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ABSTRACT

Chimera states are spatiotemporal patterns with coherent and incoherent dynamics coexisting. These patterns are believed to be involved
in important neurophysiological phenomena, such as unihemispheric sleep, multitasking, and epileptic seizures. We explore the emergence
and collapse of chimeras in a network of locally coupled excitatory neurons. We consider a biologically realistic conductance-based neuron
model that incorporates slow potassium and calcium ion channels, enabling the reproduction of pyramidal neuron dynamics. By varying the
coupling strength and the local connectivity radius, we identify transitions from regular spiking to chimera states with one or more incoherent
domains. We demonstrate that the number of heads depends on the neuronal connectivity. The multi-headed chimeras exhibit shorter
average collapse times than single-headed ones. Our findings contribute to a deeper understanding of transient spatiotemporal structures
in biologically inspired excitable models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0282696

In the study of brain dynamics, researchers have identified
dynamic patterns in which some groups of neurons exhibit
synchronized activities while others remain desynchronized,
known as chimera states. Chimeras have been associated with
neurophysiological phenomena, such as unihemispheric sleep,
attention, and epileptic seizures. In this work, we investi-
gate the formation and collapse of chimera states in a net-
work composed of conductance-based neurons. The neuron
model includes sodium, potassium, and calcium ion chan-
nels, allowing us to reproduce the electrophysiological behav-
ior of cortical pyramidal neurons. We explore how the spatial

arrangement and strength of excitatory synaptic connections
influence the emergence of chimera states. We focus on pat-
terns that contain multiple desynchronized regions, with each
region corresponding to a head. We show that chimera states
with a greater number of heads tend to collapse more quickly
than those with a single head. Furthermore, we demonstrate
that small variations in the initial conditions can affect the
chimera lifespans. Our results offer valuable insights into how
brain connectivity and synaptic interactions can contribute to
healthy brain functions and the development of neurological
disorders.
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I. INTRODUCTION

Networked dynamical systems exhibit a rich variety of spa-
tiotemporal patterns.1 Depending on the coupling strength and
the number of connections, the systems can exhibit synchroniza-
tion, chaos, or partial coherence.2,3 In coupled oscillator networks,
synchronization emerges from mutual adjustment of individual
rhythms4 and has been extensively studied in classical models,
such as phase oscillators. Over the years, many studies have been
conducted on the synchronization patterns of phase oscillators.5,6

A particularly interesting phenomenon is the chimera state, a
spatiotemporal pattern where coherent and incoherent dynamics
coexist despite symmetry and homogeneous coupling.7–10 Chimeras
were first identified in arrays of phase oscillators.11 They have
been reported in a wide range of systems, including chemical
oscillators,12,13 spatial light modulators,14 and natural populations,
such as fireflies.15 These patterns have also been found in neuronal
systems.16–18

In neuroscience, chimera states have gained attention for their
potential role in brain dynamics. Biological analogs include uni-
hemispheric sleep in dolphins and birds, where one hemisphere
remains active while the other sleeps.19,20 Asymmetries have also
been observed in EEG recordings during motor coordination tasks.21

Chimera patterns have been related to pathological transitions, such
as epileptic seizures and Parkinsonian synchronization.22–24

A key tool for assessing the effects and understanding
the mechanism of chimera states in neural networks are rep-
resented through mathematical models. Significant results have
been obtained using coupled neuron models, e.g., integrate-and-
fire,25 Morris–Lecar,26 FitzHugh–Nagumo,27 Hindmarsh–Rose,28

and Hodgkin–Huxley29 neurons. In particular, Santos et al.30

showed chimera states in a connectivity matrix based on the cat
brain with coupled Hindmarsh–Rose neurons. They employ recur-
rence analysis to detect spike and burst chimeras. Despite these
advances, the mechanisms behind the emergence and collapse of
chimeras in biologically accurate neuronal models remain not fully
understood.

In this work, we explore the dynamics of a locally connected
network of excitatory pyramidal neurons. The pyramidal neurons
are characterized by their pyramidal shape of the soma. They are the
most populous members of the excitatory family in the brain, receiv-
ing and transmitting information as well as increasing the probabil-
ity that connected neurons fire. These neurons are found in various
regions of the central nervous system, for instance, hippocampus
and cerebral cortex. Each neuron is modeled using a conductance-
based model that includes slow potassium as well as high- and
low-threshold calcium currents, capturing important physiological
features of cortical excitatory cells.31–33 We systematically vary the
number of nearest neighbors and the coupling strength to identify
synchronous and asynchronous spikes, bursts, and chimera states.
Additionally, we also investigate how initial conditions influence
the collapse time of chimera states, defined as the moment when
incoherent domains disappear. We find that the collapse is highly
sensitive to the initial conditions, with multi-headed chimeras col-
lapsing faster than single-headed ones. Our results suggest that
abrupt transitions in the dynamic behavior of the neurons, remi-
niscent of seizure onset, can be triggered by subtle variations in the
network state.

One of our main contributions is to build a network model
composed of biologically realistic conductance-based neurons con-
nected to the nearest neighbors. The novelty in our network is the
emergence of multi-headed chimera states. Our findings contribute
to a deeper understanding of spatiotemporal pattern formation
in excitable systems and can offer insights into the dynamics of
neurological phenomena.

This article is organized as follows: Section II presents the neu-
ron model and the neuronal network, including descriptions of the
ionic currents and synaptic coupling. We also introduced the diag-
nostic tools to characterize the network dynamics. In Sec. III, we
report our main results, discussing the emergence of chimera states,
their collapse dynamics, and how the collapse times vary under
different initial conditions. Finally, in Sec. IV, we summarize our
conclusions and highlight the implications of our findings.

II. NEURONAL NETWORK

To describe each neuron i in the network, we consider a
conductance-based model32 in which the membrane potential is
given by

Cm

dV

dt
= −gleak(V − Eleak) − Iionic, (1)

where Cm = 1 µF/cm2 is the membrane capacitance, gleak is the leak
conductance, Eleak is the reversal potential, and Iionic is the sum of the
ionic currents Ij.

All the ionic currents are voltage-dependent and can be
described by the general equation

Ij = gjm
lhp(V − Ej), (2)

where the jth ionic current Ij is expressed as the product of the max-
imum conductance for each ion j with conductance gj. The variables
m and h are related to the ionic channel activation and inactivation,
respectively, with order l and p.34 The difference between Ej and V is
the reversal potential for a specific ion.32

In addition to the classic currents of sodium (INa) and potas-
sium (IK) from the Hodgkin–Huxley model, we add the currents
of slow potassium (IM),35 high-threshold calcium (IL),36 and low-
threshold calcium (IT).37 To include these ionic currents in the
model, we define the term I i

ionic as the sum of the ionic currents,
which is given by

I i
ionic = INa + Ik + IM + IL + IT. (3)

In the classical Hodgkin–Huxley model, the voltage-dependent
potassium and sodium currents were described for a squid axon.
Afterward, Traub and Miles38 adapted the equations for central neu-
rons. They obtained a potassium current that is described by the
following set of equations:

IK = gKn4(V − EK),

dn

dt
= αn(V)(1 − n) − βn(V)n,

αn =
−0.32(V − VT − 15)

exp[−(V − VT − 15)/5] − 1
,

βn = 0.5 exp[−(V − VT − 10)/40],

(4)

Chaos 35, 093144 (2025); doi: 10.1063/5.0282696 35, 093144-2

Published under an exclusive license by AIP Publishing

 22 Septem
ber 2025 12:41:05

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

and the sodium currents are described by

INa = gNam
3h(V − ENa),

dm

dt
= αm(V)(1 − m) − βm(V)m,

dh

dt
= αh(V)(1 − h) − βh(V)h,

αm =
−0.32(V − VT − 13)

exp[−(V − VT − 40)/5] − 1
,

βm =
0.28(V − VT − 40)

exp[(V − VT − 40)/5] − 1
,

αh = 0.128 exp[−(V − VT − 17)/18],

βh =
4

1 + exp[−(V − VT − 40)/5]
.

(5)

The conductances of potassium and sodium are gK = 5 mS/cm2

and gNa = 50 mS/cm2, respectively, and the reversal potentials are
Ek = −100 mV and ENa = 50 mV. In our simulations, we consider
VT = −55 mV. The IM current is related to the slow potassium cur-
rent due to the fact that it operates on a slower timescale than
the potassium current. This current acts as a frequency adapter in
neuronal activity.39 In other words, the IM current functions as an
inhibitor of neuronal spiking and is given by

IM = gMp(V − EK), (6)

where

dp

dt
= (p∞(V) − p)/τp(V),

p∞(V) =
1

1 + exp[−(v + 35)/10]
,

τp(V) =
τmax

3.3 exp[(V + 35)/20] + exp[−(V + 35)/20]
,

(7)

with gM = 0.03 mS/cm2 and τmax = 1000 ms.35,40

Although in smaller quantities compared to other ions, the cur-
rents IL and IT play an important role in the neuronal activities.
Their presence is required for generation of bursting activities. The
set of equations that describes IL current is given by

IL = gLq2r(V − ECa),

dq

dt
= αq(V)(1 − q) − βq(V)q,

dr

dt
= αr(V)(1 − r)βr(V)r,

αq =
0.055(−27 − V)

exp[(−27 − V)/3.8] − 1
,

βq = 0.94 exp[(−75 − b)/17],

αr = 0.000 457 exp[(−13 − V)/50],

βr =
0.0065

exp[(−15 − V)/28] + 1
,

(8)

where gL = 0.3 mS/cm2 is the maximum value of conductance and
ECa = 120 mV36 is the reversal potential of the calcium. The IT

current is described by

IT = gTs2
∞u(V − ECa),

du

dt
= (u∞(V) − u)/τu(V),

s∞(V) =
1

1 + exp[−(V + Vx + 57)/62]
,

u∞(V) =
1

1 + exp[−(V + Vx + 81)/4]
,

τu(V) = 30.8 +
211.4 + exp[(V + Vx + 113.2)/5]

1 + exp[(V + Vx + 84)/3.2]
,

where gT = 1 mS/cm2 is the maximum conductance of the IT cur-
rent and Vx = 2 mV.37,41 The functions s∞(V) and u∞(V) are related
to the opening and closing of the ion channel. The function τu(V)

indicates how long the ion channel remains open.
We construct a local network in which each neuron [Eq. (1)] is

connected to the R nearest neighbors. Therefore, a neuron i is con-
nected with every neuron j within a range of R, i.e., |i − j| <= R for
i, j = 1, 2, 3, . . . , N. Throughout this work, we fix the network size
to N = 1000 excitatory neurons. We consider closed boundary con-
ditions, so all neurons send and receive 2R connections. Synaptic
coupling is incorporated by adding the synaptic current term Isyn to
Eq. (1) as follows:

Cm

dVi

dt
= −gleak(Vi − Eleak) − I i

ionic + I i
syn + I/A, (9)

where Cm = 1 µF/cm2 is the specific capacitance of the membrane
and A = 0.2835 × 10−3 cm2 is the membrane area.40 Vi is the mem-
brane potential, gleak is the leak membrane conductance, Eleak is the
resting potential, and I is a constant current that is equal to all
neurons (µA). The synaptic current I i

syn is given by

I i
syn =

N
∑

k=1

(

Vk
rev − Vi

)

Mikgsyn, (10)

where Vk
rev = 0 represents the excitatory synaptic reversal poten-

tial, gsyn is the synaptic conductance from the neuron k, and Mik

is the adjacent matrix of connections; when Mik = 1 (0), the k neu-
ron is connected (or non-connected) with an i-neuron. Observe that
Mik = 0 for all i = k, i.e., no self-connections.

III. DIAGNOSTIC TOOLS

The coefficient of variation (CV) is commonly used to differen-
tiate spikes and bursts. To calculate the CV, we define the interspike
interval (ISI) as the time interval between two consecutive neuronal
spikes, ti,m+1 and ti,m; thus, ISIi = ti,m+1 − ti,m. The ratio between the
standard deviation and the mean ISI (indicated by 〈ISIi〉) gives rise
to CVi,

CVi =

√

〈

(ISIi − 〈ISIi〉)
2
〉

〈ISIi〉
. (11)
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The average CV for the entire network is defined as

CV =
1

N

N
∑

i=1

CVi; (12)

when CV < 0.5, the neurons are in the spike regime, while CV ≥ 0.5
defines the emergence of burst activities.

The desynchronous and synchronous patterns can be identified
using the local and global phase order parameter.42 Each neuron is
defined a local phase order parameter by computing the phase of the
five neighbors on the right and on the left (totaling 10 connections),

Zj(t) =

∣

∣

∣

∣

∣

∣

1

10 + 1

∑

|j−i|65

exp(iφi(t))

∣

∣

∣

∣

∣

∣

, i = 1, . . . , N; (13)

the phase is defined as

φi(t) = 2π

(

m +
t − ti,m

ti,m+1 − ti,m

)

, (14)

where ti,m is the time of the mth spike of the neuron i, with ti,m < t
< ti,m+1. In our simulations, we consider that the patterns are locally
synchronized if Zj > 0.9, computing in the last 10 ms.

Unlike the local order parameter, the global order parameter
(Zg) measures the synchronization degree of the whole network, and
it is defined as

Zg(t) =
1

N

N
∑

j=1

Zj(t), (15)

where N = 1000 is the number of neurons in the network. The
temporal mean value of Zg for the time window tfin − tini is

=
1

tfin − tini

∫ tfin

tini

Z(g(t)) dt. (16)

IV. CHIMERA HEADS AND COLLAPSE TIME

We investigate the transitions between the firing patterns by
varying R and gsyn (Fig. 1). To do that, we compute the values of

CV and Zg, as shown in panels (a) and (b), respectively. For low
coupling strength gsyn < 0.1 mS/cm2 and R < 5, highlighted by the
cyan square in Fig. 1(a), the neurons exhibit desynchronous activi-
ties with irregular spike patterns [Fig. 1(c)]. Increasing gsyn and R,
the neurons exhibit a spike regime with regular behavior, as dis-

played in Fig. 1(d). Consequently, CV < 0.5 and Zg increases. For
CV equal to 0.03, it is possible to observe the coexistence of desyn-
chronous and synchronous dynamics, known as a chimera state
[Fig. 1(e)].43 The domains with desynchronized neurons are called
heads. For large values of R and gsyn, the neurons exhibit bursting
activities, as shown in Fig. 1(f). In the white red region, the averaged
firing frequency exceeds 40 Hz. Since these values exceed the typi-
cal physiological range observed in cortical pyramidal neurons, we
consider this threshold as an upper limit.

To identify and track chimera states, we compute the local
phase order parameter Zj over a time window of τ = 300 ms. We
consider that there is a chimera state when five or more consecutive

FIG. 1. Firing pattern for different R and gsyn, where the color bars denote the values of (a) CV and (b) Zg. Raster plots for (c) R = 5 and gsyn = 0.06 mS/cm2, (d) R = 20

and gsyn = 0.2 mS/cm2, (e) R = 50 and gsyn = 0.25 mS/cm2, and (f) R = 80 and gsyn = 0.5 mS/cm2.
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FIG. 2. (a) Raster plot for R = 45 and gsyn = 0.3 mS/cm2. Multiple chimera
heads initially emerge and two heads persist. (b) Local phase order parameter
Zj for the time equal to 10 s, where the black dotted line corresponds to Zj = 0.9.
(c) Raster plot and temporal evolution of ICV. The black dashed line indicates the
CT value (iCV< 0.01).

neurons satisfy Zj < 0.9. The chimeras can emerge and vanish over
time, and then the number of detected heads depends on the time
window. To analyze the collapse of chimera states, we compute
the instantaneous coefficient of variation (ICV). The ICV value is

calculated for each neuron by means of Eq. (12). The collapse time
(CT) is identified when all values of ICV is less than 0.01.

Figure 2 shows the formation and disappearance of chimera
heads. Panel (a) displays a raster plot of the neuronal activities
during the first 10 s of 100 s simulation. Various desynchronized
regions emerge, indicating the presence of multi-headed chimera
states. Many of these desynchronized domains collapse before 7 s,
and two heads remain. Panel (b) exhibits the respective values of
Zj, revealing the spatial structure. In panel (c), we compute the
raster plot for the time greater than 44 s and the temporal evolu-
tion of ICV. The neurons with desynchronous activities transition
to a synchronous behavior. The vertical dashed line marks the CT
value at which all domains with desynchronized neurons vanish and
ICV < 0.01.

Concerning the chimera heads, we analyze how the number of
chimera heads and their CT evolve as a function of time. Figure 3
displays the parameter spaces gsyn × R for (a) 25, (b) 100, and (c)
500 s. The top panels show the number of chimera heads identi-
fied at the final time, while the bottom panels display the respective
CT of the chimera heads. For 25 s, Fig. 3(a) exhibits the presence of
various chimera heads across a wide region of the parameter space.
However, the CT value indicates that most of the heads rapidly col-
lapse. Multiple heads emerge; however, they do not remain stable
and transition to a synchronized state. The top panel in Fig. 3(b)
shows that the number of heads decreases when the time is equal
to 100. There is a range in the parameter space in which multi-
headed chimeras persist until 100 s. Increasing to 500 s, the size of
the yellow region decreases, leading to states in which the chimeras
have one single head or disappear, as displayed in Fig. 3(c). Accord-
ing to the CT values, some chimeras with one head can persist
for a long time. Depending on R and gsyn, it is possible to observe
multi-head chimeras over time. The chimeras are predominantly

FIG. 3. R × gsyn showing the number of chimera heads (top panels) for (a) 25, (b) 100, and (c) 500 s, as well as the respective collapse times (bottom panels) from the time
equal to 0.
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FIG. 4. (a) R × gsyn for the time equal to 500 s. In Region I (red) and Region II (blue), the fractions of initial conditions that converge to single- and multi-headed chimeras
are greater, respectively. (b) CT vs the number of CHs for different initial conditions, where the red circles and blue triangles correspond to Region I and Region II. (c) Fraction
of the number of heads in each colored region. The average value of CT as a function of gsyn for R = 20 in panel (d), R = 50 in panels (e) and (f), and R = 90 in panels (g)
and (h) according to the black dashed lines in panel (a).

characterized by a single head, suggesting that they are more stable
than multi-headed chimeras.

Aiming to investigate the dependence of the chimeras on the
initial conditions, we separate the parameter space R × gsyn into
Region I (red) and Region II (blue) for the time equal to 500 s, as
displayed in Fig. 4(a). It is possible to identify chimera states in
both regions. According to Fig. 4(b), in Region I, there are chimeras
with one, two, and three heads that can persist for a very long time.
Chimeras with more than three heads are found in Region II; how-
ever, they have short lifespans. In Fig. 4(c), we compute the fraction
of the number of chimera heads. In Region I (II), we observe 78.4%
(21.6%), 79.6% (20.4%), and 25% (75%) of chimeras with one, two,
and three heads. The fractions of one, two, and three heads in Region
I are greater than Region II. Chimeras with more than three heads
are found only in Region II.

We compute the averaged value of CT (height) as a function
of gsyn for R = 20 (low value), R = 50 (intermediate value), and
R = 90 (high value), as displayed in panel (d), in panels (e) and
(f), and in panels (g) and (h), respectively, according to the black
dashed lines in Fig. 4(a). We performed 64 simulations per R with
randomly generated initial conditions. The membrane potential V
of each neuron is drawn from a normal distribution in the range
[−70, −50] mV, while the gating variables m, h, and n are initial-
ized uniformly in [0, 0.1]. The remaining variables (p, q, r, and u)
are fixed at zero. Each simulation was run for 500 s. The red and
blue colors correspond to Regions I and II, respectively.

For R = 20, there is only Region I and the CT values are
approximately greater than 5 × 104 with small error bars, as exhib-
ited in Fig. 4(d). In Region I, for R = 50 [Fig. 4(f)] and R = 90

[Fig. 4(h)], the values of CT are high due to the fact that the chimeras
take a long time to collapse. Figures 4(e) and 4(g) show that the val-

ues of CT are less than 5 × 105 in Region II. Therefore, the chimeras
in Region II have collapse times shorter than those in Region I.

V. CONCLUSIONS

In this work, we investigate the dynamics of a locally coupled
neuronal network composed of conductance-based excitatory neu-
rons. By incorporating biologically realistic ionic currents, includ-
ing sodium, potassium, and both high- and low-threshold calcium
currents, we reproduce a variety of spatiotemporal patterns, includ-
ing synchrony, asynchrony, bursting, and chimera states. Chimeras
are characterized by the coexistence of coherent and incoherent
activities within the same network.

The main focus of our study is the formation and collapse
of chimera states. We demonstrate that the number of chimera
heads depends on the network’s nearest-neighbor connectivity R
and synaptic conductance gsyn. With regard to these parameters, we
show that multi-headed chimeras are more frequently observed in
intermediate value ranges. In our results, we identify that multi-
headed chimeras exhibit collapse times shorter than single-headed
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ones. Moreover, we explore how the initial conditions influence the
collapse of chimeras.

By analyzing the parameter space R × gsyn, we find a region in
which there are chimeras with one, two, and three heads (Region I),
as well as another region with chimeras exhibiting up to eight heads
(Region II). We observe that the shorter collapse time in Region II is
related to the higher number of connections and stronger synaptic
coupling among the neurons. Consequently, the chimeras in Region
II, particularly those with more than three heads, tend to collapse
faster than those in Region I.

The novelty in our study is to combine a locally coupled
network with conductance-based excitatory neurons to show the
emergence of multi-headed chimera states. Overall, our findings
highlight the interplay between connectivity, synaptic conductance,
and initial conditions in the lifespan and structure of chimera
states. Similar patterns of partial synchrony and collapse have been
observed in brain dynamics, such as seizure initiation or break-
down of functional segregation. By using a biologically based model,
our work provides a step toward connecting studies about chimeras
patterns with more realistic neuronal models.

In future works, we plan to analyze the stability of multi-headed
chimera states and how the mean collapse time depends on the num-
ber of heads. We will also investigate the collapse time for different
network sizes.
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