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Transport barriers and directed transport in the rational standard nontwist map
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We explore the dynamics and transport properties of the rational standard nontwist map (RSNM), which
works as an extension of the standard nontwist map (SNM). In addition to the usual parameters of the SNM that
govern the twist function profile and the intensity of the nonlinear perturbation, we introduce a new perturbation
parameter μ in the RSNM, which makes it possible to break the symmetry of the system. The symmetry
breaking leads to directed transport, known as the ratchet effect, where chaotic orbits exhibit a preferential
direction of motion. We analyze the impact of μ on both the phase space and the parameter space structure,
focusing on the destruction of transport barriers, which acts as separators between chaotic regions. Through
numerical simulations and analysis of the fixed points stability, we demonstrate that an increase in μ enhances
the chaotic volume in the lower half of the phase space, resulting in the destruction of invariant spanning curves,
while simultaneously regularizing the upper half. Additionally, we explore the conditions under which partial
transport barriers persist and their role in moderating transport across the phase space. We show that even small
variations in a control parameter causes crossings of invariant manifolds from different regions of the phase
space, enhancing transport with the mechanism of turnstiles and intercrossing. Our analysis of directed transport
reveals that the breaking of symmetry by μ results in either positive or negative net transport in the phase space,
depending on the control parameters. We also note that RSNM creates new regions within the parameter space,
referred to as holes, due to the emergence of transport within previously null transport regions.

DOI: 10.1103/PhysRevE.111.034203

I. INTRODUCTION

Hamiltonian systems are fundamental in understanding a
wide range of physical phenomena, from celestial mechan-
ics [1–4] to plasma physics [5–8]. Within this framework,
the study of area-preserving maps serves as a powerful tool
for investigating chaotic dynamics and transport properties
[9]. A well-known example of an area-preserving map is
the Chirikov-Taylor map, or standard twist map (STM) [10],
which has garnered significant interest because many nonin-
tegrable Hamiltonian systems can be locally approximated by
it [11,12]. As a result, its dynamics are often representative
of the broader class of such systems. A key characteristic
of the STM is that it satisfies the twist condition, which
means that the rotation number changes monotonically with

*Contact author: r.baroni@unesp.br

the action variable. Systems that violate the twist condi-
tion are called nontwist, and many physical phenomena are
modeled by such systems, as transport in atmospheric flow
[13,14] and magnetic field lines and transport in plasma
physics [6,15–17].

The proofs of many results of Hamiltonian nonlinear dy-
namics require the twist condition to be satisfied at every point
of the phase space [18–21], such as the conventional KAM
theorem, the Poincaré-Birkhoff theorem, and Aubry-Mather
theory. Though there are KAM results for nontwist maps [22],
phenomena that are typical of twist systems may not occur in
nontwist systems, and new phenomena may also be observed
[6,23–25]. Due to the nonmonotonicity of frequencies in non-
twist systems, there are extreme values in the rotation number
profile. The extreme frequency tori are known as shearless
curves, which are robust transport barriers because they divide
the phase space and are resilient to perturbation, roughly being
the last tori to be destroyed.
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Another property of nontwist systems is the observation
of orbits with the same frequency at each side of the shear-
less curve. This leads to twin or isochronous resonances
[24], which are island chains around periodic orbits with
the same period. While in twist systems the interaction of
nearby separatrices of resonance islands produces a chaotic
layer, a phenomenon known as Chirikov’s resonance overlap
criterion [18], this is not necessarily the case in nontwist
systems. The separatrices of twin islands in the vicinity of the
shearless curve can suffer reconnection processes that change
the topology of the phase space without generating chaotic
regions [6,24,25]. Twin periodic orbits can also collide and
annihilate [6,25].

The question of transport in nontwist dynamics is of great
interest due to the nature of the phenomena modeled by
this class of systems. The quantification of the motion of
collections of initial conditions in the chaotic phase space
is relevant, for instance, to determine mixing rates in fluid
systems [13] or particle confinement in fusion devices [5–8].
In twist systems, it is known that the remnants of broken
tori—known as Cantori [26,27]—form robust partial trans-
port barriers. The Cantori are invariant Cantor sets, and the
transport through their gaps can be explained in terms of
turnstiles, lobes generated by the crossing of invariant man-
ifolds that are mapped to different phase space regions. The
existence of shearless Cantori is still unproven [27], but after
the breakup of a shearless barrier the transport in its vicinity
can be enhanced or mitigated as the parameters are adjusted
[23,28]. This phenomenon can also be analyzed by means of
the turnstiles [23,28,29].

One of the most studied nontwist system is the standard
nontwist map (SNM) [13,25], which has been extensively
used to explore the general behavior of transport barriers,
chaotic seas, and invariant curves in systems with nonmono-
tonic rotation number profiles.

Here, we introduce the rational standard nontwist map
(RSNM), a generalization of the SNM with an additional
parameter μ, which modifies the perturbation and breaks the
discrete symmetry of the map.

The rational perturbing function was previously considered
in the rational standard twist map (RSTM), a generalization of
the STM [30]. While the perturbation in the STM and SNM is
driven by a single harmonic oscillation, the perturbation in the
RSTM and RSNM presented in this work is driven by a full
harmonic spectrum [30]. The symmetry breaking induced by
μ is of particular interest because it induces unbiased directed
transport, known as the ratchet effect [31–33], where orbits
exhibit a preferential direction of motion in the absence of a
biasing external force. Thus, the RSNM provides a richer and
more versatile framework for studying transport phenomena
in nontwist systems.

In this paper, we investigate the dynamics of the RSNM,
focusing on how the parameter μ affects the structure of phase
space and the transport properties of the system. We begin by
exploring the general behavior of the RSNM and comparing
it with the SNM Sec. II, where we introduce the map, discuss
the effects of the symmetry-breaking parameter and analyze
the fixed points of the system. We also analyze the phase
space of the RSNM for various parameter values, highlighting
the changes in chaotic domains and the stability of invariant

structures. Section III delves into the role of transport barriers
and examines how they evolve as the parameters are varied.
We also explore how partial transport barriers influence the
dynamics of chaotic orbits and analyze the conditions under
which the ratchet effect occurs. The paper concludes with a
discussion of our findings in Sec. IV.

II. THE RATIONAL STANDARD NONTWIST MAP: FIXED
POINTS AND PHASE SPACE STRUCTURE

Many area-preserving maps can be described in the
form [18]

yn+1 = yn + ε f (xn, yn+1),

xn+1 = xn + α(yn+1) + εg(xn, yn+1), (1)

with the area preservation condition ∂ f
∂yn+1

+ ∂g
∂xn

= 0 and (y, x)
a pair of canonical variables. Such maps are usually derived
from a periodically kicked Hamiltonian as

H (x, y, t ) = H0(y) + εH1(x, y, t ), (2)

where H0 is the unperturbed Hamiltonian, H1 is the nonin-
tegrable kicked perturbation with intensity controlled by ε.
Then, the functions f and g in Eq. (1) are partial derivatives
of H1 with respect to x and y, respectively. The unperturbed
frequency of the system is given by α(y) = ∂H0(y)

∂y . The nonde-
generacy condition for the frequencies of a Hamiltonian flux is
∂2H0
∂y2 �= 0, which corresponds to the twist condition for maps:

∂xn+1

∂yn
�= 0.

The standard nontwist map (SNM) can be derived from the
Hamiltonian

H (x, y, t ) = a

(
y − y3

3

)
+ b

2π
cos(2πx)

∞∑
n=−∞

δ(t − n),

(3)
which provides f (x, y) = −b sin(2πx), g(x, y) = 0 and the
quadratic twist function α(y) = a(1 − y2). This results in the
SNM as introduced in Ref. [13].

yn+1 = yn − b sin(2πxn),

xn+1 = xn + a
(
1 − y2

n+1

)
mod 1, (4)

where a and b are positive real-valued parameters. The param-
eter a governs the nonmonotonic profile, while b determines
the amplitude of the nonlinear perturbation. From Eq. (3), it
is evident that the spatial dependence of the perturbation is
characterized by a single harmonic. In contrast, the rational
standard nontwist map (RSNM) can be obtained from the
Hamiltonian

H (x, y, t ) = a

(
y − y3

3

)
− b

2πμ
ln(1 − μ cos(2πx))

×
∞∑

n=−∞
δ(t − n), (5)

which provides f (x, y) = −b sin(2πx)
1−μ cos (2πx) , g(x, y) = 0 and the

same twist function as the SNM, α(y) = a(1 − y2). The cor-
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responding map is

yn+1 = yn − b
sin(2πxn)

1 − μ cos (2πxn)
,

xn+1 = xn + a(1 − y2
n+1) mod 1, (6)

where 0 � μ < 1. If μ = 0 in Eq. (6), the SNM (Eq. (4))
is recovered. A Fourier expansion of the nonintegrable part
of the Hamiltonian given by Eq. (5) shows that it includes
all harmonics in x, with the expansion coefficients decreasing
geometrically. For example, see the Appendix of Ref. [30].

A map M is symmetric with respect to a transformation
T if T M = MT is satisfied. The SNM obeys the following
discrete symmetry transformation [25]

T = (x ± 1
2 ,−y). (7)

Applying the transformation (7) to the RSNM (6) to verify
the condition T M = MT , we find

[
xn + a

(
1 − y2

n+1

)] ± 1

2
=

(
xn ± 1

2

)
+ a

(
1 − y2

n+1

)
,

−
[

yn−b
sin(2πxn)

1− μ cos (2πxn)

]
=− yn−b

sin(2π (xn± 1
2 ))

1 − μ cos (2π (xn± 1
2 ))

,

(8)

and noting that sin(2πx + π ) = − sin(2πx) and cos(2πx +
π ) = − cos(2πx),

xn + a
(
1 − y2

n+1

) ± 1

2
= xn + a

(
1 − y2

n+1

) ± 1

2
,

−yn + b
sin(2πxn)

1 − μ cos (2πxn)
= −yn + b

sin(2πxn)

1 + μ cos (2πxn)
. (9)

The second equality in Eq. (9) only holds for μ = 0.
Choosing μ > 0 breaks the discrete symmetry of the map.
The breaking of a spatial and/or temporal symmetry in Hamil-
tonian systems induces transport in a preferred direction in the
phase space [31]. This phenomenon, known as the ratchet ef-
fect, has been observed in area-preserving mappings through
a modified SNM that includes an additional resonant per-
turbation [33], as well as in drift motion E × B in toroidal
plasma [34].

The fixed points of the RSNM are found with the con-
ditions yn+1 = yn = y∗ and xn+1 + m = xn = x∗, where m is
an integer number due to the periodicity of the variable x
and (x∗, y∗) the coordinates of the fixed point. From Eq. (6),
we see that the first condition is satisfied by x∗ = 0 and
x∗ = 1/2, and the second condition by y∗ = √

1 + m/a and
y∗ = −√

1 + m/a. Therefore, for each integer m, sets of four
fixed points are found. We compactly write the fixed points as

z∗
nm± = (x∗

nm±, y∗
nm±) =

(
n

2
,±

√
1 + m

a

)
, (10)

where n ∈ {0, 1}. These fixed points are also fixed points of
the SNM, but in the RSNM their stabilities are affected by μ.
The stability of a fixed point can be assessed by computing
the residue [35], defined as

R = 1
4 (2 − trJ ), (11)

TABLE I. Residues of the fixed points of the SNM and of the
RSNM. Although the fixed points coordinates are the same for both
maps, their residues differ.

Fixed
point SNM Residue RSNM Residue Stability

z∗
0m+ −πab

√
1 + m

a
πab
μ−1

√
1 + m

a Unstable
z∗

1m− −πab
√

1 + m
a − πab

μ+1

√
1 + m

a Unstable
z∗

0m− πab
√

1 + m
a − πab

μ−1

√
1 + m

a Parameter-dependent
z∗

1m+ πab
√

1 + m
a

πab
μ+1

√
1 + m

a Parameter-dependent

where J is the Jacobian matrix of the map evaluated at the
fixed point. The orbit is stable for 0 < R < 1. For the RSNM,
the elements of the Jacobian matrix are

J11 = 1, (12)

J12 = − 2πb cos(2πx)

1 − μ cos(2πx)
+ 2πbμ sin2(2πx)

(1 − μ cos(2πx))2
, (13)

J21 = −2a

(
y − b sin(2πx)

1 − μ cos(2πx)

)
, (14)

J22 = 1 − 2a

(
y − b sin(2πx)

1 − μ cos(2πx)

)

×
(

− 2πb cos(2πx)

1 − μ cos(2πx)
+ 2πbμ sin2(2πx)

(1 − μ cos(2πx))2

)
, (15)

and trJ = J11 + J22.
Analyzing the residues of the SNM’s fixed points, we ob-

serve that the pair of fixed points z∗
0m+ and z∗

1m− share the same
residue and are unstable across all parameter configurations.
In contrast, the fixed points z∗

0m− and z∗
1m+ also have matching

residues but can be either stable or unstable depending on the
parameter values.

Turning to the RSNM, we find that the fixed points z∗
0m+

and z∗
1m− remain unstable for all parameter combinations, but

their residues differ. For the first, the residue is given by R =
πab
μ−1

√
1 + m

a , while for the latter, R = − πab
μ+1

√
1 + m

a . Given
that a and b are positive constants and 0 < μ < 1, we observe
that both residues are negative for all parameter choices, con-
firming that these fixed points are unstable. For the fixed point
z∗

0m−, we calculate the residue R = − πab
μ−1

√
1 + m

a , which
can be stable or unstable depending on the control param-
eters. Conversely, for the fixed point z∗

1m+ the residue is
R = πab

μ+1

√
1 + m

a , so its stability also depends on the control
parameters. A summary of the residues of fixed points for both
the SNM and the RSNM is presented in Table I.

To further explore the stability of the fixed points z∗
0m−

and z∗
1m+ as μ increases, we analyze the behavior of these

points for m = 0 through 5, considering two distinct sets of
parameters a and b. In Fig. 1, we plot the y-coordinates of the
fixed points as a function of μ. Solid curves denote stable fixed
points, while dashed curves indicate instability. The curves are
color-coded according to the value of m, with blue, green, red,
orange, purple, and cyan representing m = 0, m = 1, m = 2,
m = 3, m = 4, and m = 5, respectively.

In Fig. 1(a), we set a = b = 0.2. At μ = 0, all fixed points
are initially stable. As μ increases, the z∗

0m− fixed points starts
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FIG. 1. Stability of the fixed points z∗
0m− and z∗

1m+, which de-
pends on parameter values, as a function of μ for m = 0 through
m = 5. Solid curves indicate stable fixed points, while dashed curves
indicate unstable fixed points. The colors represent different values
of m: blue for m = 0, green for m = 1, red for m = 2, orange for
m = 3, purple for m = 4, and cyan for m = 5. (a) The case where
a = b = 0.2, starting with all fixed points stable at μ = 0. (b) The
case where a = 0.2 and b = 0.7, where most fixed points are unsta-
ble at μ = 0.

to become unstable, with higher m values becoming unstable
first. Conversely, in Fig. 1(b), where a = 0.2 and b = 0.7,
most fixed points are unstable at μ = 0, except for the m = 0
case. As μ increases, the z∗

1m+ fixed points gradually become
stable, starting from the lower m values. Notably, the z∗

00−
fixed point, which is initially stable, becomes unstable as μ

continues to rise.
This result regarding the stability of fixed points contrasts

with the findings for the RSTM, where μ was observed to
regularize the phase space structure uniformly [30]. In the
RSNM, however, we find that the effect of μ is more asym-
metric. Specifically, μ regularizes the upper half of the phase
space by stabilizing fixed points and promoting resonance
islands, while in the lower half, it leads to destabilization of
fixed points, enhancing chaotic behavior.

To begin exploring the effect of the parameter μ on the
phase space, we set a = b = 0.2 and consider increasing val-
ues of μ. In panel (a) of Fig. 2, we start with μ = 0, which
corresponds to the SNM. Moving to panel (b), where μ = 0.2,
we observe that the upper region of the phase space becomes
more regular, indicated by a reduction of the chaotic sea’s
extent. Conversely, the chaotic region in the lower part of the

FIG. 2. Phase spaces of the RSNM for a = b = 0.2 and (a) μ =
0, which recovers the SNM, (b) μ = 0.2, and (c) μ = 0.6. The effect
of μ is to increase the chaotic domain in the lower part of the phase
space and enlarge the resonance island in the upper part of the phase
space.

phase space expands. In panel (c), with μ = 0.6, the chaotic
domain in the lower part of the phase space increases, leading
to the destruction of invariant tori. A thin chaotic layer is
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FIG. 3. Phase spaces of the RSNM for a = 0.51 and b = 0.1.
(a) μ = 0, which recovers the SNM, and (b) μ = 0.05. The upper
period-2 isochronous resonance is shifted in the RSNM.

visible in the upper phase space, though it is smaller compared
to the chaotic domain observed at μ = 0.

Another effect of μ is the defocusing of even-period
isochronous resonances. Due to its symmetry properties, the
even-period isochronous resonances in the SNM have their
elliptic and hyperbolic points aligned. In the RSNM, however,
we observed that as μ increases, the upper resonance chain
shifts, causing the periodic orbits of same stability to become
misaligned. This is illustrated in Fig. 3, where we consider
a = 0.51 and b = 0.1. In panel (a), where μ = 0, we see
an isochronous resonance of period two with the periodic
orbits of same stability aligned. Moving to panel (b), where
μ = 0.05, the upper chain is shifted, and the orbits become
misaligned.

In the SNM, the parameter b governs the intensity of
the nonlinear perturbation and the extent of chaotic domains
within the phase space. In the RSNM, even low values of b can
result in a highly chaotic phase space when μ is sufficiently
increased. In Fig. 4, we consider a = 0.45, b = 0.05, and

μ = 0.9. Panel (a) displays the phase space over the range
y ∈ [−5, 5]. Despite the low value of b, chaotic behavior
dominates the lower half of the phase space, while large
resonance island are observed in the upper half, separated
by chaotic layers. The fixed points of the map with m = 0
through m = 10 are shown, with their stability’s assessed by
the residue criterion. Stable fixed points are marked by open
red circles, while unstable ones are indicated by filled red
circles. In panel (b), we provide a magnified view of the region
occupied by the invariant spanning curves. In both panels
(a) and (b), the shearless curve is shown in red. It has been
identified by the extreme in the rotation number profile, which
is depicted in panel (c) and computed as ω = limn→∞ xn−x0

n .
The shearless curve divides the upper and lower regions of
the phase space, with the lower region dominated by chaos
and the upper region by stability islands and a wider region of
spanning curves.

III. TRANSPORT DYNAMICS

As observed in the previous section, a set of invariant
spanning curves acts as total transport barriers, preventing
orbits in the lower chaotic sea from reaching the upper chaotic
sea, and vice versa. However, increasing either b or μ leads to
destruction of these curves, the shearless curve being the most
resistant to perturbation and roughly the last to be destroyed.

To assess the presence of transport barriers on a wide range
of parameters, the following numerical scheme was imple-
mented. For a fixed value of μ, a grid of 500 by 500 points
was constructed in the (a, b) plane. For each pair (a, b), 100
initial conditions were distributed over the line y = −5 and
iterated 105 times. If none of these initial conditions reached
the line y = 5 within this time interval, a transport barrier was
considered to exist and the corresponding point in the (a, b)
plane was marked. This process is repeated for all points on
the grid and different values of μ.

The results, depicted in Fig. 5, illustrate how varying the
parameter μ influences the existence of transport barriers
within the (a, b) plane. The panels show the regions where
a total transport barrier is present for (a) μ = 0, (b) μ = 0.2,
(c) μ = 0.4, (d) μ = 0.6, (e) μ = 0.8 and (f) μ = 0.9. As μ

increases, the area corresponding to the presence of a transport
barrier decreases. We also observed an unexpected behavior in
the RSNM: the emergence of transport in previously restricted
regions. This phenomenon is illustrated in panels (d), (e),
and (f) of Fig. 5, where white areas appear within the blue
regions. In other words, holes are created within the prohibited
transport zone, leading to regions of net transport for μ �= 0.

Once the shearless curve is destroyed, transport between
previously disconnected chaotic regions becomes possible.
This transport can either increase or decrease with slight vari-
ations in a control parameter, suggesting the existence of a
partial transport barrier. In the SNM, heteroclinic crossings
between the manifolds of twin unstable orbits, along with the
mechanism of turnstiles, have been shown to contribute to
the observed increase in transport following the destruction
of the shearless curve [23,29].

The transport across phase space regions can be quantified
by the transmissivity T , which is defined as the ratio of the
number of orbits that cross the barrier to the total number of
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FIG. 4. (a) Phase spaces of the RSNM for a = 0.45, b = 0.05 and μ = 0.9. Stable fixed points are marked by open red circles, and unstable
fixed points by filled red circles. All the fixed points at either at x = 0 or x = 0.5. (b) Amplification in the vicinity of the invariant spanning
curves, around y = 0. The red curve in (a) and (b) corresponds to the shearless curve, which is identified by the extreme in the rotation number
profile shown in panel (c) computed for a set of y0 with fixed x0 = 0.5, where the red dot signals the maximum.

orbits within a specified time interval [23]. The direction of
the motion can be determined by computing the average value
of y over time for an ensemble of initial conditions. For the
i-th initial condition, the time average is

ȳi = 1

n + 1

n∑
j=0

yi, j, (16)

where the j index represents the j-th iteration. Then, the
average over the ensemble of M initial conditions is

〈y〉 = 1

M

M∑
i=1

ȳi. (17)

We calculated the transmissivity T using M = 105 ini-
tial conditions distributed along the line y = −0.9. Transport
was considered to have occurred if the orbits reached the
line y = 0.9. In the simulations, the parameters b = 0.1 and
μ = 0.9 were fixed, while the effect of the parameter a on
transport was analyzed within the interval a ∈ [0.73, 0.78].
The transmissivity results are presented in Fig. 6(a), where the
blue curve corresponds to n = 500 iterations, and the orange
curve represents n = 1000 iterations. A transmissivity value
T = 0 indicates the presence of a total transport barrier or a
partial barrier that was not crossed within the given number of
iterations. The observed fluctuations in transmissivity high-
light the sensitivity of transport to the parameter a, pointing

FIG. 5. Diagrams for the existence of a transport barrier (represented in blue points) in the phase space for different values of μ: (a) μ = 0,
(b) μ = 0.2, (c) μ = 0.4, (d) μ = 0.6, (e) μ = 0.8, and (f) μ = 0.9. The horizontal red lines in panels (d) and (f) indicate the value of b
considered in Fig. 9 and Fig. 6, respectively.
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FIG. 6. (a) Transmissivity of the RSNM for b = 0.1 and μ =
0.9, for times n = 500 (blue) and n = 1000 (orange). (b) Average
value of y as a function of iteration number and 105 initial conditions
for the RSNM with b = 0.1, μ = 0.9. The blue curve corresponds
to a = 0.75, where a partial transport barrier is observed, while the
orange curve corresponds to a = 0.76, where no transport barrier
exists. The shaded regions correspond to the standard deviation. Note
that the overlap of the shaded regions between the curves may give
the impression of a third color, but this is simply a visual result of the
intersection and not a separate data set. On average, the orbits tend
to move downward in the phase space.

to the existence of a partial transport barrier. To investigate
whether transport exhibits a preferred direction under condi-
tions of low and high transmissivity, we selected a = 0.75
for low transmissivity and a = 0.76 for high transmissivity.
We emphasize that these two cases were arbitrarily chosen
to illustrate the differences in transmissivity. However, many
other peaks in transmissivity, including those before a = 0.75,
arise due to a non-smooth dependence on the parameter [23].
Nonetheless, the scenarios remain essentially the same for the
two cases that we present. For each case, M = 105 initial
conditions were uniformly distributed along the line y = 0
and evolved over n = 5000 iterations. The average value 〈y〉
was calculated after each iteration using Eq. (17). The results,
shown in Fig. 6(b), reveal a consistent downward drift in phase
space for both cases, with lower values of 〈y〉 observed in the
absence of a partial barrier.

To further investigate the phase space structure associ-
ated with the previously selected cases of low and high
transmissivity (a = 0.75) and (a = 0.76), respectively, the
corresponding phase spaces are shown in Fig. 7. Panel (a)
illustrates the low transmissivity scenario, while panel (b)

FIG. 7. Phase spaces of the RSNM for b = 0.1, μ = 0.9 and
(a) a = 0.75 (low transmissivity) and (b) a = 0.76 (high transmissiv-
ity). The red-boxed region are analyzed in Fig. 8 with the Lagrangian
descriptor.

represents the high transmissivity scenario. The primary dif-
ference between these configurations is the appearance of a
period-4 resonance island in the high transmissivity case.

Building on the analysis of the phase space structures, we
focus on the red-boxed regions highlighted in Fig. 7 to inves-
tigate the mechanism behind the increased transmissivity. In
these regions, the Lagrangian descriptor (LD) is computed to
visualize the geometry of the invariant manifolds. The LD is a
scalar quantity that reveals phase space structures such as sta-
ble and unstable manifolds and the separatrices of hyperbolic
equilibria. It is determined by calculating the arc length of
trajectories over a finite size time window [36–40]. For maps,
the LD of an initial condition (x0, y0) over a time interval −n
to n is defined as [41–43]

LD(x0, y0; n) =
n∑

i=−n

√
|xi+1 − xi|2 + |yi+1 − yi|2. (18)

The LD is effective in reconstructing finite segments of
the invariant manifolds associated with hyperbolic equilibria,
with the manifolds’ locations identified by abrupt changes in
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FIG. 8. Laplacian of the LD computed over phase space regions
of the RSNM for b = 0.1, μ = 0.9 and (a) n = 25 and a = 0.75,
showing low transport and no crossings between the manifolds in the
upper and lower phase space regions, and (b) n = 20 and a = 0.76,
showing high transport with crossings between the manifolds in the
upper and lower phase space regions.

the LD value [44]. As LD is nondifferentiable when cross-
ing transversely hyperbolic domains [3,42], quantifying its
regularity enhances the visualization of the hyperbolic struc-
tures. This is achieved by computing the Laplacian of the LD
[3,42,43]. This is illustrated in Fig. 8, where |∇2LD| was cal-
culated for the red-boxed regions of the phase spaces shown
in Fig. 7 and plotted in log scale. In the low transmissivity
case (panel (a), with a = 0.75) the invariant manifolds in the
upper phase space region do not cross those in the lower
phase space region. Conversely, in the high transmissivity case
(panel (b), with a = 0.76) the manifolds in the upper phase
space region do cross those in the lower region, indicating that
the increase in transmissivity is due to the turnstile mechanism
and intercrossing between the islands [29]. We also included
a Supplemental Material animation [45], where the top panel
shows the |∇2LD| plot and the bottom panel displays the
transmissivity as a function of the parameter a. It is clear
that the higher values of |∇2LD| reveals the geometry of the
invariant manifolds, which connect and disconnect the upper

FIG. 9. (a) Transmissivity of the RSNM for b = 0.65 and μ =
0.6, for times n = 500 (blue) and n = 1000 (orange). (b) Average
value of y for a = 0.231 (blue) and a = 0.235 (orange).

and lower section of the phase space, playing a crucial role in
transport.

Although the result of Fig. 6 suggests that the ratchet effect
is improved by the absence of a partial transport barrier, this
is not the case. For a counter-example we consider b = 0.65,
μ = 0.6 and vary a within the interval a ∈ [0.73, 0.78] to
compute the transmissivity as described previously. This is
shown in Fig. 9(a), and again we choose a configuration of
high transmissivity, a = 0.231, and a configuration with low
transmissivity, a = 0.235. In Fig. 9(b) we show the average
〈y〉 for those two configurations, and observe that the net
transport is higher in the case of low transmissivity and that
there is an upward drift in phase space for both cases.

To explore the influence of μ in the transport direction
on a wide range of parameters, we constructed grids of 500
by 500 points in the (a, b) plane for fixed values of μ. For
each grid points, we compute the average 〈y〉 after n = 104

iterations, using M = 100 initial conditions. This analysis
was restricted to parameter combinations where no transport
barrier was detected, based on the scheme implemented in
Fig. 5. The results are presented in Fig. 10, with panels (a),
(b), (c), and (d) corresponding to μ = 0.4, μ = 0.6, μ = 0.8,
and μ = 0.9, respectively. In these plots, the black region
indicates points where a total transport barrier was identified.
Green dots correspond to parameters for which |〈y〉| < 0.01,
suggesting minimal net transport. This can be caused by a
partial transport barrier or strong stickiness. The color scale
from red to blue corresponds to positive and negative 〈y〉,
respectively. Blue regions, indicating negative net transport
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FIG. 10. Projection of 〈y〉 in the parameter space (a, b), exhibiting positive or negative net transport, in red and blue colors, respectively,
for different values of μ. Black region corresponds to a total transport barrier, and green points to |〈y〉| < 0.01, indicating low net transport.
(a) μ = 0.4,(b) μ = 0.6, (c) μ = 0.8, and (d) μ = 0.9.

in the y variable, are prominent across the parameter space.
In contrast, the red region, which corresponds to positive
net transport, is comparatively small. We also observe that
the ratchet leading to negative net transport reaches higher y
absolute values than the one leading to positive net transport.
This is due to the stickiness effect that occurs in the upper
half of the phase space, as the parameter μ tends to stabilize
the fixed points in that region and creates resonance islands.

IV. CONCLUSIONS

In this study, we have explored the dynamics and transport
properties of the rational standard nontwist map (RSNM),
a generalization of the standard nontwist map (SNM), by
introducing a perturbation parameter μ that breaks the sym-
metry of the map. This symmetry breaking leads to significant
modifications in the phase space structure and introduces
the phenomenon of unbiased directed transport, commonly
known as the ratchet effect.

Our analysis began by examining the effects of the pa-
rameter μ on the fixed points of the map. Additionally, we
demonstrated that the stability of fixed points in the RSNM
is affected by μ, which alters the phase space significantly
compared to the SNM.

We observed that as μ increases, the upper region of the
phase space becomes more regular while the chaotic domain
in the lower region expands, leading to the destruction of
invariant spanning curves. We also observed that μ leads to
the defocusing of even-period isochronous resonances, which
are always aligned in the SNM and becomes misaligned even
for relatively small values of μ in the RSNM. Furthermore, the

introduction of μ allows the creation of holes in the parameter
space within the prohibited transport zone. This, in turn, en-
ables the discovery of new regions of net transport that were
previously unanticipated in the SNM.

We then focused on the role of invariant spanning curves as
transport barriers, showing that their destruction, particularly
the shearless curve, is a critical factor in enabling transport
between different regions of the phase space. In addition to the
complete destruction of transport barriers, we also identified
the presence of partial transport barriers in the RSNM. These
partial barriers still limit transport across the phase space
but allow for some degree of interaction between the chaotic
regions above and below them. The transmissivity analysis
provided insight into how transport varies with the control
parameters, revealing that even small changes in these param-
eters can lead to significant differences in transport behavior.
The increase in transport observed with small variations in the
parameter a is related to the mechanism of turnstiles, which
are formed by the crossing of stable and unstable manifolds
from different regions of the phase space. These turnstiles
facilitate the exchange of orbits between the upper and lower
regions, effectively acting as gateways that enhance transport.
As a result, even slight adjustments to the system’s param-
eters can lead to significant changes in the overall transport
dynamics.

Finally, we investigated the directed transport in the RSNM
by calculating the average displacement 〈y〉 of chaotic orbits
over time. Our results indicate that the symmetry breaking
induced by μ leads to a preferential direction of transport,
with negative net transport being predominant in the param-
eter space.
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In conclusion, the RSNM presents a rich structure for
studying transport phenomena in nontwist Hamiltonian sys-
tems. The introduction of the perturbation μ generalizes the
SNM and opens up new possibilities for understanding di-
rected transport mechanisms.
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