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A recent numerical treatment of data obtained by the Parker Solar Probe spacecraft describes the electron
concentration in solar wind as a function of the heliocentric distance based on a Kappa distribution with spectral
index κ = 5. In this work, we derive and, subsequently, solve an entirely different class of nonlinear partial
differential equations describing the one-dimensional diffusion of a suprathermal gas. The theory is applied
to describe the aforementioned data and we find a spectral index κ � 1.5 providing the widely acknowledged
identification of Kappa electrons in solar wind. We also find that suprathermal effects increase the length scale
of classical diffusion by one order of magnitude. Such a result does not depend on the microscopic details of
the diffusion coefficient since our theory is based on a macroscopic formulation. Forthcoming extensions of our
theory by including magnetic fields and relating our formulation to nonextensive statistics are briefly addressed.
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I. INTRODUCTION

On August 12, 2018, the Parker Solar Probe (PSP) space-
craft [1] was launched. Assisted by Venus gravity, the vehicle
orbits the Sun following highly elliptical trajectories. Its clos-
est approach to the center of the Sun (perihelion) varies from
9.86 R� to 35.7 R�, with R� denoting the radius of the Sun.
Distinct kinds of solar wind and dynamic configurations have
been revealed by the first two encounters [2] that occurred in
October–November, 2018 (first perihelion) and March–April,
2019 (second perihelion), with perihelions of 35.7 R�.

Relying on the power spectra obtained by the low-
frequency receiver (LFR) of the radio frequency spectrometer
(RFS), a piece of the FIELDS instrument suite [3] on PSP,
during the first and second perihelions, Moncuquet et al. [4]
have deduced the solar wind electron density, and thermal
and suprathermal temperatures. Their results followed the
application of the technique of quasithermal noise (QTN)
spectroscopy [5] to the data acquired by the LFR (10.5 kHz
to 1.7 MHz).

A possible anisotropy in the electron temperature Te (typ-
ically, Te,⊥ � 2Te,‖, where the subscripts ⊥ and ‖ stand for
perpendicular and parallel, respectively, to the magnetic field),
usually observed above 50 eV and attributable to the so-called
Strahl component [6] (the highly field-aligned, beamlike,
suprathermal population in solar wind), has been neglected
in Ref. [4]. As a consequence, those authors have been forced
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to consider a spectral index of κ = 5 in order to model the
suprathermal electrons by a Kappa distribution.

Now, it is widely known that suprathermal electrons in
solar wind are identified by a spectral index slightly above its
lower bound [7] (3/2 < κ < ∞). Such a contrast is the main
motivation for this work. We perform a numerical treatment of
the same data examined in Ref. [4]. However, our analysis is
based on the derivation, and subsequent solution, of a differ-
ential equation, describing the one-dimensional diffusion of a
suprathermal gas. As a result, we actually find κ � 1.5.

This paper is organized as follows. In Sec. II, we derive a
differential equation that describes the one-dimensional diffu-
sion of a suprathermal gas. In Sec. III, we find the fundamental
solution of the diffusion equation from an ansatz in terms of a
deformation parameter β related to the spectral index κ . In
Sec. IV, we develop a method to numerically compute the
typical diffusion length scale from the fundamental solution.
In Sec. V, we apply our method to the same data examined in
Ref. [4]. In the concluding section, we summarize our work.

II. DIFFUSION EQUATION

Consider a nonuniform warm plasma, composed of
charged and neutral species. The former have mass m, charge
q, and concentration n. The frequency ν of the momentum
transfer of charged to neutral species is assumed to depend
on the Maxwellian temperature T of the first ones. Restricting
ourselves to one-dimensional motions of the charged species,
in the absence of a magnetic field and on neglect of inertial
terms, the steady-state macroscopic force equation is given by
[8]

∓|q|n�x − Px − νm� = 0, (1)
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where the index x stands for a space derivative, � is the
electric potential, P is the isotropic pressure, and � = nv is the
particle flux, with v denoting the drift velocity. Equation (1)
should be supplied with an equation of state. For an isothermal
plasma, the latter would imply Px = kBT nx, where kB is the
Boltzmann constant. However, we regard the charged fluid as
a suprathermal gas. In this case, the aforementioned pressure
gradient must be replaced with (see the Appendix)

Px = n0kB�

[(
n

n0

)β
]

x

, (2)

where n0 is the equilibrium concentration (n → n0 ⇒ P →
const), � is the Kappa temperature (� � T ), and β is a de-
formation parameter (0 < β < 1). In the limit β → 1, � →
T (see the Appendix). As a consequence, Eq. (2) recovers
Px = kBT nx in the same approximation. Solving Eq. (1) for
the particle flux, on account of Eq. (2), we get

� = ∓μn�x − n0η

[(
n

n0

)β
]

x

, (3)

where we have introduced the abbreviations [8]

μ = |q|
νm

, η = kB�

νm
(4)

for the particle mobility and diffusion coefficient, respectively,
with the observation that we shall assume ν = ν(�) now. In
the steady state, charge cannot build up in the plasma. That
should be true even in the presence of ionizing collisions.
Those could simply create equal numbers of both species.
Once electrons are lighter than ions, in the absence of a
magnetic field, the former would tend to flow out faster than
the latter. As a consequence, an electric field might spring up
to maintain the local balance of particle flow. More precisely,
at the initial instant, a few more electrons than ions are left
out. As a result of such a charge imbalance, an electric field
sets up in the plasma. The above remarks are summed up in
the so-called congruence assumption that out of any plasma
region, the flux and the concentration of ions and electrons
shall be approximately equal, namely [8],

� = �i ≈ �e, n = ni ≈ ne, (5)

where the indexes “i” and “e” stand for ions and electrons,
respectively.

On account of Eqs. (5), Eq. (3) leads to

−μin�x − n0ηi

[(
n

n0

)β
]

x

= μen�x − n0ηe

[(
n

n0

)β
]

x

.

(6)
Solving Eq. (6) for the electric field −�x, we get

−�x = n0

n

(
ηi − ηe

μi + μe

)[(
n

n0

)β
]

x

. (7)

Substituting Eq. (7) in Eq. (3), we obtain

� = −n0ηa

[(
n

n0

)β
]

x

, (8)

where we have introduced the abbreviation [8]

ηa = μiηe + μeηi

μi + μe
(9)

for the so-called ambipolar diffusion coefficient. In the ab-
sence of a source and/or a sink of matter, conservation of
mass, on account of Eq. (8), leads to the differential equation

ut = ηa(uβ )xx, (10)

which describes suprathermal diffusion, where we have
introduced the abbreviation u = n/n0 for the normalized con-
centration and the index t stands for a time derivative. In the
limit β → 1, Eq. (10) recovers ut = ηauxx, which describes
classical diffusion, with the observation that ηa = ηa(Ti, Te )
in the same approximation. Let us find out the fundamental
solution of Eq. (10).

III. FUNDAMENTAL SOLUTION

Let us make the ansatz

u = u0

{
1 + 1

s/r

[(τ

t

)1/r′

− 1

]
+ x2

sη0t

}s′

(11)

for the fundamental solution of Eq. (10). The reason for this is
the following. The quantities r, r′, s, and s′ are assumed to be
deformation parameters, which depend on β. As a result, in
the limit β → 1, we expect to recover the fundamental solu-
tion of the classical equation ut = ηauxx. The quantity τ is the
typical diffusion timescale, η0 is a constant with the dimension
of diffusion coefficient, and u0 is a dimensionless constant to
be further determined, with all such quantities assumed to be
β independent. Relying on Eq. (11), we differentiate u once
with respect to t , and ηauβ twice with respect to x, to get

ut = −u0

τ

[
s′/r′

s/r

(τ

t

)1+1/r′

+ s′τx2

sη0t2

][
1 − 1

s/r
+ 1

s/r

(τ

t

)1/r′

+ x2

sη0t

]s′−1

,

ηa(uβ )xx = ηauβ

0

η0τ

[
2βs′τ

st

][
1 − 1

s/r
+ 1

s/r

(τ

t

)1/r′

+ x2

sη0t

]βs′−1

+ ηauβ

0

η0τ

[
4βs′(βs′ − 1)τx2

s2η0t2

][
1 − 1

s/r
+ 1

s/r

(τ

t

)1/r′

+ x2

sη0t

]βs′−2

. (12)

According to Eqs. (12), Eq. (11) is a solution of Eq. (10) provided that the conditions

s′ = βs′ − 1, (13)
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on the powers, and

r = s, −u1−β

0 sη0 = 2βr′ηa, −u1−β

0 sη0 = 2βηa + 4βs′ηa, (14)

on the coefficients of ut , and ηa(uβ )xx are satisfied. Solving
Eq. (13) for s′, we obtain

s′ = −1/(1 − β ). (15)

Combining the last two equations of Eqs. (14), we get

r′ = 1 + 2s′. (16)

Substituting Eq. (15) in Eq. (16), we obtain

r′ = −(1 + β )/(1 − β ). (17)

Substituting Eq. (17) in the second equation of Eqs. (14), we
get

sη0 = 1

u1−β

0

(
1 + β

1 − β

)
(2βηa ). (18)

Substituting the first equation of Eqs. (14), as well as
Eqs. (15), (17), and (18) in Eq. (11), we obtain

u =
⎧⎨
⎩

[
τ/t

u−(1+β )
0

]−(1−β )/(1+β )

+
[

1 − β

1 + β

][
x2/t

2βηa

]⎫⎬
⎭

−1/(1−β )

.

(19)

In the limit β → 1, Eq. (19) leads to

u =
(

τ/t

u−2
0

)1/2

exp

(
−x2/t

4ηa

)
, (20)

where ηa = ηa(Ti, Te ) in the same approximation. To deter-
mine the constant u0, we proceed in the following way. Let us
take advantage of the assumption that u0 is a β-independent
constant to determine it by making use of Eq. (20). In partic-
ular, let us require u0 to be the normalization parameter in a
statement of mass conservation, namely [9],∫ ∞

−∞
udx = χ, (21)

where we have introduced the abbreviation [9]

χ = (ηaτ )1/2 (22)

for the typical diffusion length scale. Substituting Eq. (20) in
Eq. (21) and, subsequently, performing the indicated integral,
we get

u0 = (4π )−1/2. (23)

Substituting u = n/n0 and Eq. (23) in Eq. (20), we recover the
fundamental solution of ut = ηauxx, namely [9],

n = n0

(
τ/t

4π

)1/2

exp

(
−x2/t

4ηa

)
. (24)

Substituting u = n/n0 and Eq. (23) in Eq. (19), we find the
fundamental solution of Eq. (10), namely,

n = n0

{[
τ/t

(4π )(1+β )/2

]−(1−β )/(1+β )

+
[

1 − β

1 + β

][
x2/t

2βηa

]}−1/(1−β )

, (25)

where ηa = ηa(�i,�e ) now. We next develop a method to
compute the diffusion length χ in the realm of solutions (24)
and (25).

IV. DIFFUSION LENGTH

The linear electron plasma frequency is given by [8]

fpe = ωpe

2π
, (26)

where the angular electron plasma frequency is given by [8]

ωpe =
(

n0e2

ε0me

)1/2

, (27)

with me denoting the electron mass, −e < 0 the electron
charge, n0 the electron equilibrium concentration, and ε0 the
vacuum electric permittivity. Assume that fpe varies in a
timescale slow enough to maintain the isothermal regime of
the electron gas. Then, the mean value of fpe may be computed
from

f̄pe = 1

(t2 − t1)

∫ t2

t1

fpe(t )dt, (28)

where t1 < t2. According to the mean value theorem of real
analysis, there exists at least one time, t̄ say, with t1 < t̄ <

t2, such that [10] f̄pe = fpe(t̄ ). Thus, substituting Eq. (27) in
Eq. (26), and on account of Eq. (28), we may estimate the
equilibrium concentration by

n0 = 4π2ε0me( f̄pe)2

e2
. (29)

In view of the reasoning expressed by Eqs. (26) to (29),
Eq. (24) can be read as

n = a0 exp(−b0x2), (30)

where we have introduced the abbreviations

a0 = n0

(
τ/t̄

4π

)1/2

, b0 = 1/t̄

4ηa
, (31)

with the observation that ηa = ηa(Ti, Te ). Hence, combining
both Eqs. (31), it follows from Eq. (22) that the length scale
for the classical diffusion of the electron gas is given by

χ = a0π
1/2

n0b1/2
0

. (32)

Equation (32) shows that χ may be calculated by computing
n0 from Eqs. (28) and (29), and a0 and b0 from Eq. (30). The

055212-3



BENETTI, SILVEIRA, AND CALDAS PHYSICAL REVIEW E 107, 055212 (2023)

FIG. 1. The linear electron plasma frequency fpe as a function of the slow time scale, deduced from the spectrograms exhibited in Ref. [4].
The data have been collected over twenty-one days of solar encounters, for both perihelions.

same just developed procedure may be pursued for suprather-
mal electrons.

In view of the reasoning expressed by Eqs. (26) to (29),
Eq. (25) can be read as

n = {a + bx2}−1/(1−β ), (33)

where we have introduced the abbreviations

a = n−(1−β )
0

[
τ/t̄

(4π )(1+β )/2

]−(1−β )/(1+β )

,

b = n−(1−β )
0

[
1 − β

1 + β

][
1/t̄

2βηa

]
, (34)

with the observation that ηa = ηa(�i,�e ). Hence, combining
both Eqs. (34), it follows from Eq. (22) that the length scale
for the suprathermal diffusion of the electron gas is given by

χ =
[

1 − β

1 + β

]1/2
{

a−(1+β )/[2(1−β )](4π )(1+β )/4

n0(2βb)1/2

}
. (35)

Equation (35) shows that χ may be calculated by computing
n0 from Eqs. (28) and (29), and a, b, and β from Eq. (33).
We next contrast the classical with suprathermal diffusion of
electrons in solar wind based on Eqs. (30) and (33).

V. SOLAR WIND

In Fig. 1, we show the linear electron plasma frequency fpe

as a function of the slow timescale, deduced from the spectro-
grams exhibited in Ref. [4]. The mean value f̄pe is computed
from Eq. (28) and the electron equilibrium concentration n0 is
estimated by Eq. (29). Those results are displayed in Table I
for both perihelions. They are consistent with the estimate for
fpe varying between 80 and 200 kHz, given in Ref. [4].

In Fig. 2, we show the electron concentration n as a
function of the heliocentric distance x, exhibited in Ref. [4].
The data are fitted with the least-squares method [11] to
Eq. (30) (classical diffusion) and Eq. (33) (suprathermal dif-
fusion). The nonlinear-regression parameters [11], as given
by Eqs. (31) (classical diffusion) and Eqs. (34) (suprathermal
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FIG. 2. The electron concentration n as a function of the heliocentric distance x, exhibited in Ref. [4]. The data are fitted with the least-
squares method [11] to Eq. (30) (classical diffusion), and Eq. (33) (suprathermal diffusion).

diffusion), are displayed in Table II (first perihelion) and Ta-
ble III (second perihelion).

It is found that β � 0.002 (κ � 1.502) for the first
perihelion, and β � 0.003 (κ � 1.503) for the second per-
ihelion (see the Appendix). Those results agree with the
widely acknowledged value κ � 1.5 of the spectral index
for suprathermal electrons in solar wind [7]. It is also found
that suprathermal effects increase the length scale of classical
diffusion by one order of magnitude for both perihelions.

The coefficient of determination (a quantity that indicates
how well a regression equation describes the relationship

TABLE I. The mean value f̄pe, computed by Eq. (28), from
the data in Fig. 1, and the electron equilibrium concentration n0,
estimated by Eq. (29). Those results are consistent with the estimate
for fpe varying between 80 and 200 kHz, given in Ref. [4] for both
perihelions.

Gas indexes First perihelion Second perihelion

f̄pe (kHz) 139 114
n0 (cm−3) 239 161

between a pair of observed variables; see Ref. [11]) r2

is slightly larger, although still far from unit, for both

TABLE II. The nonlinear-regression parameters [11], as given by
Eqs. (31) (classical diffusion) and Eqs. (34) (suprathermal diffusion),
for the first perihelion. It is found that β � 0.002 (κ � 1.502) (see
the Appendix). This result agrees with the widely acknowledged
value κ � 1.5 of the spectral index for suprathermal electrons in
solar wind [7]. It is also found that suprathermal effects increase the
length scale of classical diffusion by one order of magnitude. The
coefficient of determination [11] r2 is slightly larger, although still
far from unit, for the suprathermal regression curve. This suggests
that the Strahl component [6] plays an important role in the electron
diffusion throughout solar wind.

First perihelion Classical diffusion Suprathermal diffusion

parameters a0 = 343 cm−3 a = 2.77 × 10−3 cm3(1−β )

parameters b0 = 8.40 × 10−4R−2
� b = 4.36 × 10−6 cm3(1−β )R−2

�

β 1 0.002
κ ∞ 1.502
χ (R�) 130 1135
r2 0.51 0.54
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TABLE III. The nonlinear-regression parameters [11], as given
by Eqs. (31) (classical diffusion) and Eqs. (34) (suprathermal dif-
fusion), for the second perihelion. It is found that β � 0.003 (κ �
1.503) (see the Appendix). This result agrees with the widely ac-
knowledged value κ � 1.5 of the spectral index for suprathermal
electrons in solar wind [7]. It is also found that suprathermal ef-
fects increase the length scale of classical diffusion by one order of
magnitude. The coefficient of determination [11] r2 is slightly larger,
although still far from unit, for the suprathermal regression curve.
This suggests that the Strahl component [6] plays an important role
in the electron diffusion throughout solar wind.

Second perihelion Classical diffusion Suprathermal diffusion

parameters a0 = 267 cm−3 a = 3.49 × 10−3 cm3(1−β )

parameters b0 = 10.4 × 10−4R−2
� b = 6.84 × 10−6 cm3(1−β )R−2

�

β 1 0.003
κ ∞ 1.503
χ (R�) 93 995
r2 0.49 0.53

suprathermal regression curves. This indicates that we are still
distant from a satisfactory description of the electron diffusion
in the solar wind. Since we have neglected magnetic fields, it
suggests that the Strahl component [6] may play a particularly
important role in such a phenomenon.

VI. CONCLUSION

We have derived a nonlinear partial differential equa-
tion describing the one-dimensional diffusion of an ionized
fluid, based on a previously deduced equation of state of a
suprathermal gas.

The fundamental solution of the diffusion equation has
been found from an ansatz, in terms of a deformation pa-
rameter β, related to the spectral index κ . Then, a different
class of differential equations has been added to the scope of
mathematical physics.

The theory has been applied to describe the electron con-
centration in solar wind, as a function of the heliocentric
distance, recently reported in Ref. [4]. Our main results are
the following:

(i) We have found that β � 0.002 (κ � 1.502) for the first
perihelion, and β � 0.003 (κ � 1.503) for the second perihe-
lion. Those results agree with the widely acknowledged value
κ � 1.5 of the spectral index for suprathermal electrons in
solar wind [7].

(ii) Suprathermal effects increase the length scale of classi-
cal diffusion by one order of magnitude for both perihelions.
It should be emphasized that such a result does not depend
on the microscopic details of the diffusion coefficient because
our theory is based on a macroscopic formulation.

(iii) The coefficient of determination [11] r2 is slightly
larger, although still far from unit, for both suprathermal re-
gression curves. This suggests that the Strahl component [6]
plays an important role in the electron diffusion throughout
solar wind.

The Parker Solar Probe data, which we have considered in
this work, have been collected with a perihelion at ∼35.7 R�.

For heliocentric distances >3–6 R� (the lower boundary of
the solar exosphere, commonly referred to as the thermopause
or exobase), the Parker theory of solar wind [12–14] (which
proposes a mechanism for the steady conversion of heat en-
ergy into kinetic energy) states that

(a) suprathermal electrons behave as an isothermal fluid,
and

(b) curvature effects on one-dimensional diffusion are neg-
ligible.

Such statements have been continuously confirmed by
several numerical treatments of observational data [15–18],
including those in Ref. [4] itself. This is why our analysis has
been based on an equation of state in an isothermal regime and
on a diffusion equation in a flat geometry.

Anisotropic effects portray a vital part in the description of
electrostatic solitons [19], electromagnetic instabilities [20],
laser beams [21], quantum plasmas [22], and astrophysical
plasmas [23]. It is important to further extend our theory by
including magnetic fields.

Nonextensivity is intimately related to suprathermality, as
may be attested to by studies in a self-similar solution of
diffusion equations [24], radio-wave transmission in plasma
sheaths [25], energy spectrum in plasma expansions [26],
and generation of dispersive shock waves [27]. Hence, it is
interesting to further discuss our theory in the context of
nonextensive statistics. The aforementioned issues shall be
addressed in forthcoming communications.

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.
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APPENDIX: EQUATION OF STATE OF KAPPA GAS

For a detailed discussion of the method that we have
recently developed in order to derive equations of state of
non-Maxwellian plasmas, see Refs. [28–33]. Here, we restrict
ourselves to a Kappa gas.

The Kappa distribution of particle concentration is given
by [34]

n = n0

[
1 ± 1

(κ − 3/2)

( |q|�
kB�

)]−(κ−1/2)

, (A1)

where the Kappa � temperature is related to the Maxwellian
T temperature through

� =
(

κ

κ − 3/2

)
T, (A2)

with κ denoting the so-called spectral index (3/2 < κ < ∞).
Equation (A2) shows that � � T for all possible values of
κ . This is why particles following Eq. (A1) are said to be
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suprathermal particles. In the limit κ → ∞, Eq. (A2) shows
that � → T . As a result, Eq. (A1) recovers the Boltmann
relation [35],

n = n0 exp

(
∓|q|�

kBT

)
, (A3)

in the same approximation.
Neglecting the frequency ν in Eq. (1), we get

∓|q|n�x − Px = 0. (A4)

Solving Eq. (A1) for |q|�, we obtain

|q|� = ±kB�(κ − 3/2)

[(
n

n0

)−1/(κ−1/2)

− 1

]
. (A5)

Differentiating Eq. (A5) with respect to x, we get

|q|�x = ∓kB�

(
κ − 3/2

κ − 1/2

)(
n

n0

)−(κ+1/2)/(κ−1/2)( n

n0

)
x

.

(A6)

Substituting Eq. (A6) in Eq. (A4), we find

Px = nkB�

(
κ − 3/2

κ − 1/2

)(
n

n0

)−(κ+1/2)/(κ−1/2)( n

n0

)
x

, (A7)

which may be easily put in the form of Eq. (2), provided that
we introduce the abbreviation

β = κ − 3/2

κ − 1/2
. (A8)

Equation (A8) shows that 0 < β < 1, for 3/2 < κ < ∞. In
the limit κ → ∞ [β → 1], Eq. (A7) [Eq. (2)] recovers the
pressure gradient Px = kBT nx (recall � → T in the same
approximation) of a classical gas of charged particles in the
isothermal regime [35].
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