=15 min), as the time 	 increases. The averages
are calculated over a window of l = 400 days.
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Fig. 6. Variations averages 〈̃Rn〉 and ]〈R+
n 〉, for the index S&P 500, calculated within a time window of

400	, from 6 September of 1950 to 26 July of 2000.

_0.002

_0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

oscillation of <Rn>
oscillation of <Rn

+
>

τ (days)

Fig. 7. Variations averages 〈̃Rn〉 and ]〈R+
n 〉, for the Brazilian stock Telebr2as, calculated within a time window

of 400	, from 3 August of 1999 to 11 September 1999.
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Fig. 8. Correlations of the variations of �(Rn) with respect to �t=l for the index S&P 500 (A,B) and the

Brazilian stock Telebr2as (C,D). (A,C) and (B,D) show the oscillations ]〈R+
n 〉 and 〈̃Rn〉, respectively.

Now we calculate the linear correlation of the series shown in Figs. 6 and 7, using
the following de0nition:

C(	) =
〈w(t + 	)w(t)〉

w(t)2
; (5)

where w(t) represents the variations ]〈Rn(t)〉 or ]〈R+
n (t)〉.

In Fig. 8(A) and (B), we show the linear correlation for the variations introduced
above for the index S&P 500, and in Fig. 8(C) and (D) we show the same for the
stock Telebr2as with respect to 	=l.
We de0ne the correlation time as the time �t , for which the correlation of ]〈Rn(t)〉 or
]〈R+
n (t)〉 decays 1=e. So, from Fig. 8, the correlation time of ]〈R+

n (t)〉 is approximately
equal to l while the correlation time of ]〈Rn(t)〉 is approximately equal to l=2. This
shows that an analysis of data within a time interval l in the past is needed to have
correlated data in the next l (or l=2 for 〈Rn〉) interval of time in the future. This result
is important to de0ne the time of observation needed in order to perform a useful
prediction.
To demonstrate the high uncertainty of the sign of the return (property (vi)), we

calculate the Shannon entropy [12] of the return of the index S&P 500.
Let S = {s0; s1; : : : ; s2k−1} be the 2k sequences of k symbols, where each symbol

represents either a positive or a negative return, and let p0; p1; : : : ; p2k−1 to be the
probability of these 2k sequences.
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Fig. 9. The representation of the three return time Tn are indicated for an out-of-scale reference interval with
width 2�.

The uncertainty on the sign of the return is given by the Shannon entropy [12]

Hs =

∑j=2k−1
j=0 pj log2(1=pj)

2k : (6)

In this equation, the unit of the entropy is in bits. Also, 06Hs6 1. If Hs = 1, the
uncertainty is maximum, and, therefore, the sign changing of the return seems random.
We 0nd that the Shannon entropy of the return for the index is Hs

∼= 0:98, a
value very close to one; therefore, the sign of the return is very uncertain. However,
the reason for which this entropy is not exactly 1, is the fact that the return has a
tendency, that is, 〈Rn〉¿ 0. In the next section, we show that a return modeled by a
dynamical system also have Hs

∼= 1 for its sign.
To show that the distribution of the recurrent time is a Poisson distribution (property

(vii)), we analyze the time of the return, Tn, for which Rn reaches a reference interval
I = [− �; �]. In Fig. 9, we show a schematic representation on how we measure the
series of Tn (for � = 0:0006) for the S&P 500 index.
The probability distribution of Tn, obtained for �=0:001, �(Tn), which can be seen

in Fig. 10, is a Poisson distribution given by

�[Tn] = �e−�Tn (7)

with � = 0:165.
We 0nd a scaling-power law relating the average value 〈Tn〉 with the reference

interval half-width �, observation (viii), given by

〈Tn〉˙ �−� (8)

with � = 1:09, as can be seen from Fig. 11.
To show that the average time for which the return takes to come back q times to the

reference interval is a linear function with respect to q (property (ix)), we construct
a set Wn, with elements representing the sum of q subsequent elements of Tn, i.e.,



548 M.S. Baptista, I.L. Caldas / Physica A 312 (2002) 539–564

0 20 40 60 80
Tn

0

0.05

0.1

0.15

0.2

D
is

tr
ib

ut
io

n 
(n

.u
.)

Fig. 10. Distribution of recurrent time Tn for the experimental data shown in Fig. 1.
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Fig. 11. Scaling power law for 〈Tn〉 (squares) with respect to �. The line represents the 0tted curve.
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Fig. 12. The average recurrent time 〈Tn(�; �)〉 (dark curve) with respect to � of the index S&P 500, and
the exponential 0tting curve (gray curve). The gray regions surrounding the experimental data represents the
standard deviation of the average, � = 0:001.

W1 = T1 + T2 + · · ·+ Tq, W2 = Tq+1 + Tq+2 + · · ·+ T2q, and so on. We obtain

〈Wi(q)〉= q〈Tn〉 : (9)

The last empirical observation (x) relates the time intervals with which rare events
occur, in respect of the most likely events. Events here stand for some return value
Rn in the interval I(�) = [� − �; � + �]. We call 〈Tn(I)〉 to represent the average of
the time a return takes to leave and fall the interval I(�). For the index S&P 500, we
consider � = 0:001, and we 0nd that

〈Tn[I(�)]〉= 〈Tn[I(� = 〈Rn〉)]〉exp�e� ; (10)

where �e=5:707±0:002, and, !=172:2±0:2. Note that 〈Rn〉=0:000385, and 1
�=0:00581,

a value very close to R+
n = 0:00592. As we will show further 1

�e
= 〈R+

n 〉.
In Fig. 12, we show in small squares the experimental 〈Tn(I)〉 and, in the straight

line, the 0tting curve given by Eq. (10). We note in this 0gure that as we increase
�, the errors bars grow in size. This is due to the fact that, for higher �, only a few
recurrent times are obtained: the higher the � the most unlikely the change of one to
observe a return value within that interval.
If � are small compared to �, then, we 0nd that 〈Tn(�; �)〉˙ 1

� , a particular case of
the one shown in Eq. (8).
In conclusion, the empirical observations of the stock market, discussed in this sec-

tion, indicate the recurrent character of the analyzed oscillations.
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3. Modeling distributions, power laws, and scalings

The task of modeling the stock market boils down to the task of modeling the
return of an index, Rn, and the recurrent properties associated with the distribution of
its values. In fact, the empirical properties described in the previous section appear
naturally in measures of any chaotic dynamical system.
To model the stock market we look for a variable Qn that is equivalent to Rn,

i.e., presenting the same statistics, and scaling properties veri0ed in the stock market
oscillations. So,

�(Rn) = �(Qn) : (11)

This equation implies that the model for the discrete evolution of an index for a time
interval 	 is

Zn+1 = Zn(1 + Qn) : (12)

Note that Eq. (12) is Eq. (1) for Rn = Qn and Yn = Zn.
Inspired by the empirical properties (i) and (vii), where the distribution of the returns

is a Poisson-like, and distribution of the recurrent time is a Poisson, we conjecture that
information given by the return Rn is equivalent to the one obtained from the recurrent
time. In fact, we show that the return of the index can be modeled by the 0rst Poincar2e
return time of a chaotic trajectory [7].
Thus, the proper type of system to model the return are the ergodic [13] ones, once

all ergodic systems are recurrent. More than just ergodicity, to have a proper description
of the dynamics of the market, we need another property from the type of recurrence
needed, which is the assumption that the recurrence is created by the existence of many
unstable periodic orbits. So, the ergodic system desired are the chaotic ones. Thus, to
assure these properties, we model the return using the chaotic Logistic map [14,15],

xi+1 = 4:0xi(1− xi) : (13)

The relation between this chaotic dynamics and the variable Qn (equivalent to the
return Rn) is done through the Poincar2e 0rst return time Pn(�) of a chaotic trajectory,
where n = {1; 2; : : : ; M} is the number of times the trajectory of (13) falls in an x
interval I of length �, and Pn gives the time this trajectory takes to return to I . If x0
belongs to I , and iterating (13) with x0, the 0rst point to fall in I is xi, then the return
time for n = 1 is P1 = i. The representation of how this 0rst Poincar2e return time is
computed can be seen in Fig. 13.
The Poincar2e 0rst return time, of the chaotic trajectory, measures the periods of the

in0nitely many unstable periodic orbits embed in the chaotic attractor. In other words,
the Poincar2e time measures how recurrent the dynamical system is. By proposing the
description of a measure of the considered complex system by the use of this Poincar2e
time, we are taking into account the in0nite periodic cycles that might exist in these
complex systems.
In Fig. 14, we choose I as the interval [0:100; 0:105], and the density distribution

�(Pn) is of the type

�[Pn(�)] = �3e−Pn(�)=〈Pn(�)〉 ; (14)
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Fig. 14. Distribution of the Poincar2e 0rst return time for the chaotic trajectory of Eq. (13).

where �3 can be rescaled to 1=〈Pn〉, such that (14) is a probability distribution. 〈Pn〉 is
the average value of the series of Pn’s. Note that this distribution of the 0rst Poincar2e
return time [16,17] of the chaotic trajectory is a Poisson of the same type of the
distribution for the recurrent time (Fig. 10).
For a speci0c interval length �, the probability distribution �(Pn) is obtained by

the knowledge that the number of periodic orbits, embedded in the chaotic attractor,
that pass through the interval length �, with period lower than T , is N (T ) ≈ exp hT ,
where h is the Kolmogorov–Sinai entropy (see Ref. [16]). Thus, following Ref. [16],
we obtain the Poisson distribution given in Eq. (14).
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The distribution �(Pn) is a Poisson distribution while �(Rn) is a Poisson-like distri-
bution. In fact, �(Rn) is the convolution of two Poisson functions, derived from a new
variable Qn, which is the subtraction of the two dynamically generated series Pn and
P′

n:

Qn(�) = Pn(�; x0)− Pn(�; x′0) : (15)

The convolution of �[Pn(�; x0)] with �[Pn(�; x′0)] is equal to �[Qn(�)]. Note that �(Qn)
does not depend on either x0 or x′0, and that is a consequence of the fact that Eq. (13)
has a ergodic trajectory, and thus, �[Pn(�; x′0)] = �[Pn(�; x0)]. We 0nd that

�(Qn) =
�4
2
e�4Qn ; (16)

where �4 = 1=〈Pn〉, which means that the slope of this distribution is determined by
〈Pn〉. In fact, other characteristics of the Poisson of Eq. (14) are preserved in the
distribution of Eq. (16).
Note that distribution (16) is of the same type of the distribution of the return of

the index (Fig. 3), as well as the return of the Telebr2as (Fig. 4).
One important characteristic of the distribution of Fig. 10, described by Eq. (14)

is its asymptotic behavior. Due to the invariance in the characteristics of the Poisson
and the Poisson-like distribution, the asymptotic behavior of the distribution of Fig. 10
is the same as the distributions of Figs. 3 and 4. So, to explain the decay of these
distributions (property (ii)) we use a theoretical result [18], which states that

�(Pn) ∼ P−)
n ; Pn → ∞ ; (17)

where ) ¿ 2, which agrees with most of the empirical results about the power laws for
the asymptotic behavior reported in Ref. [6].
There is also another important theoretical derivation which can explain the power-

scaling law of the empirical distributions (iv).
It is stated in Ref. [18] that for an anomalous transport situation the moments of the

displacement r(t), of a particular chaotic system, can satisfy the asymptotic equation

〈r(t)〉 ∼ t�=2; t → ∞ ; (18)

where � = 2− ).
Assuming that the positive return 〈R+〉 has a diKusion power law of the type of

Eq. (18) that describes diKusion of chaotic trajectories, we obtain

〈R+
n (	)〉 ∼ 	�=2; 	 → ∞ : (19)

Using the result of Ref. [6], for + ¿ 1 day, ) ∼= 3. So, for this case � ∼= −1, and
therefore,

〈R+
n (	)〉 ∼ 	−0:5 ; (20)

similar to the result obtained for the index S&P 500 (Eq. (3)).
Eq. (19) can have diKerent values for �, depending on the recurrent time expo-

nent ), which also depends on the hidden dynamics. It is derived in Ref. [18] that
� = |ln ,S |=ln ,T , where ,S and ,T are scaling parameters that characterize the fractal
self-similarity of the space and time responsible to generate the observed recurrent
times.
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Fig. 15. Scaling of 〈Pn〉 with the interval I = [0:100; 0:100 + �].

These previous results agree with another empirical observation that the stock market
has multi-scaling [9] and apparent multifractality [19,20].
To explain why the recurrent time follows a power law with respect to the size of

the interval with characteristic exponent close to one (super diKusive type of power
law for the recurrent time (viii)) we use another theoretical result. The scaling of 〈Pn〉
with � does not only tell us about the width of its distribution, but it tell us about the
fractal dimension of the hidden dynamical system involved. So, numerically, we 0nd
that

〈Pn(�)〉= !�− ; (21)

where ! = 1:039 and  = 0:992, values obtained by the 0tting of the squared-shaped
points in Fig. 15.
This preceding result can be obtained through the following derivations. Let M

be a metric space and f the function (13), for which f :M → M . Assume M is
minimal, i.e., it is invariant, and does not contain another closed invariant subset.
Let U be an open set of the set M , and � the invariant measure of M . Thanks
to Kac’s Lemma [21,22], the average 0rst Poincar2e return time can be given
by

〈Pn〉= �(M)
�(U )

; (22)

where �(M) can be set to be equal to one.
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Assuming that the open set U is simply an interval B[�] of size � 1 on M , and using
the result of [23]

�(B[�])˙ �Dp ; (23)

where Dp is the pointwise dimension, which for almost every x on M is equal to the
fractal dimension D0. Therefore, using Eqs. (22) and (23), we can say that

〈Pn〉˙ �−D0 ; (24)

what agrees with Eq. (21), by doing D0 = .
In order to have the characteristics of �(Qn) exactly as �(Rn), we rescale Qn as

Qn = [aPn − bPn+1]=F ; (25)

where a− b represent the shift of the distribution on Qn =0 and F is a scaling factor.
We choose a, b, and F to satisfy �(Rn) = �(Qn) and 〈R+

n 〉= 〈Q+
n 〉 (Q+

n is the average
of the Qn’s that are bigger than 〈Qn〉), and analyzing m values of the return Rn(	), we
obtain

F(	; �) =
〈Pn(�)〉
〈R+

n (	)〉
; (26)

b(	; �) =
F〈R−

n (	)〉〈R+
n (�)〉

〈Pn(�)〉(〈R−
n (	)〉 − 〈Rn(	)〉)

; (27)

a = b
(
1:0− 〈Rn(	)〉

〈R−
n (	)〉

)
= 1:0 ; (28)

where 〈R+
n 〉, 〈R−

n 〉, and 〈Rn〉 are the average values calculated for an assembling of
m successive values, where R−

n are the values of Rn smaller than 〈Rn〉. 〈Pn〉 is given
by Eq. (21). Every solution of Eq. (25) is supposed to produce values with the same
sampling of the stock data that Eq. (25) is simulating. Therefore, it is reasonable to
say that one iteration of Eq. (25) corresponds to a unit time interval of Eq. (1).
To obtain Eqs. (28) and (26) we use the fact that ergodicity implies that 〈Pn(�; x0)〉=

〈Pn(�; x′0)〉 = 〈Pn+1(�; x′0)〉. To speed up calculations we use the series 〈Pn(�; x′0)〉 and
〈Pn+1(�; x′0)〉 in Eq. (25), which are both generated by the same initial condition. In
fact, the series Pn+1 is a shift of Pn.
In Fig. 16 we show the distribution �(Qn), for the parameters F = 32052:354 and

b=0:940, calculated using the data of Fig. 1. For this 0gure, 〈Q+
n 〉=0:00577 (〈R+

n 〉=
0:00592), 〈Qn〉=0:000361 (〈Rn〉=0:000385), and 〈Q−

n 〉=−0:00536 (〈R−
n 〉=−0:00604).

Next, we want to explain the changing of 〈Q+
n 〉 with respect to 	, i.e., ]〈Q+

n 〉.
According to the central limit theorem, the distribution of a random variable, for

a high time, tends to a Gaussian. However, in the stock market, the convergence to
a Gaussian is very slow, and actually can only be noticed for 	 ¿ 7 days. Therefore,
there is a preservation of the distribution functional form of the return for a long time
(property (iii)), suggesting that the central limit theorem is not appropriate to fully
describe the evolution of Rn distribution.

1 Note that for D-dimensional system, B[�] is not an interval, but a D-dimensional ball on M .
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Fig. 16. Distribution of Qn calculated from Eq. (25), for F = 32052:3537 and b = 0:940087541, simulating
Fig. 3.

To discuss further this dynamical behavior of the stock return we present some
additional properties of the Poincar2e 0rst return time.
The variable Qn (that simulates the return), when calculated for the parameters F

and b constants, presents the property (ix), as described by Eq. (9). To show that we
de0ne a variable Wn, which is the sum of Qn’s,

Wn =
k−1∑
i=0

Qn+i (29)

with the following property:

k�[Qn] = �

[
k−1∑
i=0

Qn+i

]
; (30)

where this equation means that the distribution �[Wn] scales linearly with �[Qn].
In addition to this observation, both distributions, �[Qn] and �[Wn], are Poisson-like.

The distribution �[
∑k−1

i=0 Qn+i] describes the statistics of the simulated return for a
time interval k	, and the distribution �[Qn] describes the statistics of the simulated
return for a time interval 	. Thus, it is clear that the proposed model simulates
data that have the same distribution form for diKerent time intervals. This explains
property (ii).
The long-range correlated variations, observed in both 〈Rn〉 and 〈R+

n 〉 (Figs. 6 and
7), indicate that the parameters F and b should not be constants. Next, we show that
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Fig. 17. Parameters b, and F (Eqs. (27) and (26), respectively), calculated for 〈Rn〉 and 〈R+
n 〉 shown in

Fig. 6, between 6 September of 1950 and 26 July of 2000.

these parameters, calculated through Qn (solution of Eq. (25)), are not constant in time.
In addition, we show that 〈Q+

n 〉, and 〈Qn〉 presents long-range correlated variations.
In addition to showing that 〈Q̃+

n 〉 and 〈Q̃n〉 are long-range correlated, we want to clar-
ify that the consequence of having 〈̃Rn〉 and 〈̃R+

n 〉 oscillating in a typical long-range cor-
related behavior is that the return with respect to the time 	 follows the power-scaling
law of Eq. (3). So, we calculate the parameters F and b, using 〈̃Rn〉 and 〈̃R+

n 〉,
instead of 〈Rn〉 and 〈R+

n 〉 in Eqs. (26) and (27). Parameters are adjusted to simu-
late the index S&P 500, and 〈̃Rn〉, and 〈̃R+

n 〉 are calculated using l = 400 data points
in the past (an interval of 400 days). Fig. 17 shows the evolution of F and b for the
analyzed data.
Using the parameters of Fig. 17, we calculate a series of Zn using Eq. (25) into

Eq. (12). Then, we show, Fig. 18 (�6 = 0:0002), that the average return and the
positive average return of the predicted Zn have the same type of oscillation of the
index return, shown in Fig. 6. We also verify that the obtained Q+

n follows the same
power-scaling law of Eq. (3). With this, we give an explanation of why Eq. (3) is
found in the stock market. Therefore, it is very important that we understand better
the oscillations of 〈̃Rn〉 and 〈̃R+

n 〉.
Now, we demonstrate that our model, by itself, generates variables Qn, whose vari-

ations present long-range correlated oscillations. To do so, we calculate the parameters
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Fig. 18. The positive average return (squares) and the average return (circles) of the predicted Zn. The
positive average return follows a power scale law in respect of 	, with coeQcient 0.44, and the average
return follows a linear law.

F (Eq. (26)) and b (27), using also the predicted value Qn. Initially, F and b are
calculated using the return of l = 150 data points in the past. After performing one
prediction, the next prediction is obtained for F and b, calculated using l − 1 data
points in the past, and the predicted Q1. The second prediction, is performed using F
and b, calculated using l − 2 data points, and the predicted values of the return Q1

and Q2. This way, we generate a sequence of 5000 predictions, Q1; Q2; : : : ; Q5000. In
Fig. 19, we show the variations of the predicted Qn, i.e., we show ]〈Q+

n 〉 and 〈̃Qn〉,
using a window of l=400. We see that the predicted return Qn presents the same type
of long-correlated oscillation present in Fig. 6.
For the simulated data of Fig. 16, we 0nd that the Shannon entropy of Qn is Hs

∼=
0:98, a value very close to one; therefore, the sign of the return is very uncertain,
exactly like described in the empirical property (vi).

4. Return and recurrent time equivalence

The observed equivalence of information contained in the return and in the recurrent
time of the analyzed data can be explained using a fact about the type of observa-
tion realized in the system. The data can be collected using either Mt or Ms type of
acquisition. We either set a sampling time, and then measure some quantity using this
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Fig. 19. Average variations 〈̃Rn〉 and ]〈R+
n 〉, for the predicted series Zn, simulating the evolution of the index

S&P 500.

time interval (Mt), or, we set some state we want to observe, and then measure the
time the system takes to return to that state (Ms). The 0rst kind of measurement is
often the one used to make measurements. The second kind is frequently used when
there is no way to make measurements of the 0rst kind, as is the case for the spikes
in neurons [24], the time interval between drops in the dropping faucet experiments
[25], and heart beats [26].
Thus, a measure of type Mt , the return of the index (which is a measure of the downs

and risings of the index) is equivalent to a measure of the type Ms, the recurrent time
(that measure the time the return falls again within a given interval of values). The
existence of such equivalence would eligible us to predict statistical properties of the
average recurrent time, 〈Tn〉, by looking at the average of the return, 〈Rn〉, measured
for a 0xed time interval. And naturally, the vice versa of this previous aQrmation is
also true.
We de0ne a measure of type Mt , in the dynamical system, the 0rst Poincar2e return

time Pn. And the measure of type Ms is the 0nite time Lyapunov exponent de0ned as
follows.
Before de0ning the chosen measure of type Ms, we 0rst introduce a few concepts.

We de0ne the set K = x1; x2; : : : ; xq to be a trajectory of length q of Eq. (13), where
x1 can be almost every point on the set M . We de0ne &N (xi) (with N integer, N ¿ 1,
and i = 1; : : : ; q) to be the 0nite time Lyapunov exponent calculated along an N -step
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length trajectory with the initial condition xi. We call &N (xi) as &i
N , which is de0ned

by

&i
N =

1
N

N−1∑
j=0

ln|G′(xi+j)| ; (31)

where G′ is the derivative of Eq. (13), that is, G′ = 4(1− 2xi).
It was shown in Ref. [27] that if the set K is the interval [0; 1], the probability

density of the 0nite Lyapunov exponents, �(&N ), of this interval, is given by (we omit
the index i because the distribution is calculated for all i’s)

�(&N ) =
N
9

exp−N |&N−:|

[1− exp−2N |&N−:]1=2 ; (32)

where :, the Lyapunov exponent of Eq. (13), can be obtained by Eq. (31) for N → ∞.
Note that due to ergodicity (for high N ), the probability density of Eq. (32) corre-

sponds to the probability density of the 0nite time Lyapunov exponent, calculated over
a length N trajectory.
While the Poincar2e 0rst return time is a spacial measure, and have its average value

changed with respect to the size of the interval � (according to the scaling-power law
of Eq. (24)), the 0nite time Lyapunov exponent is a temporal measure and has its
variance changed with respect to N , according to a power-scaling law of the type N−2

[27]. For more details in obtaining the distribution of 0nite time Lyapunov exponents
see Ref. [28].
Assuming that the variable &i

N re5ects the dynamics of the stock indexes, we expect
that the return of the variable &i

N , de0ned by

Si =
&i+1

N − &i
N

&i
N

(33)

is statistically equivalent to Qn, i.e., equivalent to the return Rn of the S&P 500 index,
shown in Fig. 3. And that is exactly what we verify, as shown in Fig. 20, done with
the set K representing a trajectory of length q = 5000.
In dynamical system theory, the observed measurable should indicate local geometric

properties of the phase space. Also, due to ergodicity, 0xed sample time measurements
taken on an interval of phase space, should reveal properties of the whole phase space.
A way to measure a local geometric property of a system by a scalar measurable is
by looking at the 0nite time Lyapunov exponent.
We are not going into details to study the dependence of the distribution �(&N )

with respect to N . However, it is worthwhile to comment that while �(Pn) depends
on the fractal dimension, D0 (Eq. (24)), �(&N ) depends on the Lyapunov
exponent : (Eq. (32)).

Sn and Qn are equivalent, and thus, the statistic of Qn should also be veri0ed
for Sn. Thus, demonstrating that the Poincar2e 0rst return time explains the empirical
observations presented in the last section means that the measure &Ni also does. How-
ever, there are already many interesting theoretical results on the statistics of the
Poincar2e 0rst return time based on dynamical properties of the chaotic system (as
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Fig. 20. Distribution of the return of the 0nite time Lyapunov exponent Sn, for N = 50, and q = 5000.

existence of unstable periodic orbits, and fractal dimension). Therefore, we prefer to
continue working with the Poincar2e 0rst return time.

5. Stock index recurrence

We now derive the power law that relates the return time average, 〈Tn〉, with respect
to the size of the reference interval used to obtain this average (property (viii)). For
this case, as obtained in Eq. (21), we want to relate the average recurrent time of the
simulated return Qn to the interval I(� = 〈Qn〉) = [� − �; � + �] with respect to the
interval �. For that we use the fact that the probability distribution of the modeled
return, Qn, is a Poisson-like distribution as in Eq. (2). Thus, the probability, E, of
0nding a return within the interval I is given by

E[I(� = 〈Qn〉)] =
∫ 〈Qn〉+�

〈Qn〉−�

1
2〈Q+

n 〉
exp−|�+〈Qn〉|=〈Q+

n 〉 d� (34)

what results in

E[I(� = 〈Qn〉)] = 1
2 (−exp−� + exp�) : (35)

For small �, we can approximate Eq. (35) by using exp� ∼= 1 + �, and obtain

E[I(� = 〈Qn〉)] ∼= �
〈Q+

n 〉
: (36)
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Once the probability E is found, the average recurrent time of the return is obtained
by

〈Tn[I ]〉= 1
E[I ]

: (37)

Thus, applying Eq. (36) into Eq. (37), we obtain

〈Tn[I(� = 〈Qn〉)]〉˙ 1
�

; (38)

as obtained experimentally (Eq. (8)).
Finally, we derive the relation between the average interval of time the return of the

index takes to assume again the same value, within a time interval � (x). In speci0c
we want to relate rare events with likely events. The most likely event to occur is
having the return of the index within the interval I(� = 〈Qn〉) = [〈Qn〉 − �; 〈Qn〉 + �].
We want to know an estimation of the time span, till we have again a return value
falling in the interval given by I(�) = [� − �; � + �].
As done previously, we just have to calculate the probability, E[I(�)], with which

the return falls in the interval I :

E[I(�)] =
∫ �+�

�−�

1
2〈Q+

n 〉
exp−(|�+〈Qn〉|)=〈Q+

n 〉 d� (39)

what results in

E[I(�)] =
1
2
exp(−�+〈Qn〉)=〈Q+

n 〉[exp�=〈Q+
n 〉 − exp−�=〈Q+

n 〉] : (40)

Using Eq. (37), we obtain that

〈Tn[I(�)]〉= 2
exp(�−〈Qn〉)=〈Q+

n 〉

exp�=〈Q+
n 〉 − exp−�=〈Q+

n 〉
: (41)

A convenient form of working with Eq. (41) is using Eq. (35). Doing so, we obtain

〈Tn[I(�)]〉= 〈Tn[I(� = 〈Qn〉)]〉exp
(�−〈Qn〉)
〈Q+

n 〉 : (42)

Another simpli0cation can be done in Eq. (42)

〈Tn[I(�)]〉= 〈Tn(� = 0)〉 exp�=〈Q+
n 〉 : (43)

Note that Eqs. (42) and (43) are very similar, once 〈Qn〉 is very small, and 〈Tn(� =
0)〉 ∼= 〈Tn[I(� = 〈Qn〉)]〉.
To show that Eqs. (42) and (43) are correct, we use Eq. (25) to generate 100 000

values of Qn, to simulate the return of the index S&P 500. Then, for � = 0:0005, we
obtain that

〈Tn[I(�)]〉= T exp�T � ; (44)

where T =11:6530±0:0005 and �T =177:44±0:04. Note that 1=〈Qn+〉=173:34, and
〈Tn(� = 〈Qn〉)〉= T .
In Fig. 21 we show in small squares the recurrent time, 〈Tn(I)〉, of the simulated

return Qn. The straight line is the 0tting curve whose equation is shown in (10).
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Fig. 21. The average recurrent time 〈Tn(�; �)〉 (dark curve) with respect to � of the simulated return Qn, and
the exponential 0tting curve (gray curve). The gray regions surrounding the experimental data represents the
standard deviation of the average.

DiKerent from what happens in Fig. 12, as � increases the error bars do not grow too
much. This is due to the fact that we used 100 000 values of Qn, and thus, we have a
better statistics.

6. Conclusions

We demonstrate that several empirical statistical evidences observed in the stock
market are also present in the 0rst Poincar2e return time of a low-dimensional trajectory.
Therefore, this dynamical measurement can be used as the basis of a model for the
stock market return.
As important as describing the distribution of the return index Rn properly, there is

a need to understand more the variations of the average quantities 〈Rn〉 and 〈R+
n 〉 with

respect to the observation time 	. In case these variations are almost constant, 〈Rn〉
should scale with 	 following a linear law, as described by Eq. (30).
We showed that there is an equivalence between the temporal measures, the return

Rn, and spacial measures, the recurrent time of the return, Tn. This means informa-
tion on the recurrent cycles of stocks in the stock market gives information on the
volatility of this same stock, and vice versa. This equivalence was proven to exist in
dynamical systems that are typically “fully” chaotic (as it is the case for Eq. (13)).
For a system to be “fully” chaotic, there must exist a homoclinic or heteroclinic orbit
in the surroundings of the chaotic set. Also, by “fully” one can think of a dynamics at
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the chaos-stochastic border, where the dynamical system behaves either as a chaotic or
as a stochastic system. Therefore, if this proposed model describes correctly the stock
market dynamics, a stock 5uctuation should have some statistical properties similar to
those observed in randomic 5uctuations.
We could relate the average time interval that we expect some return value to be

observed with respect to the average return (volatility) of the index. This theoretical
observation, also observed to happen in the stock market, guide us on how much time
one should keep some stock in order to obtain some desired gain. This equation, in
fact, can be seen as a test for the existence of properties in the data as observed in
dynamically recurrent oscillation.
In Refs. [29,30] the common characteristics of the stock market oscillations with

turbulence are proposed. We also found that the empirical observations (i,ii,iv,vii,viii,ix)
described in this work are also present in edge turbulence of tokamak plasma [11].
Therefore, we believe the empirical properties, explained to be common of chaotic
dynamical systems, could be seen as a set of characteristics to turbulence.
In Ref. [6] it is argued that the scaling behavior observed in the distribution of the

returns may be connected to the slow decay of the volatility correlations. We do not
disagree with this aQrmation, but we prefer to emphasize that the scaling behavior is
connected to the variations of the averages of the return (tendency) and the variation
of the amplitude of the returns (volatility) with time.
One example of this is based on a peculiar observation regarding diKerences in the

scaling laws of the average amplitude of the recurrent time, and the amplitude variation
of the return with respect to time. The diKerence is that the recurrent time has a linear
scaling law (very small linear correlation decay) and the return has a power-scaling
law. This diKerence is due to the fact that the recurrent time is not aKected by time
variations of the averages of the return (tendency) and the variation of the amplitude
of the returns (volatility) with time.
Any stock that verify the empirical properties described in this work should be a

candidate to have its dynamics modeled by the proposed model. So, this model is not
limited to a speci0c stock market of any country.
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