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Abstract

Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase
synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply
phase synchronization. We illustrate these ideas in the sinusoidally forced Chua’s circuit and two coupled Rössler oscillators.
Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is defined
from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase
synchronization in experimental systems.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Coupled chaotic systems have recently attracted much attention due to the verification that they may be useful
for understanding natural systems in a variety of fields such as ecology [1], neuroscience [2,3], economics [4], and
lasers [5,6]. It has been verified that, despite the higher dimensionality of a coupled chaotic system, the coupling
among the elements might make them synchronize [7,8], reducing the dynamics of the system to a few degrees of
freedom.

In this work, we focus our attention on the phenomenon of Phase Synchronization (PS), which describes the
appearance of phase synchronous behavior between two interacting chaotic systems [9], i.e. given two chaotic
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systems, their phase difference remains bounded despite the fact that their amplitudes may be uncorrelated. This
phenomenon is particularly interesting, since it can arise from a very small coupling strength. Its presence was
reported in a variety of experimental systems. It was demonstrated experimentally in electronic circuits [10], and
later in electrochemical oscillators [11]. It was found in plasma [12] and in Chua’s circuit [13]. Evidence of phase
synchronization in communication processes in the human brain was also found [14,15].

To detect PS in a real-time experiment, one has to measure the phase of the chaotic trajectory [16]. However,
the phase is not always easily accessible information. To overcome this difficulty, it is important to understand
fundamental properties of phase synchronous systems that can easily be verified experimentally. For chaotic
systems that are phase synchronized with periodic forcing [17], it was reported that a stroboscopic map of the
trajectory was a subset of this attractor and only partially occupies the region delimited by a projection of the
attractor. This property was used to detect, in a real-time experiment, phase synchronization between Chua’s circuit
and a sinusoidal forcing [13].

This approach of detecting phase synchronization through the stroboscopic map can be extended for coupled
chaotic oscillators in a formal way. The stroboscopic map is generalized to theconditional Poincaré map. Given
two oscillators, at least one being chaotic, the conditional Poincaré map is constructed by collecting points in one
oscillator at the moment at which some event occurs in the other oscillator. If the set of discrete points generated by
this conditional map does not visit any arbitrary region of a special projection of the chaotic attractor, we call this
set aP-set. This property of the conditional Poincaré map is called non-transitivity [18], i.e. an initial condition
under the conditional Poincaré map does not visit everywhere in a subspace of the attractor. Like the stroboscopic
maps of oscillators that are in phase synchrony with a forcing, the conditional Poincaré maps of coupled chaotic
oscillators, in PS, also only partially occupy a projection of the attractor.

In this work, we show how the conditional Poincaré map can be used to detect PS without actually having
to measure the phase. For phase-coherent oscillators, a special type of P-set, which we call PS-set (Phase
Synchronization set), exists. Conversely, its existence also implies PS. We illustrate our findings and ideas with
numerical and experimental analyses in the forced Chua circuit and the coupled Rösller oscillator [19].

Further, we extend these results to non-phase-coherent attractors. Finally, we also introduce a phase of a chaotic
trajectory to be a quantity related to the amount of rotation of the tangent vector. This definition can be applied to
chaotic attractors, independently of whether they have phase-coherent or non-phase-coherent dynamics.

This work is organized as follows. InSection 2, we define a way of measuring the phase of a chaotic flow,
and discuss the relationship between the average return time and the average angular frequency. InSection 3, we
discuss the conditions for PS states and, inSection 4, we describe the phenomenon of PS in the forced Chua
circuit. We introduce the notion of a conditional Poincaré map inSection 5and the P-sets (as well as the PS-sets)
in Section 6. In Section 7, we show how PS can be found by detecting these sets in the forced Chua’s circuit and, in
Section 8, in the coupled R̈ossler oscillator. Further, inSection 9, we discuss the extension of these ideas to a class
of non-coherent oscillators. InSection 10, we give some remarks and the conclusions of this work. InAppendix A,
we formally introduce the conditional Poincaré map and the P-set, and inAppendix Bwe show that, for coherent
dynamics, the PS-sets exist if, and only if, there is PS. In other words, PS implies PS-sets and vice-versa.

2. Phase, frequency and average return time of a chaotic attractor

The phase of a chaotic attractor in a projectionj (a subspace) is defined as the amount of rotation of the tangent
vector in this projection, and can be represented by an integral function of the type

φ j (t) =

∫ t

0

∣∣∣∣dθ(t ′)

dt ′

∣∣∣∣ dt ′ (1)

with dθ(t) being an infinitesimal displacement of the tangent vector of the flow, from timet to time t + dt , and
dt → 0. Note that, in Eq.(1), we are measuring the amount of rotation, per unit time, of a projection of the tangent
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vector of the flow, on the same subspacej where the phase is defined. We call this subspaceP j . The attractor
X , projected on the subspaceP j , is regarded asX j . The instantaneous angular frequency of the trajectory inX j ,

namedWj , is given by
dφ j
dt . So, from Eq.(1), Wj =

∣∣∣dθ
dt

∣∣∣, and the average angular frequency〈Wj 〉 is

〈Wj 〉 = lim
t→∞

〈
dφ j

dt

〉
, (2)

where〈−〉 represents the average. Eq.(2) can be put into the form〈Wj 〉 =
φ j (t)

t .
Whenever a Poincaré section can be defined, the average period of the chaotic attractor on the subspaceP j is

calculated by

〈Tj 〉 =

N∑
i =0

1τ i
j

N
, (3)

where1τ i
j = τ i

j − τ i −1
j , andτ i

j represents the time at which the trajectory in the subspaceP j makes thei -th
crossing with this Poincaré section.

We introduce〈1φ j 〉 to be the average displacement of the phase for a typical period as

〈1φ j 〉 =
φ j (N)

N
, (4)

with φ j (N) being the phase associated with the subspaceP j at the moment that theN-th crossing between the
trajectory and the Poincaré section occurs.

Thus, we can write Eq.(2) as

〈Wj 〉 =
〈1φ j 〉

〈Tj 〉
. (5)

For the forced Chua circuit, the subspaceP1 is defined by a suitable projection of the circuit variable. We have that
〈1φ1〉 = 2π . So, Eq.(5) can be written as〈W1〉 =

2π
〈T1〉

. For the coupled R̈ossler oscillator, the quantities in Eq.
(5) can be calculated in two subspaces: the subspaceP1 associated with the variables of one Rössler system and
the subspaceP2 associated with the variables of the other Rössler system. As shown in [21], 〈1φ1〉 might slightly
differ from 2π , and thus〈Wj 〉 =

〈1φ j 〉

〈Tj 〉
.

So, Eqs.(2)and(5) relate the average period, the average angular frequency, and the phase of a chaotic trajectory.
This shows that the average period (recurrence) and the average angular frequency are intimately connected in
phase-coherent chaotic systems, and both these quantities can be calculated from the phase.

3. Phase synchronization

Having defined phase, PS exists whenever the following condition is satisfied:

|φ1(t) − r φ2(t)| < 〈1φ1〉. (6)

The minimal bound for the phase difference,〈1φ1〉, in terms of the phase, as defined by Eq.(6), was estimated
theoretically in Ref. [21]. Eq. (6) means that the phase difference between the two coupled systems is always
bounded, andr is a rational constant [22].

Also,

〈W1〉 − r 〈W2〉 = 0. (7)
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In this work, we will consider cases forr = 1. Otherwise, a simple change of variables could eliminate this
constant from Eq.(7). For the forced Chua circuit〈W2〉 = ω, with ω = 2π f representing the angular frequency
of the forcing. There is PS if〈W1〉 = ω. Therefore,〈T1〉 = 1/ f . For the coupled R̈ossler system, if PS exists, then
〈W1〉 = 〈W2〉, 〈R1〉 = 〈R2〉, and〈1φ1〉 = 〈1φ2〉, and therefore, we could have〈1φ2〉 in the right-hand term of
Eq.(6) instead of〈1φ1〉.

4. The sinusoidally forced Chua circuit

The circuit is represented by:

C1
dX1

dt
= g(X2 − X1) − iNL (8)

C2
dX2

dt
= g(X1 − X2) + X3 (9)

L
dX3

dt
= −X2 − V sin(ωt) (10)

whereX1, X2, andX3 represent, respectively, the tension across two capacitors and the current through the inductor
(see [13] for more details), andω andV are the angular frequency and the amplitude of the forcing, respectively.
The piecewise-linear functioniNL is given by:

iNL = m0X1 + 0.5(m1 − m0)[|X1 + Bp| − |X1 − Bp|] (11)

where we have chosen the parametersC1 = 0.1, g = 0.574,C2 = 1, L = 1/6, m0 = −0.5, andm1 = −0.8, such
that we obtain a R̈ossler-type attractor, forV = 0.

To calculate the phase of the chaotic trajectory, we first define the subspaceP1 to be given by the pair of
variables(X1, X2), and then we use Eq.(1). In Fig. 1, we show the difference between the phase of the chaotic
circuit (as calculated using Eq.(1)) and the phase of the forcing,ωt . In (a), the phase difference is bounded and the
average period of the chaotic attractor, defined as the average recurrence time of trajectories that cross the section
X2 = 0, is equal to〈T1〉 = 3.57015, which is equal to 1/ f , since f = 0.2801. The average angular frequency can
be calculated using Eq.(5), which gives us〈W1〉 = 1.75992. Or, from Eq.(2), we have〈W1〉 = 1.75992. Note that
the average growth of the phase (calculated using Eq.(1)) for a typical average period is 6.28318. . . , which is 2π .
In Fig. 1(b), we have that〈T1〉 = 3.57006, which is different from 1/ f , since f = 0.279. So, in (b) there is no PS,
and consequently inequality(6) is not satisfied.

In Ref. [13] we detected PS experimentally in the forced Chua circuit whenever stroboscopic maps could
be constructed for a time interval equal to1τ1 =

1
f such that this map, projected into the same subspace

considered to calculate the phase, does not occupy the region occupied by the attractor projected into the same
subspace.

To understand this technique, we assume thatφ1(t), the phase of the chaotic trajectory, is the angle (on the lift)
described by the vector position of this trajectory (Rössler-like attractor) andφ2(t) = ωt is the phase of the forcing.
If Eq. (6) is satisfied at any time, then it is satisfied at multiples of the period of the forcing,τ i

1 =
i
f . So, we get

|φ1(τ
i
1) − 2π i | < 2π , which means that a stroboscopic map has to be concentrated in an angular section smaller

than 2π . The stroboscopic map, which is already a subset of the chaotic flow, projected into the same subspace
considered to calculate the phase, does not occupy the whole region occupied by the attractor projected into this
same subspace. Another property of the stroboscopic map is that points in it are mapped into it by looking at the
trajectory after a time interval given by1τ1, so it is a subset that is recurrent to itself.

Using this technique, and for the same parameters as [13], we show inFig. 2(a) the experimental synchronization
region for the forced Chua circuit in the parameter spaceV × f . The triangular shaped region represents parameters
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Fig. 1. (a) Phase difference is always smaller than 2π , so PS exists between the circuit and the forcing forf = 0.2801 andV = 0.0015. (b)
PS is not present and the phase difference grows bigger than 2π .

Fig. 2. (a) Experimental PS parameter space. (b) Simulated PS parameter space. Black points represent parameters for which Eq.(6) is satisfied
for 120,000 crossings of the trajectory atX2 = 0. In both figures, the horizontal axis represents the forcing frequencyf and the vertical axis
its amplitudeV . Variables in (b) are dimensionless andf0 is the main frequency of the non-forced circuit.
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Fig. 3. A projection of the attractor in light gray, and its stroboscopic map in dark gray. The parameters aref = 0.2801 andV = 0.0015 in (a)
and f = 0.28063 andV = 0.0016 in (b).

for which the stroboscopic map has points concentrated in an angular section smaller than 2π . The bump at the
bottom right-hand side of the PS region is due to non-synchronous states that present a long bounded phase
difference. In a typical time interval within which the experiment is realized, of the order of 40,000 cycles, the
system seemed to be phase synchronized, i.e. localized stroboscopic maps were found. In fact, we have detected
these maps even for observation times corresponding to 150,000 cycles, in the region of the bump.

In short, the bump region is an extended structure in the circuit parameter space that presents intermittent
behavior in the phase difference [24], but with a long laminar regime, even for parameters far from the
border between the PS and the non-PS region. This intermittency differs from the usual one, observed in the
transition to PS, in that the latter occurs very close to the border between the PS and the non-PS region.
The reason for this intermittency is due to the presence of a periodic window close to the region of the
bump.

A simulation is shown inFig. 2(b), where black points represent perturbing parameters for which Eq.(6) is
satisfied, withφ1 defined in Eq.(1). One sees that the PS region resembles a triangle. The triangular shaped
region, denoted by the light gray dashed line, represents the region where the system is not phase synchronized,
but the phase difference remains bounded for a long time interval, which might be longer than 100,000 cycles of
the systems. So, we reproduce numerically the same atypical intermittency observed experimentally, i.e. a long
laminar regime in the phase difference, for parameter regions away from the border between PS and non-PS states.
This is associated with a periodic window, such as that shown inFig. 2(b).

The shape of the synchronization region inFig. 2(b) is equivalent to the region in the experiment, constructed by
detecting the stroboscopic maps contained within a small angular section. This proposes an equivalence between
the existence of a recurrent subset and the verification of Eq.(6). Inside the synchronization region, a stroboscopic
map appears as inFig. 3(a), where the light gray points represent the attractor, and the dark filled circles the map.
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Fig. 4. The Lyapunov exponent (and the error bars) associated with PS in black, and the quantity〈W1〉 − ω in gray, for a fixed amplitude of
V = 0.0015 and a varying frequency.

Outside the PS region there are parameter sets for which the stroboscopic maps do not occupy the region occupied
by the attractor at the projection in which the phase is calculated. As one sees inFig. 3(b) (for the parameters
represented by the plus symbol inFig. 2(b)), there is a region of the projected attractor (indicated by the arrow)
which the stroboscopic map never visits.

The difference between the stroboscopic map that appears while there is PS in (a) and the stroboscopic map that
appears while there is not PS in (b) is that points of the stroboscopic map in (a) are all concentrated in an angular
section of the attractor. As will be classified further, the stroboscopic map in (a) is a PS-set and the stroboscopic
map in (b) is a P-set.

As a way to better characterize the PS phenomena in the Chua circuit, we calculate the Lyapunov exponents.
As is usually expected, the transition to PS is associated with one of the exponents becoming smaller than zero.
Since there is already one exponent that is smaller than zero, PS induces the creation of a second stable direction
in the Chua circuit. Prior to the transition to phase synchronization, this exponent was zero. InFig. 4, we show the
exponent (and the error bars) associated with PS in black and the quantity〈W1〉−ω in gray, for a fixed amplitude of
V = 0.0015, with respect to the frequency. In the region that the exponent becomes smaller than zero,〈W1〉 = ω,
satisfying Eq.(7).

5. Conditional Poincaré map

The finding of maps of the attractor that appear as localized structures implies PS. The conditional Poincaré map
introduced in this chapter as a generalization of the stroboscopic map is an efficient way of revealing the existence
of such special mappings.

The stroboscopic map technique defined for periodically driven chaotic systems was explained in the previous
sections. To extend the idea of the stroboscopic map in coupled chaotic oscillators, we came up with the conditional
Poincaŕe map, which is a map of the flow constructed by observing it for specific times at which events occur in
the subsystemsX j . An event is considered to occur when the trajectory of one subsystem crosses a Poincaré
section. So, given two oscillatorsS1 andS2 (at least one being chaotic) with trajectories in the subspaces where the



M.S. Baptista et al. / Physica D 212 (2005) 216–232 223

phase is defined, the conditional Poincaré map ofS1 is the trajectory position at the moment that a series of equal
events happens inS2. Analogously, the conditional Poincaré map ofS2 is the trajectory position at the moment
that a series of equal events happens inS1. In the case of periodically forced chaotic systems, an event may be
defined as happening whenever the forcing reaches a specific value, and the conditional Poincaré map is the usual
stroboscopic map, because the time interval between two events is constant. In coupled chaotic systems, the time
interval between two successive events is no longer constant.

We define a time series of eventsτ i
j by the following rule:

• τ i
1 represents the time at which thei -th crossing of the trajectory ofS2 occurs in a Poincaré plane.

• τ i
2 represents the time at which thei -th crossing of the trajectory ofS1 occurs in a Poincaré plane.

The discrete set of points observed at timesτ i
j is called setD. This set, projected at the subspacesP j (where

the phase is calculated), is namedD j . The conditional Poincaré map is represented byTτ i
j . So, we say thatD j is

the set of points generated byTτ i
j .

The next step is to define whenD j can be regarded as either a P-set or a PS-set, this last set implying phase
synchronization.

6. Sets generated by the conditional Poincaré map

TheD j set is a P-set if it does not completely fulfill the projectionX j of the attractor. In other words, a discrete
setD j is considered to be a P-set if, for balls of radiusδ centered in all points of the attractor projectionX j ,
one does not find points ofD j inside all these balls. IfD j completely fulfillX j , we say that these two sets are
equivalent (and we represent this by the symbol≡). For more details, seeAppendix A.

So, a P-set exists if the conditional Poincaré map is not transitive onX j [18]. That is, the flow, observed by
the times for which the conditional Poincaré map is defined, does not visit arbitrary regions ofX j . Note that,
however, the attractor is chaotic, and therefore the chaotic set is always transitive through the flow. So, given a set
of initial conditions, its evolution through the flow eventually reaches arbitrary open subsets of the original chaotic
attractor.

We can classify three relevant types of sets generated by the conditional Poincaré map:

Type-a D j is equivalent toX j (D j ≡ X j ). The conditional Poincaré mapTτ i
j is transitive inX j .

P-set D j is NOT equivalent toX j (D j 6≡ X j ). The conditional Poincaré map is NOT transitive inX j .
PS-set D j is P-set, with the additional condition that it is localized in the vicinity of the Poincaré section chosen

to define the events.

In the following, we comment on each case.

6.1. Type-a sets

6.1.1. These sets appear whenever there is no PS
If two non-identical coupled chaotic systems (topologically similar) are not phase synchronized, the chaotic

trajectories do not make correlated events in both subspacesP1 andP2. As a consequence, while the trajectory is
positioned at the specified Poincaré plane at the subspaceP1, the trajectory in the subspaceP2 is everywhere in
this subspace, making the setD j equivalent toX j .

An interesting illustration is the case of two uncoupled equal chaotic systems, but with different initial
conditions. As we construct the conditional Poincaré maps, they will be a type-a set, since the distance between
the trajectories in the two oscillators is also sensitive to the initial conditions, and will diverge exponentially.
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6.2. P-sets

6.2.1. These sets constitute a necessary, but not sufficient, condition to describe PS
In periodically forced chaotic systems, these might appear when there is no PS. As we have already mentioned,

the points in these sets are not localized in special spots of the attractor projection. As a consequence, the domain
of the absolute difference between the times at which the same number of events happen in both oscillators has a
broad character.

6.3. PS-sets

6.3.1. PS-sets imply PS, and vice-versa
These exist, if and only if, there is phase synchronization, as shown inAppendix Band illustrated with the

examples inSection 4and throughout this work. Another important point is that the PS-set provides a real-time
detection that can easily be implemented experimentally (Section 4) and constructed from a data set.

PS-set implies PS because the difference between the time at which theN-th event happens in both oscillators is
small, which means that the time difference|τ N

1 −τ N
2 | is smaller than a finite constant value. As a consequence, the

points in the conditional Poincaré map of one oscillator are confined around the Poincaré section chosen to define
the events. Therefore, the detection of a PS-set can be performed by observing this characteristic of the conditional
Poincaŕe map.

For Rössler-like oscillators, in which the trajectory spirals around an equilibrium point, the PS-set is confined
within an angular section.

6.4. Length of a PS-set

Having found the PS-set, we can study the properties of these sets that give us the level of organization and
coherence of the oscillators.

A PS-set,D j , is said to have length 1 if the set is constructed by the time series of the same events. Defining
the event to be given by the crossing of the trajectory to a Poincaré plane, the corresponding time series of events
M j (1) is given byτ i

j , τ
i +1
j , τ i +2

j , τ i +3
j , . . .. For this PS-set, points inD j are mapped inD j after one application of

the conditional Poincaré map.
A PS-set is said to have length 2 if it is obtained by a time series of two different events. So, a PS-set can be

constructed from a more complex series of events. We construct a length-2 basic set using a time series of events

M j (2) given byτ i
j ,

τ i
j +τ i +1

j
2 , τ i +1

j ,
τ i +1

j +τ i +2
j

2 , . . . [25]. As an example, for the perturbed Chua circuit, the length-2
basic set is constructed by a stroboscopic map that collects points every half-period of the forcing. A length-2 basic
set is assumed to be composed by two other subsets, named minimal sets (the subsetsD0

j andD1
j ).

These have the property that, if a pointx0 is such thatx0 ∈ D0
j , this point, iterated by the conditional Poincaré

map, goes to the minimal setD1
j ; if x0 is such thatx0 ∈ D1

j , this point, iterated by the conditional Poincaré

map, goes to the minimal setD1
j . Thus, points inD1

j are mapped to itself after two applications of the conditional

Poincaŕe map. The minimal setD1
j is said to be disjoint to the setD2

j if they do not intersect, i.e.D1
j ∩ D2

j = ∅.
For some systems that present a strong phase-coherent state, such as those studied here in which the instantaneous
trajectory velocity does not differ too much from the average velocity on typical orbits, it is possible to find a
length-2 basic set, with disjoint minimal sets, when PS is present.

For a general case, we do not expect to find a length-2 PS-set with disjoint minimal sets. As an example, one can
think of a spiking-firing oscillator, phase synchronized with a periodic forcing. Due to the fact that the spiking-firing
dynamics have a fast mode and a slow mode, the conditional Poincaré maps might overlap.
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6.5. Set diagram

Here we explain, through a diagram, the possible emerging sets from the conditional Poincaré map.

X
P j

&&MMMMMMMMMMMM
P j ◦T

xxqqqqqqqqqqqq

D j

%%KKKKKKKKKK X j

yyssssssssss

D j
?
≡ X j

Yes

yyssssssssss No

%%KKKKKKKKKK

type− a P − set

��
PS ks +3 PS− set

Starting from the chaotic attractorX , the setD is constructed from the conditional Poincaré map represented
by T ; we projectD andX into the subspaceP j , obtaining the setsD j andX j , respectively.

We classify the setD j into type-a set or P-set by checking whether the conditional Poincaré map is transitive in
X j , i.e. by verifying the equivalence between the setsX j andD j . Then, if the P-set is localized in the vicinity of
the Poincaŕe section where the events occur, the P-set is a PS-set, which means that PS is present.

7. PS-sets in the Chua circuit

For applying our formalism to the periodically forced Chua circuit, the event times areτ i
1 =

i τ , with τ representing the forcing period. The time series for the length-2 basic set is given by
1/2τ, τ, 3/2τ, 2τ, 5/2τ, 3τ, . . .. Everywhere inside the PS region, we find length-1 (as an example, seeFig. 3(a))
and length-2 (as an example, seeFig. 5(a)) PS-sets, the latter with disjoint minimal sets. InFig. 5(a), the application
of the conditional Poincaré map in the minimal setD0

1 leads to the minimal setD1
1. Both sets form a length-2 PS-

set. Note that bothD0
1 andD1

1 can be regarded as a length-1 PS-set. To our numerical precision, we have checked
that there are no basic sets beneath the synchronization region tip. This means that the type-a set is present for very
small but finite amplitude forcing. Outside the PS region, there is a P-set, i.e. a non-transitive conditional Poincaré
map on the chaotic attractor projection. So,D j 6≡ X j . In this case, there is no PS. More examples of length-Q
PS-sets in the phase synchronous forced Chua circuit can be seen in [26].

8. PS-sets in the coupled R̈ossler system

We can use the formalism of the conditional Poincaré map to study the appearance of PS in coupled chaotic
systems, as the two coupled Rössler oscillators are given by:

ẋ1,2 = −α1,2y1 − z1 + ε(x2,1 − x1,2) (12)

ẏ1,2 = α1,2x1 + 0.15y1 (13)

ż1,2 = 0.2 + z1(x1 − 10) (14)

with α1 = 1 andα2 = α1+δα. The index denotes systems 1 and 2. The subspacesP j are defined byP j = (x j , y j ).
In a coupled chaotic system,τ i

1 (τ i
2) does not increase uniformly, but it is given by the time the trajectory crosses
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Fig. 5. (a) Length-2 PS-set with disjoint minimal sets, in the forced Chua circuit, for the parametersf = 0.2801 andV = 0.001. The PS-set
is constructed by the time seriesM1(2). (b) Length-2 PS-set with disjoint minimal sets, in the coupled Rössler oscillators, for the parameters
ε = 0.01 andδα = 0.001. The PS-set is constructed by the time seriesM2(2).

the Poincaŕe planey2 = 0 (y1 = 0). For these times, and using the time seriesM j (2), we construct the minimal
setsD0

1 andD1
1 (D0

2 andD1
2). The parameters areε = 0.01 andδα = 0.001.

In Fig. 5(b), we show a length-2 basic set with disjoint minimal sets. The application of the conditional Poincaré
map in the minimal setD0

2 leads to the minimal setD1
2, and vice-versa. These two sets together form a length-2

PS-set, but each one separately can be regarded as a length-1 PS-set. The characteristic of these PS-sets is that they
appear as localized structures around the Poincaré section chosen to define the events. As one can see, the setD0

2
is localized in the neighborhood of the liney2 = 0, where the Poincaré section is chosen.

In fact, this length-2 PS-set with disjoint minimal sets (as well as a length-1 PS-set) is found everywhere in the
PS region, as shown inFig. 6. In it, filled squares represent parameters for which these special PS-sets are found,
and empty circles parameters for which PS exists.

A PS-set of length Q is detected usingDQ−1
2 in Eq.(A.2), from which we can check whetherDQ

2 occupies (type-
a discrete setD) the whole space occupied byX1. The setB`(x) in Eq. (A.2) is constructed assuming squares of
size` = 1.5 in points of the setDQ−1

2 . In Fig. 6, we show a case forQ = 2.
In Fig. 7(a), we show the attractor in the subspaceP1, the subsetX1 in gray, and the discrete setD1 in dark

empty circles. In (b), we show a magnification of the box in (a). Note that neighborhoods of arbitrary points in
the trajectory ofX1 (gray) always contain a point of the discrete setD1 (dark empty circles). So, the setX1 is
equivalent to the setD1 and, therefore,D1 is not a PS-set, and therefore it does not exist PS. In contrast to the Chua
circuit, the R̈ossler coupled system presents no P-sets for parameters outside the PS region.

9. Extension to other coupled chaotic systems

The approach presented in this paper can be extended for non-coherent attractors. As noticed in Ref. [20],
attractors that present non-coherent phase motion in the phase space may present a coherent motion in the space of



M.S. Baptista et al. / Physica D 212 (2005) 216–232 227

Fig. 6. Empty circles show parameters for which PS exists, detected by Eq.(6), and filled squares represent parameters for which a length-1
PS-set appears simultaneously with a length-2 PS-set with disjoint minimal sets. The horizontal axis represents parameter mismatch and the
vertical axis the coupling amplitude.

Fig. 7. We show a situation where PS is not found forε = 0.01 andδα = 0.00001. In (a), we show the attractor in the subspaceP1, the subset
X1 in gray, and the discrete setD1 in dark empty circles. In this figure,D1 is a type-a set, sinceX1 visits every neighborhood of points inD1
(the conditional Poincaré map is transitive inX1). In (b), we show a magnification of the box in (a).

the velocities, i.e.(ẋ, ẏ), which is the case of the funnel attractor [20]. In this case, the extension of our approach
to the non-coherent phase motion is straightforward. Instead of defining a conditional Poincaré map in the phase
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space, we analyze the dynamics in the velocity space, in which the phase is coherent, and therefore all the ideas
introduced herein can be applied in this new space.

For some chaotic attractors, it might not be possible to define a Poincaré section to construct the conditional
Poincaŕe map. However, one can still construct these conditional maps by defining different types of events. For
example, in coupled neurons, this event can be chosen as the beginning or end of the bursts, which can be defined
well by the crossing of the trajectory with some given threshold.

10. Conclusion and remarks

A chaotic set is always transitive through the flow. So, given a set of initial conditions, its evolution through the
flow eventually reaches arbitrary open subsets of the original chaotic attractor. However, a stroboscopic map of the
flow, whose generalization here is called a conditional Poincaré map, might not possess the transitive property. That
is, given a set of initial conditions, its evolution through the conditional Poincaré mapmight not reach arbitrary
open subsets of the chaotic attractor.

The introduction of the term “conditional” in the map nomenclature comes from the unconventional and non-
rigid way we adapt the established definition of a stroboscopic Poincaré map. For coupled chaotic oscillators, this
conditional map is constructed on the basis of events that are conveniently chosen at the same subspaces where the
phase of a chaotic system is defined. In addition, the application of this map through the flow, which results in a
discrete set, is inspected not in the whole phase space but in the same subspaces where the phase is defined.

If phase synchronization exists, the conditional map generates special discrete sets, named PS-sets. The contrary
is also true, i.e. a PS-set implies phase synchronization. This was illustrated in the periodically forced Chua circuit,
in the coupled R̈ossler oscillator, and in other more general (topologically equivalent) coupled chaotic systems.

The ideas introduced here provide an efficient way of detecting phase synchronization without having to actually
measure the phase of the chaotic trajectory. Indeed, this detection can be performed in experiments in real time, as
was done here in the perturbed Chua circuit.

It is worth saying that the PS-sets are robust under small additive noise that could corrupt the data in an
experiment. This is so because a small additive noise does not interfere much with the time that the trajectory
crosses the Poincaré section, but just deviates the timing of the crossing. Then, the PS-sets remains. This robustness
against the noise is an important property for applying these ideas in experiments, as is done in this work.

We have also introduced the phase as a quantity that measures the velocity of rotation of a projection of the
tangent vector along the trajectory. This definition can be applied to arbitrary flows, independent of whether or not
they present coherent or non-coherent phase dynamics.

Finally, our formalism for the conditional Poincaré map can be used in coupled maps (or perturbed) to detect
synchronous behavior (notphasesynchronization) between the systems (or between the forcings) for the case
where one does not find full synchronization between the maps. One particular example where this happens is in
the periodically forced logistic equation [27] or for a system of coupled logistic maps [28], where one can find a
finite number of synchronous chaotic subsets (the basic sets).
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Appendix A. The conditional Poincaré map and theD j sets

Next, we present some formalism using elements of Ergodic Theory in order to introduce the conditional
Poincaŕe map and theD j sets.
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Given a flowFt , we callX the chaotic attractor. A subset of the attractor is its projection on the subspaceP j ,
which we callX j . We assumeX ∈ Rd.

The notion of the stroboscopic map of a flow can be generalized to any temporal translation on the trajectory.

We define the temporal translation to be a transformation represented byTτ i
j , called the conditional Poincaré map.

The initial conditionEx(t) is iterated under the temporal transformationTτ i
j to the pointEx(t + τ i

j ). Applying the

transformationTτ i
j in a typical trajectory for the time sequenceτ i

j , τ i +1
j , τ i +2

j gives us the pointsEx(τ i
j ), Ex(τ i +1

j ),

andEx(τ i +2
j ). So,Ex(τ i +1

j ) is the pointEx(τ i
j ) integrated by the flow for a time interval given byτ i +1

j − τ i
j . Applying

the transformationTτ i
j for an infinite series ofτ i

j , that is,i = 1, 2, 3, . . . ,∞, gives us a discrete set that we callD.
The projection ofD on the subspaceP j is namedD j .

Now, we introduce the notion of transitivity. Let us assume that we have a chaotic setA. Let us choose two
disjoint subsetsB andC in A. So,B ∩ C = ∅. There is a transformationF that generates the setA, with the
property thatT(B) = C and F(C) = B. So, clearly the transformationF and itsn-fold application(Fn) can
always place an arbitrary initial condition, belonging either inB or C, anywhere in the setA. This property makes
the transformationF transitive in the setA. However, the conditional Poincaré map might no longer be transitive.

For example, in the case of the 2n-fold of the transformationT , i.e. T2n, given an initial condition in the set
B, its iteration byT2n will never reach the setC. Therefore, the conditional Poincaré mapT2n is not a transitive

transformation in the setA. In the case of flows, we have seen that the temporal transformation represented byTτ i
j ,

whenever PS is present, does not place arbitrary points of the attractor everywhere in the subsetsX j of the chaotic

attractor. Therefore, if PS is present, the transformationTτ i
j is not transitive to this subset of the attractor.

The conditional Poincaré mapTτ i
j is topologically transitive in a setA [29] if, for any two open setsB, C ⊂ A,

∃τ i
j /Tτ i

j (B) ∩ C 6= ∅. (A.1)

To detect whether the conditional Poincaré map is transitive in some subset, we introduce the notion of equivalence.
Two setsA andB are (not) equivalent (where equivalence is represented by the symbol≡, and non-equivalence by
6≡) if they (do not) occupy the same neighboring space. In a more general way:

Definition 1. Two setsA andB are equivalent,A ≡ B, if ∀x ∈ A, a setC can be constructed by the union of open
setsB`(x), openRd volumes centered atx with length`, such that∀y ∈ B H⇒ y ∈ C, andA 6≡ B if y 6∈ C.

Definition 2. The setD is a P-set ifX j 6≡ D j .

Definition 3. If D j can be decomposed into a collectionD j = D0
j ,D

1
j , . . .D

Q−1
j of subsets ofX j , with Q ≥ 1,

such that a point inDi
j iterated by the conditional Poincaré map goes toDi +1(mod Q)

j , we refer to each minimal set

Di
j as arecurrent decomposition. In the particular case where we haveτ i +1

j − τ i
j = τ (constant), this minimal set

is aperiodic decomposition. The number of setsQ is called thelengthof the decomposition [30].

Proposition 1. If T τ i
j is transitive inX j , thenD j ≡ X j .

Proposition 2. If T τ i
j is non-transitive inX j , then a subsetA can be constructed such thatA ⊂ X j andA 6≡ X j .

Proofs ofPropositions 1and2 can be performed by using Eq.(A.1) and the definitions.
Definition 3can be understood from the PS-set of length-1 and length-2 considered in this work. If the length-1

PS-set is constructed by the time seriesτ i
j , τ

i +1
j , τ i +2

j , τ i +3
j , . . ., the length-2 PS-set is obtained from the time

series given byτ i
j ,

τ i
j +τ i +1

j
2 , τ i +1

j ,
τ i +1

j +τ i +2
j

2 , . . . [25]. For the particular case of a periodically forced system,
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τ i +1
1 − τ i

1=1/ f , so the length-1 PS-set is the standard stroboscopic map that collects points every period of the
forcing. The length-2 PS-set is constructed by a stroboscopic map that collects points every half-period of the
forcing. For the length-2 PS-set, we have two minimal sets, the setsD0

j andD1
j , with the property that, ifx0 ∈ D0

j ,

this point iterated by the conditional Poincaré map goes toD1
j andD1

j goes toD0
j , under the conditional Poincaré

map.
To check whetherD j 6≡ X j , we perform the following: forx ∈ X j there existsy ∈ D j such that

y ∩ B`(x) = ∅, (A.2)

whereB`(x) is an open ball of radiusδ centered at the pointx. δ is a small positive value.

Appendix B. The PS-sets

In this appendix, we show that a PS-set exists if, and only if, phase synchronization exists; in other words, PS-set
implies PS and PS implies PS-set.

Given a dynamical systemY′
= G(Y), and letF t be the flow andX the attractor generated by it, we suppose

that we have chaotic dynamics from now on. LetΣ j be the Poincaré section in the subspaceP j , and letΠ j be the

Poincaŕe map associated with the sectionΣ j , such that, given a pointxi
j ∈ Σ j , xi +1

j = Π j (xi
j ) = F1τ i +1

j (xi
j ).

From now on, we use a rescaled timet ′ = t/〈T1〉. For a slight abuse of notation, we omit the symbol′.

Proposition 3. Given two interacting oscillators, PS-sets can be constructed if, and only if, phase synchronization
is present.

To show theif in the preposition, let us start by considering that the time interval associated with the return of
the pointxi

j to the pointxi +1
j is 1τ i +1

j = τ i +1
j − τ i

j , with τ i +1
j being the times at which the subsystemX j crosses

the Poincaŕe sectionΣ j in the subspaceP j .

As has already been introduced, the average return time is given by〈Tj 〉 =

∑N
i =0 1τ

j
1

N =
τ N

j
N , and the time is

rescaled such that〈T1〉 = 1. Our hypothesis is that the subsystemX j has a phase-coherent oscillation, so there is a
numberδ j for which the following holds [31]:

|τ N
j − N| ≤ δ j . (B.1)

The numberδ j < 1 measures the coherence in the phase oscillation, and is linked to the phase diffusion [7,31].
This equation holds for allN, so it implies that, for a single oscillation, it is also true that|1τ i

j −〈Tj 〉| ≤ δ j . In the
case of two systems that present PS, the following holds [21]:

|τ N
1 − τ N

2 | ≤ δ3, (B.2)

with δ3 < 1. This equation implies that|1τ i
1−1τ i

2| ≤ δ3, which states that the time intervals in a single oscillation
are strongly related in phase synchronization.

Let us introduce a new variable that measures the difference between the time interval of two events inX1 and
X2. This new variable is1τ i

2,1 = 1τ i
2 − 1τ i

1. From Eq.(B.2), it is true that|1τ i
2,1| ≤ δ3.

Now, we analyze one typical oscillation. Given the following initial conditionsx0
1 ∈ Σ1 and x0

2 ∈ Σ2,
we evolve both untilx0

1 returns toΣ1. In other words, we evolve both initial conditions for a time1τ1
2 . So,

F1τ1
2 (x0

1) = Π2(x0
1) = x1

1 ∈ Σ1. Analogously,F1τ1
2 (x0

2) = F1τ1
1 +1τ1

2,1(x0
2) = F1τ1

2,1 ◦ F1τ1
1 (x0

2) = F1τ1
2,1(x1

2).
Now, we use the fact that|1τ i

2,1| < δ3, and write that

F1τ1
2,1(x1

2) ≈ x1
2 + G(x1

2)δ3. (B.3)
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So, given an initial condition inΣ1 (subsystemX1) evaluated by the time interval1τ i
2 (of subsystemX2), it returns

near the sectionΣ1.
For a general case, we have to show that an initial condition, on the sectionΣ1, evolved by the flow for the time∑N
i =0 1τ i

2,1 still remains close to this section. In other words, we have to show that the approximation in Eq.(B.3)

is valid for an arbitrary number of eventsN in the subspaceX2. Now, noting that
∑N

i =0 1τ i
2,1 = τ N

2 −τ N
1 , from our

hypotheses of phase-coherent dynamics|
∑N

i =0 1τ N
2,1| = |τ N

2 − τ N
1 | < δ3. The same arguments that were used to

derive Eq.(B.3) for one oscillation can be extended to an arbitrary numberN, so we prove theif of the proposition
(PS implies the existence of PS-sets).

Now, to show theonly if (PS-sets imply PS), let us say that there is a PS-set. As a consequence, Eq.(B.2) is
valid. Then, using the definition of phase coherence [31] and noting that in PS the average return times in a given
Poincaŕe section are the same, we see that Eq.(B.2) comes from the boundedness of the phase, concluding the
proposition.

Furthermore, let us suppose that the trajectories of the oscillators are perturbed by a small perturbation that does
not destroy the phase synchronous dynamics. The effect of the small perturbation in the return time of the trajectory
to a Poincaŕe section is to deviate this time according toT̄ i

j = T i
j + ξ i

j , whereξ i
j represents the perturbation in

systemSj at the moment of thei -th event, with maxi |ξ i
j | < κ. Under these hypotheses about the perturbation, we

conclude the following result.

Proposition 4. The PS-set is robust under perturbations.

This result shows that a PS-set can be constructed in PS states. Moreover, for the coupled Rössler-like systems,
this result states that this set is confined in an angular region, which is a consequence of Eq.(B.2).

To see the relationship between the constantδ3 and the size of the PS-set, we perform the following. From
the time normalization, the average time interval between points in phase space is proportional to the distances
between them. So, from Eq.(B.3), we writeδ3 = |H|/G(x0

2), withH being the average half-length of the PS-set.
A rough calculation shows that, in our experiment with the Chua circuit, we have thatδ3 ≈ 1/2.5, and for the
coupled R̈ossler oscillators we have thatδ3 ≈ 1/2.1. These results agree completely with the theoretical approach
in [21].
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