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Abstract

Concepts from Ergodic Theory are used to describe the existence of special non-transitive maps in attractors of phase
synchronous chaotic oscillators. In particular, it is shown that, for a class of phase-coherent oscillators, these special maps imply
phase synchronization. We illustrate these ideas in the sinusoidally forced Chua’s circuit and two c@sgled éscillators.
Furthermore, these results are extended to other coupled chaotic systems. In addition, a phase for a chaotic attractor is define
from the tangent vector of the flow. Finally, it is discussed how these maps can be used for the real-time detection of phase
synchronization in experimental systems.
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1. Introduction

Coupled chaotic systems have recently attracted much attention due to the verification that they may be useful
for understanding natural systems in a variety of fields such as ecdlhgeproscienceZ 3], economics4], and
lasers 5,6]. It has been verified that, despite the higher dimensionality of a coupled chaotic system, the coupling
among the elements might make them synchroni,[reducing the dynamics of the system to a few degrees of
freedom.

In this work, we focus our attention on the phenomenon of Phase Synchronization (PS), which describes the
appearance of phase synchronous behavior between two interacting chaotic s@temsdiven two chaotic
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systems, their phase difference remains bounded despite the fact that their amplitudes may be uncorrelated. This
phenomenon is particularly interesting, since it can arise from a very small coupling strength. Its presence was
reported in a variety of experimental systems. It was demonstrated experimentally in electronic digfuaad

later in electrochemical oscillator&]]. It was found in plasmal2] and in Chua’s circuit13]. Evidence of phase
synchronization in communication processes in the human brain was also figLihsl.[

To detect PS in a real-time experiment, one has to measure the phase of the chaotic trdjéctbignfever,
the phase is not always easily accessible information. To overcome this difficulty, it is important to understand
fundamental properties of phase synchronous systems that can easily be verified experimentally. For chaotic
systems that are phase synchronized with periodic forcdady [t was reported that a stroboscopic map of the
trajectory was a subset of this attractor and only partially occupies the region delimited by a projection of the
attractor. This property was used to detect, in a real-time experiment, phase synchronization between Chua’s circuit
and a sinusoidal forcindlf].

This approach of detecting phase synchronization through the stroboscopic map can be extended for coupled
chaotic oscillators in a formal way. The stroboscopic map is generalized tmitthtional Poincaré map. Given
two oscillators, at least one being chaotic, the conditional Pognweap is constructed by collecting points in one
oscillator at the moment at which some event occurs in the other oscillator. If the set of discrete points generated by
this conditional map does not visit any arbitrary region of a special projection of the chaotic attractor, we call this
set aP-set This property of the conditional Poinéamap is called non-transitivitylf], i.e. an initial condition
under the conditional Poindamap does not visit everywhere in a subspace of the attractor. Like the stroboscopic
maps of oscillators that are in phase synchrony with a forcing, the conditional Foimegrs of coupled chaotic
oscillators, in PS, also only partially occupy a projection of the attractor.

In this work, we show how the conditional Poinéamap can be used to detect PS without actually having
to measure the phase. For phase-coherent oscillators, a special type of P-set, which we call PS-set (Phase
Synchronization set), exists. Conversely, its existence also implies PS. We illustrate our findings and ideas with
numerical and experimental analyses in the forced Chua circuit and the coujdierRscillator 19].

Further, we extend these results to non-phase-coherent attractors. Finally, we also introduce a phase of a chaotic
trajectory to be a quantity related to the amount of rotation of the tangent vector. This definition can be applied to
chaotic attractors, independently of whether they have phase-coherent or non-phase-coherent dynamics.

This work is organized as follows. I8ection 2 we define a way of measuring the phase of a chaotic flow,
and discuss the relationship between the average return time and the average angular freqBentignli3 we
discuss the conditions for PS states andSettion 4 we describe the phenomenon of PS in the forced Chua
circuit. We introduce the notion of a conditional Poireanap inSection 5and the P-sets (as well as the PS-sets)
in Section 61n Section 7we show how PS can be found by detecting these sets in the forced Chua'’s circuit and, in
Section 8in the coupled Bssler oscillator. Further, iBection 9 we discuss the extension of these ideas to a class
of non-coherent oscillators. Bection 10we give some remarks and the conclusions of this workgpendix A
we formally introduce the conditional Poinéamap and the P-set, andAppendix Bwe show that, for coherent
dynamics, the PS-sets exist if, and only if, there is PS. In other words, PS implies PS-sets and vice-versa.

2. Phase, frequency and average return time of a chaotic attractor

The phase of a chaotic attractor in a projectjofa subspace) is defined as the amount of rotation of the tangent
vector in this projection, and can be represented by an integral function of the type
do(t’)

t
210 =f0 &

with df(t) being an infinitesimal displacement of the tangent vector of the flow, from titndimet + dt, and
dt — 0. Note that, in Eq(1), we are measuring the amount of rotation, per unit time, of a projection of the tangent

dt’ 1)
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vector of the flow, on the same subspgcehere the phase is defined. We call this subsgagceThe attractor
X, projected on the subspa#yg, is regarded ag’j. The instantaneous angular frequency of the trajectodjjin

namedw;, is given bydc;tﬂ. So, from Eq(1), Wj = “é—f', and the average angular frequeray; ) is

. d¢j
wy) = im (<45, @)
where(—) represents the average. E&) can be put into the forniw;) = w.

Whenever a Poincarsection can be defined, the average period of the chaotic attractor on the subsjsce
calculated by

> At}

i=0
N )

(Tj) = 3
whereAt! = r} — r}*l, and r} represents the time at which the trajectory in the subspgcmakes the-th
crossing with this Poincéarsection.

We introduce{A¢j) to be the average displacement of the phase for a typical period as

i (N
(Agj) = %, (4)

with ¢ (N) being the phase associated with the subsfigcat the moment that thal-th crossing between the
trajectory and the Poincassection occurs.
Thus, we can write Eq2) as
(Adj)
(W) = —2, 5

j ) (5)
For the forced Chua circuit, the subspéaeis defined by a suitable projection of the circuit variable. We have that
(A¢1) = 2m. So, Eq.(5) can be written agW;) = <2T_Z> For the coupled Bssler oscillator, the quantities in Eq.
(5) can be calculated in two subspaces: the subspaaessociated with the variables of oné$Rler system and
the subspac®, associated with the variables of the othésBler system. As shown i27], (A¢1) might slightly

differ from 27, and thugW;) = %
So, Egs(2) and(5) relate the average period, the average angular frequency, and the phase of a chaotic trajectory.
This shows that the average period (recurrence) and the average angular frequency are intimately connected il

phase-coherent chaotic systems, and both these quantities can be calculated from the phase.

3. Phase synchronization

Having defined phase, PS exists whenever the following condition is satisfied:
[p1(t) —r2(D)] < (Ag1). (6)

The minimal bound for the phase differen¢&¢;), in terms of the phase, as defined by ), was estimated
theoretically in Ref. 21]. Eq. (6) means that the phase difference between the two coupled systems is always
bounded, and is a rational constangp)].

Also,

(Wp) — 1 (Wp) = 0. @)
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In this work, we will consider cases for = 1. Otherwise, a simple change of variables could eliminate this
constant from Eq(7). For the forced Chua circuitvz) = w, with @ = 27 f representing the angular frequency
of the forcing. There is PS iW;) = w. Therefore(T;) = 1/f. For the coupled Bssler system, if PS exists, then
(W1) = (Wo), (R1) = (R2), and(A¢1) = (A¢2), and therefore, we could hava¢,) in the right-hand term of
Eq.(6) instead of(A¢1).

4. The sinusoidally forced Chua circuit

The circuit is represented by:

dX .
Clwl = g(X2 — X1) —inL (8)
dX
2# =g(X1— X2) + X3 9
L% = —X2 — V sin(wt) (20)

whereX1, X2, andXs represent, respectively, the tension across two capacitors and the current through the inductor
(see [L3] for more details), and andV are the angular frequency and the amplitude of the forcing, respectively.
The piecewise-linear functiaf_ is given by:

inL = MoXyg + 0.5(my — mo)[| X1 + Bp| — [ X1 — Bpl] (11)

where we have chosen the parame@ys= 0.1,g = 0.574,C, = 1,L = 1/6,mg = —0.5, andm; = —0.8, such
that we obtain a Bssler-type attractor, for = 0.

To calculate the phase of the chaotic trajectory, we first define the sub%hatebe given by the pair of
variables(X1, X2), and then we use Eql). In Fig. 1, we show the difference between the phase of the chaotic
circuit (as calculated using E(fL)) and the phase of the forcingt. In (a), the phase difference is bounded and the
average period of the chaotic attractor, defined as the average recurrence time of trajectories that cross the sectior
X2 =0, is equal to[T;) = 3.57015, which is equal to/¥, sincef = 0.2801. The average angular frequency can
be calculated using E¢5), which gives ugWi) = 1.75992. Or, from Eq(2), we have(W;) = 1.75992. Note that
the average growth of the phase (calculated usingd Bjjfor a typical average period is 6.28318. .., whichis 2
In Fig. 1(b), we have tha{T;) = 3.57006, which is different from jAf , sincef = 0.279. So, in (b) there is no PS,
and consequently inequalif@) is not satisfied.

In Ref. [13] we detected PS experimentally in the forced Chua circuit whenever stroboscopic maps could
be constructed for a time interval equal 20r; = % such that this map, projected into the same subspace
considered to calculate the phase, does not occupy the region occupied by the attractor projected into the same
subspace.

To understand this technique, we assume ¢hét), the phase of the chaotic trajectory, is the angle (on the lift)
described by the vector position of this trajectoryp&Rler-like attractor) ang(t) = wt is the phase of the forcing.

If Eq. (6) is satisfied at any time, then it is satisfied at multiples of the period of the forejng, IT So, we get

|¢1(ri1) — 2ri| < 27, which means that a stroboscopic map has to be concentrated in an angular section smaller
than 2r. The stroboscopic map, which is already a subset of the chaotic flow, projected into the same subspace
considered to calculate the phase, does not occupy the whole region occupied by the attractor projected into this
same subspace. Another property of the stroboscopic map is that points in it are mapped into it by looking at the
trajectory after a time interval given b1, so it is a subset that is recurrent to itself.

Using this technique, and for the same parameters3sfe show inFig. 2(a) the experimental synchronization
region for the forced Chua circuit in the parameter spacef . The triangular shaped region represents parameters
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Fig. 1. (a) Phase difference is always smaller thansd PS exists between the circuit and the forcingffoe 0.2801 andv = 0.0015. (b)
PS is not present and the phase difference grows bigger than 2
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Fig. 2. (a) Experimental PS parameter space. (b) Simulated PS parameter space. Black points represent parameters f@8 )i edtiEfied
for 120,000 crossings of the trajectoryX$ = 0. In both figures, the horizontal axis represents the forcing frequéranyd the vertical axis
its amplitudeV . Variables in (b) are dimensionless afglis the main frequency of the non-forced circuit.
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Fig. 3. A projection of the attractor in light gray, and its stroboscopic map in dark gray. The parameters &2801 andv = 0.0015in (a)
and f = 0.28063 andvV = 0.0016 in (b).

for which the stroboscopic map has points concentrated in an angular section smaller tffdre bump at the

bottom right-hand side of the PS region is due to non-synchronous states that present a long bounded phase
difference. In a typical time interval within which the experiment is realized, of the order of 40,000 cycles, the
system seemed to be phase synchronized, i.e. localized stroboscopic maps were found. In fact, we have detectec
these maps even for observation times corresponding to 150,000 cycles, in the region of the bump.

In short, the bump region is an extended structure in the circuit parameter space that presents intermittent
behavior in the phase differenc@4], but with a long laminar regime, even for parameters far from the
border between the PS and the non-PS region. This intermittency differs from the usual one, observed in the
transition to PS, in that the latter occurs very close to the border between the PS and the non-PS region.
The reason for this intermittency is due to the presence of a periodic window close to the region of the
bump.

A simulation is shown irFig. 2(b), where black points represent perturbing parameters for whicl{Ggdis
satisfied, with¢, defined in Eq.(1). One sees that the PS region resembles a triangle. The triangular shaped
region, denoted by the light gray dashed line, represents the region where the system is not phase synchronized,
but the phase difference remains bounded for a long time interval, which might be longer than 100,000 cycles of
the systems. So, we reproduce numerically the same atypical intermittency observed experimentally, i.e. a long
laminar regime in the phase difference, for parameter regions away from the border between PS and non-PS states.
This is associated with a periodic window, such as that shoviaign2(b).

The shape of the synchronization regiorfFig. 2(b) is equivalent to the region in the experiment, constructed by
detecting the stroboscopic maps contained within a small angular section. This proposes an equivalence between
the existence of a recurrent subset and the verification of@dnside the synchronization region, a stroboscopic
map appears as fig. 3a), where the light gray points represent the attractor, and the dark filled circles the map.
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Fig. 4. The Lyapunov exponent (and the error bars) associated with PS in black, and the quWéntityw in gray, for a fixed amplitude of
V = 0.0015 and a varying frequency.

Outside the PS region there are parameter sets for which the stroboscopic maps do not occupy the region occupie
by the attractor at the projection in which the phase is calculated. As one sE&s B{b) (for the parameters
represented by the plus symbolhig. 2(b)), there is a region of the projected attractor (indicated by the arrow)
which the stroboscopic map never visits.

The difference between the stroboscopic map that appears while there is PS in (a) and the stroboscopic map the
appears while there is not PS in (b) is that points of the stroboscopic map in (a) are all concentrated in an angular
section of the attractor. As will be classified further, the stroboscopic map in (a) is a PS-set and the stroboscopic
map in (b) is a P-set.

As a way to better characterize the PS phenomena in the Chua circuit, we calculate the Lyapunov exponents
As is usually expected, the transition to PS is associated with one of the exponents becoming smaller than zero
Since there is already one exponent that is smaller than zero, PS induces the creation of a second stable directio
in the Chua circuit. Prior to the transition to phase synchronization, this exponent was Z€igp.4nwve show the
exponent (and the error bars) associated with PS in black and the quvitity w in gray, for a fixed amplitude of
V = 0.0015, with respect to the frequency. In the region that the exponent becomes smaller théWpeto w,
satisfying Eq(7).

5. Conditional Poincaré map

The finding of maps of the attractor that appear as localized structures implies PS. The conditiona&Paapcar
introduced in this chapter as a generalization of the stroboscopic map is an efficient way of revealing the existence
of such special mappings.

The stroboscopic map technique defined for periodically driven chaotic systems was explained in the previous
sections. To extend the idea of the stroboscopic map in coupled chaotic oscillators, we came up with the conditional
Poincaé map, which is a map of the flow constructed by observing it for specific times at which events occur in
the subsystemg’j. An event is considered to occur when the trajectory of one subsystem crosses a&oincar
section. So, given two oscillato& and$ (at least one being chaotic) with trajectories in the subspaces where the



M.S. Baptista et al. / Physica D 212 (2005) 216-232 223

phase is defined, the conditional Poirecarap ofS; is the trajectory position at the moment that a series of equal
events happens ifp. Analogously, the conditional Poindamap ofS; is the trajectory position at the moment
that a series of equal events happens&inin the case of periodically forced chaotic systems, an event may be
defined as happening whenever the forcing reaches a specific value, and the conditionaé Paapciarthe usual
stroboscopic map, because the time interval between two events is constant. In coupled chaotic systems, the time
interval between two successive events is no longer constant.

We define a time series of evem]isby the following rule:

. r{ represents the time at which th¢h crossing of the trajectory & occurs in a Poincérplane.
e 7, represents the time at which theh crossing of the trajectory & occurs in a Poincérplane.

The discrete set of points observed at timfasiss called seD. This set, projected at the subspa#gs(where

the phase is calculated), is naniBgl. The conditional Poincarmap is represented BV}. So, we say thaD; is

the set of points generated EWJ! .
The next step is to define whén; can be regarded as either a P-set or a PS-set, this last set implying phase
synchronization.

6. Sets generated by the conditional Poinc&map

TheDj setis a P-set if it does not completely fulfill the projecti&i of the attractor. In other words, a discrete
setD;j is considered to be a P-set if, for balls of radidusentered in all points of the attractor projectiaf,
one does not find points @?; inside all these balls. ID; completely fulfill Xj, we say that these two sets are
equivalent (and we represent this by the symbplFor more details, se&ppendix A

So, a P-set exists if the conditional Poiranap is not transitive oit’j [18]. That is, the flow, observed by
the times for which the conditional Poinéamap is defined, does not visit arbitrary regionstjf Note that,
however, the attractor is chaotic, and therefore the chaotic set is always transitive through the flow. So, given a set
of initial conditions, its evolution through the flow eventually reaches arbitrary open subsets of the original chaotic
attractor.

We can classify three relevant types of sets generated by the conditional Boimeair

Type-a Dj is equivalent to¥j (Dj = &j). The conditional PoincérmapT’} is transitive inXj.

P-set Djis NOT equivalent to¥j (Dj # &j). The conditional Poincérmap is NOT transitive irj.

PS-set Dj is P-set, with the additional condition that it is localized in the vicinity of the Pomesaction chosen
to define the events.

In the following, we comment on each case.
6.1. Type-a sets

6.1.1. These sets appear whenever there is no PS

If two non-identical coupled chaotic systems (topologically similar) are not phase synchronized, the chaotic
trajectories do not make correlated events in both subsfacasdP,. As a consequence, while the trajectory is
positioned at the specified Poinégrlane at the subspa@, the trajectory in the subspag® is everywhere in
this subspace, making the gf equivalent taYj.

An interesting illustration is the case of two uncoupled equal chaotic systems, but with different initial
conditions. As we construct the conditional Poirecaraps, they will be a type-a set, since the distance between
the trajectories in the two oscillators is also sensitive to the initial conditions, and will diverge exponentially.
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6.2. P-sets

6.2.1. These sets constitute a necessary, but not sufficient, condition to describe PS

In periodically forced chaotic systems, these might appear when there is no PS. As we have already mentioned
the points in these sets are not localized in special spots of the attractor projection. As a consequence, the domai
of the absolute difference between the times at which the same number of events happen in both oscillators has
broad character.

6.3. PS-sets

6.3.1. PS-sets imply PS, and vice-versa

These exist, if and only if, there is phase synchronization, as showppendix Band illustrated with the
examples inSection 4and throughout this work. Another important point is that the PS-set provides a real-time
detection that can easily be implemented experiment8#iion 4 and constructed from a data set.

PS-set implies PS because the difference between the time at whidhtthevent happens in both oscillators is
small, which means that the time diﬁereﬂc@‘ — rz'\‘ | is smaller than a finite constant value. As a consequence, the
points in the conditional Poincaimap of one oscillator are confined around the Poieaction chosen to define
the events. Therefore, the detection of a PS-set can be performed by observing this characteristic of the conditiona
Poincaé map.

For Rossler-like oscillators, in which the trajectory spirals around an equilibrium point, the PS-set is confined
within an angular section.

6.4. Length of a PS-set

Having found the PS-set, we can study the properties of these sets that give us the level of organization and
coherence of the oscillators.

A PS-set,Dj, is said to have length 1 if the set is constructed by the time series of the same events. Defining
the event to be given by the crossing of the trajectory to a Paénaiane, the corresponding time series of events
M (1) is given byz], 7™t "2, %3, ... For this PS-set, points i} are mapped ifD; after one application of
the conditional Poincarmap.

A PS-set is said to have length 2 if it is obtained by a time series of two different events. So, a PS-set can be

constructed from a more complex series of events. We construct a length-2 basic set using a time series of event
I R 41 Q42

M;(2) given byr}, i +2TJ , r}*l, i JZFTJ ,...[25]. As an example, for the perturbed Chua circuit, the length-2

basic set is constructed by a stroboscopic map that collects points every half-period of the forcing. A length-2 basic

set is assumed to be composed by two other subsets, named minimal sets (thel%‘lhbed@}).

These have the property that, if a pokatis such thatkg € D?, this point, iterated by the conditional Poinear
map, goes to the minimal s@?; if xg is such thatxy e Djl, this point, iterated by the conditional Poinear
map, goes to the minimal sﬂjl. Thus, points inDj1 are mapped to itself after two applications of the conditional

Poincaé map. The minimal séb? is said to be disjoint to the s@? if they do not intersect, i.eD} N D? = ¢.
For some systems that present a strong phase-coherent state, such as those studied here in which the instantane
trajectory velocity does not differ too much from the average velocity on typical orbits, it is possible to find a
length-2 basic set, with disjoint minimal sets, when PS is present.

For a general case, we do not expect to find a length-2 PS-set with disjoint minimal sets. As an example, one can
think of a spiking-firing oscillator, phase synchronized with a periodic forcing. Due to the fact that the spiking-firing
dynamics have a fast mode and a slow mode, the conditional Peingss might overlap.
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6.5. Set diagram

Here we explain, through a diagram, the possible emerging sets from the conditional ®amapr

X
Dj
?
= X
&
5}

&j

Dj =

type—a —set

|

PS<—— PS-set

Starting from the chaotic attractdr, the setD is constructed from the conditional Poineéanap represented
by T; we projectD andX into the subspac®;, obtaining the set®; and.X’j, respectively.

We classify the seD; into type-a set or P-set by checking whether the conditional Pdmoap is transitive in
&j, i.e. by verifying the equivalence between the sEfsandD;. Then, if the P-set is localized in the vicinity of
the Poincak section where the events occur, the P-set is a PS-set, which means that PS is present.

7. PS-sets in the Chua circuit

For applying our formalism to the periodically forced Chua circuit, the event times rére =
i, with t representing the forcing period. The time series for the length-2 basic set is given by
1/2z, t, 3/21, 27, 5/21, 31, . . .. Everywhere inside the PS region, we find length-1 (as an exampl€jge&a))
and length-2 (as an example, $8g. 5@)) PS-sets, the latter with disjoint minimal setsFlg. 5a), the application
of the conditional Poinc&rmap in the minimal sdvg leads to the minimal s@%. Both sets form a length-2 PS-
set. Note that botﬁDcl’ andD% can be regarded as a length-1 PS-set. To our numerical precision, we have checked
that there are no basic sets beneath the synchronization region tip. This means that the type-a set is present for very
small but finite amplitude forcing. Outside the PS region, there is a P-set, i.e. a non-transitive conditionaEPoincar
map on the chaotic attractor projection. 3, # Xj. In this case, there is no PS. More examples of length-Q
PS-sets in the phase synchronous forced Chua circuit can be s&éh in [

8. PS-sets in the coupled Bssler system

We can use the formalism of the conditional Poilgcarap to study the appearance of PS in coupled chaotic
systems, as the two couple@dssler oscillators are given by:

X12 = —a12Y1 — Z1 + €(X2,1 — X1,2) (12)
Y12 = a1,.2X1 + 0.15y1 (13)
712 =024 2z1(X1 — 10) (14)

with @ = 1 andaz = a1 +5a. The index denotes systems 1 and 2. The subspgcaee defined bPj = (xj, yj).
In a coupled chaotic syster, (z;) does not increase uniformly, but it is given by the time the trajectory crosses
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Fig. 5. (a) Length-2 PS-set with disjoint minimal sets, in the forced Chua circuit, for the pararetefs2801 andv = 0.001. The PS-set
is constructed by the time seri&4; (2). (b) Length-2 PS-set with disjoint minimal sets, in the couplésdRer oscillators, for the parameters
€ = 0.01 andSa = 0.001. The PS-set is constructed by the time sevig§?).

the Poincag planey, = 0 (yp, = 0). For these times, and using the time seligg2), we construct the minimal
setsDf andD} (DI andD3). The parameters ate= 0.01 andse = 0.001.

In Fig. 5b), we show a length-2 basic set with disjoint minimal sets. The application of the conditional Boincar
map in the minimal seng leads to the minimal sdD%, and vice-versa. These two sets together form a length-2
PS-set, but each one separately can be regarded as a length-1 PS-set. The characteristic of these PS-sets is that
appear as localized structures around the Ponsaction chosen to define the events. As one can see, @g set
is localized in the neighborhood of the lig = 0, where the Poincarsection is chosen.

In fact, this length-2 PS-set with disjoint minimal sets (as well as a length-1 PS-set) is found everywhere in the
PS region, as shown iRig. 6. In it, filled squares represent parameters for which these special PS-sets are found,
and empty circles parameters for which PS exists.

A PS-set of length Q is detected us®§_1 in Eg.(A.2), from which we can check wheth’@rg occupies (type-

a discrete seD) the whole space occupied By;. The setB,(x) in Eq. (A.2) is constructed assuming squares of
size¢ = 1.5 in points of the seDS_l. In Fig. 6, we show a case fa@ = 2.

In Fig. 7(a), we show the attractor in the subspé&®e the subsett; in gray, and the discrete s& in dark
empty circles. In (b), we show a magnification of the box in (a). Note that neighborhoods of arbitrary points in
the trajectory ofY; (gray) always contain a point of the discrete #gt(dark empty circles). So, the saf is
equivalent to the séP1 and, therefore]; is not a PS-set, and therefore it does not exist PS. In contrast to the Chua
circuit, the Rossler coupled system presents no P-sets for parameters outside the PS region.

9. Extension to other coupled chaotic systems

The approach presented in this paper can be extended for non-coherent attractors. As noticed2id], Ref. [
attractors that present non-coherent phase motion in the phase space may present a coherent motion in the space
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Fig. 6. Empty circles show parameters for which PS exists, detected hg)f-aqnd filled squares represent parameters for which a length-1
PS-set appears simultaneously with a length-2 PS-set with disjoint minimal sets. The horizontal axis represents parameter mismatch and the
vertical axis the coupling amplitude.

Fig. 7. We show a situation where PS is not founddes 0.01 andSa = 0.00001. In (a), we show the attractor in the subspaggthe subset
Xy in gray, and the discrete sB; in dark empty circles. In this figurd) is a type-a set, sinc& visits every neighborhood of points iy
(the conditional Poinc&rmap is transitive irk’y). In (b), we show a magnification of the box in (a).

the velocities, i.e(X, y), which is the case of the funnel attract@f]. In this case, the extension of our approach
to the non-coherent phase motion is straightforward. Instead of defining a conditional Bomagain the phase
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space, we analyze the dynamics in the velocity space, in which the phase is coherent, and therefore all the idea
introduced herein can be applied in this new space.

For some chaotic attractors, it might not be possible to define a Péiseation to construct the conditional
Poincaé map. However, one can still construct these conditional maps by defining different types of events. For
example, in coupled neurons, this event can be chosen as the beginning or end of the bursts, which can be define
well by the crossing of the trajectory with some given threshold.

10. Conclusion and remarks

A chaotic set is always transitive through the flow. So, given a set of initial conditions, its evolution through the
flow eventually reaches arbitrary open subsets of the original chaotic attractor. However, a stroboscopic map of the
flow, whose generalization here is called a conditional Pogaap, might not possess the transitive property. That
is, given a set of initial conditions, its evolution through the conditional Poto@pmight not reach arbitrary
open subsets of the chaotic attractor.

The introduction of the term “conditional” in the map nomenclature comes from the unconventional and non-
rigid way we adapt the established definition of a stroboscopic P@moap. For coupled chaotic oscillators, this
conditional map is constructed on the basis of events that are conveniently chosen at the same subspaces where t
phase of a chaotic system is defined. In addition, the application of this map through the flow, which results in a
discrete set, is inspected not in the whole phase space but in the same subspaces where the phase is defined.

If phase synchronization exists, the conditional map generates special discrete sets, named PS-sets. The contra
is also true, i.e. a PS-set implies phase synchronization. This was illustrated in the periodically forced Chua circuit,
in the coupled Rssler oscillator, and in other more general (topologically equivalent) coupled chaotic systems.

The ideas introduced here provide an efficient way of detecting phase synchronization without having to actually
measure the phase of the chaotic trajectory. Indeed, this detection can be performed in experiments in real time, a
was done here in the perturbed Chua circuit.

It is worth saying that the PS-sets are robust under small additive noise that could corrupt the data in an
experiment. This is so because a small additive noise does not interfere much with the time that the trajectory
crosses the Poindasection, but just deviates the timing of the crossing. Then, the PS-sets remains. This robustness
against the noise is an important property for applying these ideas in experiments, as is done in this work.

We have also introduced the phase as a quantity that measures the velocity of rotation of a projection of the
tangent vector along the trajectory. This definition can be applied to arbitrary flows, independent of whether or not
they present coherent or non-coherent phase dynamics.

Finally, our formalism for the conditional Poinémap can be used in coupled maps (or perturbed) to detect
synchronous behavior (n@hase synchronization) between the systems (or between the forcings) for the case
where one does not find full synchronization between the maps. One particular example where this happens is in
the periodically forced logistic equatio@7] or for a system of coupled logistic mapad], where one can find a
finite number of synchronous chaotic subsets (the basic sets).
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Appendix A. The conditional Poincaré map and theD; sets

Next, we present some formalism using elements of Ergodic Theory in order to introduce the conditional
Poincaé map and th®; sets.
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Given a flowF¢, we call X the chaotic attractor. A subset of the attractor is its projection on the subBpace
which we callXj. We assumet’ € RY.
The notion of the stroboscopic map of a flow can be generalized to any temporal translation on the trajectory.

We define the temporal translation to be a transformation represenﬂéﬂ byalled the conditional Poincamap.

The initial conditionX(t) is iterated under the temporal transformatibh to the pointX(t + r}). Applying the
transformationT 7 in a typical trajectory for the time sequende 7; ™, ;"2 gives us the point&(r)), X(z} ™),
andx(z; ). So,X(r; 1) is the pointx(z}) integrated by the flow for a time interval given by — z!. Applying
the transformatioﬁ'rl! for an infinite series of} ,thatis,i = 1,2, 3, ..., 0o, gives us a discrete set that we call
The projection ofD on the subspac®; is namedD;.

Now, we introduce the notion of transitivity. Let us assume that we have a chaotit $ett us choose two
disjoint subsetd3 andC in A. So,BNC = @. There is a transformatioR that generates the sgt, with the
property thatT (B) = C and F(C) = B. So, clearly the transformatioR and itsn-fold application(F™) can
always place an arbitrary initial condition, belonging eitheBior C, anywhere in the sedl. This property makes
the transformatiork transitive in the sefd. However, the conditional Poindamap might no longer be transitive.

For example, in the case of the-fold of the transformatiorT, i.e. T2", given an initial condition in the set
B, its iteration byT 2" will never reach the sef. Therefore, the conditional PoinéamapT?" is not a transitive

transformation in the sed. In the case of flows, we have seen that the temporal transformation represem’éd by
whenever PS is present, does not place arbitrary points of the attractor everywhere in theXubbtts chaotic

attractor. Therefore, if PS is present, the transformafibris not transitive to this subset of the attractor.
The conditional PoincérmapT’i is topologically transitive in a sed [29] if, for any two open set8, C C A,

3¢l /TH(B)NC # 0. (A1)

To detect whether the conditional Poinganap is transitive in some subset, we introduce the notion of equivalence.
Two setsA andB are (not) equivalent (where equivalence is represented by the sgmbald non-equivalence by
#) if they (do not) occupy the same neighboring space. In a more general way:

Definition 1. Two sets4 andB are equivalentd = B, if Vx € A, a setC can be constructed by the union of open
setsBy(x), openRY volumes centered atwith length¢, such thavy ¢ B =y € C, and A # Bif y ¢ C.

Definition 2. The setD is a P-set ifXj # D;.

Definition 3. If Dj can be decomposed into a collectiby = D?, Djl, . ..DJQfl of subsets oft]j, with Q > 1,

such that a point iﬂ)ij iterated by the conditional Poindamap goes t@ij“(mc’d Q) we refer to each minimal set

Di]- as arecurrent decompositionin the particular case where we hald! — ¢/ =1 (constant), this minimal set
is aperiodic decompositiariThe number of set® is called thdengtho# the decompositiondQ].

Proposition 1. If T is transitive inXj, thenDj = Xj.

Proposition 2. If T is non-transitive int;j, then a subset! can be constructed such thdtc &j and A # &j.

Proofs ofPropositions IJand2 can be performed by using E@\.1) and the definitions.
Definition 3can be understood from the PS-set of length-1 and length-2 considered in this work. If the length-1
PS-set is constructed by the time ser"a]i:sr}“, t}*z, r}+3, ..., the length-2 PS-set is obtained from the time
RS PR i+1, _i+2
series given byr}, T'+ZT' ,r}“, i ;T' ,... [25]. For the particular case of a periodically forced system,
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|1+1 rizl/f, so the length-1 PS-set is the standard stroboscopic map that collects points every period of the

forcing. The length-2 PS-set is constructed by a stroboscopic map that collects points every half-period of the
forcing. For the length-2 PS-set, we have two minimal sets, thd‘ﬂé‘emdl)»l, with the property that, ikg € DY,
this point iterated by the conditional Poinéanap goes ta)jl andDj1 goes toD?, under the conditional Poindar
map.
To check whetheD; # X, we perform the following: fox € X there existy € D; such that

y N Be(X) =0, (A.2)

whereB; (X) is an open ball of radius centered at the point. § is a small positive value.

Appendix B. The PS-sets

In this appendix, we show that a PS-set exists if, and only if, phase synchronization exists; in other words, PS-set
implies PS and PS implies PS-set.

Given a dynamical systeM’ = G(Y), and letF! be the flow andt the attractor generated by it, we suppose
that we have chaotic dynamics from now on. gtbe the Poincdr section in the subspa@y, and letll; be the

. i+1 .
Poincaé map associated with the sectigh, such that, given a pomt' € E,, Xttt = = II; (x'j) = FATJ! (x'j).
From now on, we use a rescaled tite=t /(T;). For a slight abuse of notatlon we omit the symhbol

Proposition 3. Given two interacting oscillators, PS-sets can be constructed if, and only if, phase synchronization
is present.

To show thdf in the preposition, let us start by considering that the time interval associated with the return of
the pointx! to the pointxit1is A7l Tt = ¢+ — 7}, with r'“ being the times at which the subsystéfpcrosses
the Poincag sectiony; in the subspac®;.

As has already been introduced, the average return time is givem;by= M = 4 and the time is
rescaled such thal;) = 1. Our hypothesis is that the subsystéinhas a phase- coherent oscillation, so there is a
numbers;j for which the following holds $1]:

T = NJ < ;. (B.1)

The numbesj < 1 measures the coherence in the phase oscillation, and is linked to the phase diffidibn [
This equation holds for al, so it implies that, for a single oscillation, it is also true that' (Tj) < éj.Inthe
case of two systems that present PS, the following hddis [

o — | < 83, (B.2)

with 83 < 1. This equation implies thanril — Ar£| < &3, which states that the time intervals in a single oscillation
are strongly related in phase synchronization.
Let us introduce a new variable that measures the difference between the time interval of two edgraadn
Xy. This new variable it} , = At) — Aty. From Eq.(B.2), itis true thaf At} ;| < &a.
Now, we analyze one typical oscillation. Given the following initial conditiotfs e X1 and xg e X,
we evolve both untile returns toX;. In other words, we evolve both initial conditions for a timezl. So,
FAfz}(xf) = IL(x)) = x} € 21 Analogously,FAle(xg) = FA’11+A’21,1(XS) — FA%21, FAfll(xg) = FAril(le).
Now, we use the fact thanré’ﬂ < 83, and write that

FA21(xd) ~ X + G(d)ds. (8.3)
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So, given an initial condition itk (subsystenit;) evaluated by the time intervalré (of subsystentty), it returns
near the sectiot;.

For a general case, we have to show that an initial condition, on the ségti@volved by the flow for the time
ZiN=0 AT, 4 still remains close to this section. In other words, we have to show that the approximation(B1&q.

is valid for an arbitrary number of evenlisin the subspac&>. Now, noting thaEiN:0 Afé.l = er - th , from our

hypotheses of phase-coherent dynann@”=0 Afz'\,lﬂ = |r2N — rlN| < §3. The same arguments that were used to
derive Eq(B.3) for one oscillation can be extended to an arbitrary nunibeso we prove thé& of the proposition
(PS implies the existence of PS-sets).

Now, to show theonly if (PS-sets imply PS), let us say that there is a PS-set. As a consequen(i®. 2kt
valid. Then, using the definition of phase cohererg&® nd noting that in PS the average return times in a given
Poincaé section are the same, we see that (BoR) comes from the boundedness of the phase, concluding the
proposition.

Furthermore, let us suppose that the trajectories of the oscillators are perturbed by a small perturbation that does
not destroy the phase synchronous dynamics. The effect of the small perturbation in the return time of the trajectory
to a Poincak section is to deviate this time according'I_Tp = Tj' + &, wheresj! represents the perturbation in

systemS; at the moment of thi-th event, with ma,x|§} | < k. Under these hypotheses about the perturbation, we
conclude the following result.

Proposition 4. The PS-set is robust under perturbations.

This result shows that a PS-set can be constructed in PS states. Moreover, for the cogpled|Re systems,
this result states that this set is confined in an angular region, which is a consequencBo2)Xq.
To see the relationship between the constaraind the size of the PS-set, we perform the following. From
the time normalization, the average time interval between points in phase space is proportional to the distances
between them. So, from E¢B.3), we writedz = |H|/G(xg), with H being the average half-length of the PS-set.
A rough calculation shows that, in our experiment with the Chua circuit, we havé4tmat1/2.5, and for the
coupled Ryssler oscillators we have thaf ~ 1/2.1. These results agree completely with the theoretical approach
in [21].
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