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ABSTRACT

The main topological changes of the logistic map attractors, caused by a sequence of periodic
kicks, are reported. This procedure brings up a three-parameter kicked logistic map with distinct
dynamic features. Thus, its parameter space structure exhibts highly interleaved sets with different
attractors, and complex basins of attraction are created. Consequently, the logistic map attractors
can be modified or suppresed by these perturbations. Furthermore, additional roads to chaos, and
abrupt attractor changes are identified in the new bifurcation diagrams.

1. INTRODUCTION

In the last years, much work has been done in many scientific disciplines such as Physics,
Engineering, Chemistry, etc. in order to investigate the response of periodic and chaotic systems
to aplied periodic forces!%. Significant knowledge has been obtained from this work : chaos can
be suppressed by external forcing®, and striking changes in the dynamics occur even for weak
perturbations*. However, despite all the recent remarkable progress, this subject is still far from
being fully explored.

Although familiar concepts such as bifurcation diagrams, attractors, basin of attractors, etc. are
fundamental to investigate the dynamical systems in terms of the variables governing the dynamics,
the structure of parameter space can indicate some important characteristics of these systems®®.
Thus, it seems worthwhile to look for sets of parameters for which dynamical systems present similar
characteristics such as periodicity, topology of attractors, etc.. Such analysis has been applied to
unidimensional maps with three parameters™®. A particular cut in the parameter space, fixing
two parameters, leads to bifurcation diagrams by plotting the corresponding variable values as a
function of the third parameter. In fact, this procedure is a particular case of a more general useful
tool, isodiagrams, recently introduced to extract information from the parameter space of dynamical
systems®.

In the treatment of nonlinear dynamics, usually described by differential equations, nonlinear
problems are often reduced to discrete maps by the Poincaré section. In particular, unidimensional
maps have been the object of increasing interest, both due to their intrinsic mathematical richness
and to the large number of dynamical systems which experimentally display transitions into chaos
via the universal bifurcation scenario?.
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The most extensively studied of these maps is the logistic map? :

Xop1 = 0X,(1 - X,,), (1)
where n > 0 and 0 < b < 4.

Other similar unidimensional maps have been used to investigate relevant characteristics of
nonlinear systems as, for example, the new roads to chaos’, the creation and destruction of periodic
orbits?, the control of chaos!!, the periodic entrainment!?, and the coupling between maps'®.

In this paper we consider the logistic map perturbed by a sequence of kicks with a costant
amplitude q and a period t:

Xn+l = bXn(l —X11)+(16n,t (2)

where 6,, = 1 if 2 is an integer and 0 if not. This kicked logistic map exibts a new specific
dynamics”.

The aim of the present work is to study numerically the control of the logistic map oscillations
through these kicks, and to investigate the dynamical alterations introduced by these pertubations.
Thus, we present, for fixed kick periods, the structure of the two-dimensional parameter space,
b x ¢, with components corresponding to periodic or chaotic attractors. Furthermore, suppression of
chaos, periodic entrainment, roads to chaos, and other dynamical properties are shown in bifurcation
diagrams.

2. NUMERICAL ANALYSIS
For the quantification of chaos and order, the Lyapunov esponent®

1 & 0Xan .
A= lim — —ntl (3)
N—oo N ; | 0X, |
is calculated for the kicked logistic map trajectories. Unless stated otherwise, the first value of the

iteration is set to X, = 0.2 in this work. The order (i.e. predictability) is indicated by A < 0. The
chaos (i.e. sensitive dependence on initial conditions) is indicated by A > 0.

A double precision arithmetic was used throughout the work. Before applying Eq.(3), 1000
iterations were performed in order to allow transient to die away; after that satisfactory convergence
of X\ was achieved by setting N = 40000. Furthermore, an initial transient of 100000 iterations
has been left out of considerations of the bifurcation diagrams, which have been done with 200
consecutive points for each value of the varying control parameter.

3. STRUCTURE OF THE PARAMETER SPACI

In this section we discuss the structure of sets of parameters b. ¢, and t. characterized by chaotic
or periodic oscillations obtained from Eq.(2).
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Examples of these structures are schown in Figs. 1 and 2. In these figures the points with
g = 0 stand for the logistic map; the others illustrate modifications, caused by the periodic kick
perturbations, on the umperturbed orbits.

For each of these figures, the Lyapunov coefficients of 90000 points (300 x 300) in the plane b X ¢
were calculated. Points with A > 0 (in black) and A < 0 (in white) form complex interconnected

sets. This can be better seen in Fig.3 , which shows magnifications of two small areas indicated in
Fig.2.

Forg>1- % the system is not, in general, limited to X values in the interval 0 < X < 1,i.e., no
finite attractor exist, and X is driven to infinity. Despite this, even in these parameter space region,
there are sparse thin sets of points standing for chaotic or periodic attractors (Fig. 3A). For these
figures, A was recalculated, considering a transient of 3000 iterations and N = 100000, without any
change in this observed structure. Nevertheless, besides their kick periodic dependence, the position
and the structures of these sets depend also on the initial conditions X.

The basins of attraction, typical of the previous mentioned region, can be illustrated by peculiar
broken biffurcation diagrams, with sparse periodic and chaotic attractors separated by white parameter
regions without chaotic attractors. Fig. 5 shows two of these diagrams, corresponding to a fixed q
line in the Fig. 3A, obtained for two different initial conditions X,. The slight differences observed in
these figures are examples of the oscillatory mode alterations and of the modifications in the basins
of attraction as X, is changed.

b
4

1 4 1 4
51+ 1+E(q—1))>X>§(l—\/1+Z(q——l)). (4)

Thus, attractors exist for initial conditions if their transitory orbits do not intercept any points
inside the interval determined by the condition (4).

To parameters satisfying the condition ¢ > 1 —
points in the interval

correspond orbits that diverge after visiting

4. ROADS TO CHAOS

As it can be seen from the parameter space structures, the introduction of the new two control
parameters, q and t, can alter the logistic map attractor. In this section we describe alterations,
caused by the kick sequences, on the well known period-doubling road to chaos observed on the
logistic map orbits?.

In order to investigate the roads to chaos, magnifications of bifurcation diagrams in appropiate
parameter sets have been examined.

Figs. 6,7, and 8 show typical bifurcation diagrams obtained for t=2, and b or ¢ as the second
fixed parameter. Since the parameters in these figures satisfy the condition ¢ < 1 — IZ , their observed
attractors do not depend on the initial conditions X|.
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Figs. 6 and 8 show period doubling cascades to chaos, with sequences of periodic orbits with
periods 2/ (j=0,1,2,---). These orbit periods increase geometrically inside each window, as for the
logistic map?. Long period non chaotic orbits, observed in descontinuous maps'*, were not found.

Fig. 7 shows inverse cascades, as it has been observed for descontinuous unidimensional maps®!*'%
However, the observed orbit periods decresase only geometrically, with no arithmetically period
increase (by adding the first element to the previous window), as in descontinuous maps”'®. On the
other hand, inverse cascades were not observed, for fixed t and ¢, in the bifurcation diagrams with
b as the growing parameter.

The finite attractor disappearance® and abrupt entrances into chaos were observed in growing q
bifurcation diagrams.

In the investigated diagrams, the period p stable orbits, p = Nt (N=1,2,3,---) ,appear as a result
of period-doubling bifurcations or they proceed away from chaos (in this last case p can also be odd).

5. CONCLUSIONS

The investigated kicked logistic map exhibts, among other properties, the suppression of chaos
observed in the umperturbed logistic map, the periodic entrainment, and the creation and destruction
of periodic orbits. This map has highly interleaved basins of attraction on the phase space, and
highly interleaved regions with different attractors in the parameter space. Besides the transitions
into chaos via Feigenbaum scenario, the obtained bifurcation diagrams show. for specilic regions in
the threedimensional parameter space, other roads to chaos.

As it was seen in this paper, the control of the logistic map orbits, through a sequence of periodic
kicks, alters the dynamics of the umperturbed system. However, it is also possible to control these
orbits, without altering the dynamics, by applying the method developed by Ott, Grebogi, and
York!:1® which converts a chaotic attractor to any one of a large number of possible attracting
periodic motion by making only small time-dependent parameter perturbation.

Intermitency has been also investigated in the kicked logistic map, and its occurrance is useful to
control the orbits, since in this regime very small b or ¢ variations aflect significantly the attractor
topology.
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Fig.1 Attractor regions in the para-
meter space for kick period t = 2.
Black(white) pixels represent points

with A > 0 (A < 0), and gray pixels

represent points without limited

attractor.
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Fig.2 Attractor regions in the para-

meter space for kick period t = 3.

Black(white) pixels represent points

‘é with A > 0 (A < 0), and gray pixels
% represent points without limited
g attractor.
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3.92 Fig.3 Magnifications of two regions
indicated by squares in the Fig.2 ,
for X0=0.2 and t=3.
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3.92 Fig.4 Magnifications of two regions
indicated by squares in the Fig.2 ,
for Xo0=0.3 and t=3.
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Fig.5 Broken bifurcation diagrams
corresponding to q=0.054 indicated
in Figs. 3A and 4A for Xo =0.2 (A)
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Fig.6 Bifurcation diagram and Lyapunov coefficient,A,for g=0.04,t=2.
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Fig.7 Bifurcation diagram and Lyapunov coefficient for b=3.6, and t=2,
showing inverse cascades.
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Fig.8 Bifuraction diagram and Lyapunov coefficient, A, tor b=3.4, and

t=2, showing routes to chaos.
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