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Abstract
Master–slave systems have been intensively investigated for modelling the
application of chaos in communications. We considered Colpitts oscillators
coupled according to a master–slave configuration in order to study chaos
synchronization. We revealed the existence of superpersistent transients in this
coupled system. The transient is a ubiquitous phenomenon in nonlinear
dynamical systems, and it is responsible for important physical phenomena.
We characterized superpersistent transients through a scaling law for their
average lifetime. Unstable–unstable pair bifurcation has been identified as the
generic mechanism for these transients. Moreover, we showed that an additive
noise, added to the slave system, may suppress the chaos synchronization. Our
results show that synchronization can be achieved for higher coupling strength
when there is noise. However, the noise may induce a longer transient if the
synchronization is not suppressed.
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1. Introduction

Coupled chaotic systems can synchronize their trajectories [1]. The synchronization of
coupled chaotic systems has important applications in many fields, such as biological systems
[2], secure communications [3], and chemical reactions [4]. The phenomenon of chaos
synchronization may occur when two or more dissipative chaotic systems are coupled. It is
often understood as a behaviour in which coupled chaotic systems exhibit not only identical
but also chaotic oscillations. Synchronized chaotic systems have been considered in various
studies, with interesting applications in signal processing and communication.

Recent works have shown that chaos synchronization for a master–slave configuration is
relevant to communication systems. The slave system is driven by a signal derived from the
master [5]. Master–slave synchronization schemes have been reported in experimental and
theoretical studies which introduce the possibility of applying chaotic synchronization in
communication. Communication security schemes may be based on chaos synchronization:
message signals are injected into a transmitter, then encrypted, and transmitted to a receiver;
the synchronization of the chaos is required to recover the message.

Here we focus our study on two chaotic coupled Colpitts oscillators [6]. The Colpitts
oscillator was invented by engineer Edwin Henry Colpitts [7]. It is a damped resonant circuit
with two capacitors, an inductor, and a bipolar junction transistor. This circuit provides an
occasional driving force via a nonlinear switching action. We chose this circuit due to the fact
that it can be useful in applications in communication systems, as well as exhibiting a rich
dynamical behaviour for certain parameter values. De Feo and collaborators identified various
families of limit cycles and bifurcations. They also demonstrated that the bifurcation diagram
in the parameter space is organized through an infinite family of homoclinic bifurcations [8].
In the Colpitts oscillator the operation frequency can vary from a few hertz up to the
microwave frequency range, a characteristic that enables the use of this circuit to transmit
information in channels with difference frequency bandwidths.

There has been a great interest in the study of synchronization and control of Colpitts
oscillators. Control schemes have been used to suppress chaos. Li and collaborators used a
controller to drive a chaotic Colpitts system to a desired state [9]—that is, to achieve the
stabilization of the chaotic motion to a steady state. In another work, the circuit was controlled
by using a nonlinear feedback [10]. Synchronization between chaotic Colpitts systems has
been found in identical and mismatched cases [11, 12]. Furthermore, there are works con-
cerning the synchronization of Colpitts oscillators that operate in ultrahigh frequency ran-
ges [13].

In this article, we study two coupled Colpitts oscillators in a master–slave configuration
and focus our attention on chaos synchronization. Our main objective is to verify the exis-
tence of superpersistent chaotic transients [14, 15], and the effect of noise on the synchronous
behaviour [16, 17]. Superpersistent transients are characterized by a scaling law for their
average lifetime. Grebogi and collaborators [14] identified an unstable–unstable pair bifur-
cation as the dynamical mechanism for these transients. Superpersistent transients may
accompany phenomena such as the onset of riddled basins, as well as the stability of attractors
formed from inertial particles advected in hydrodynamical fluid flows [18, 19]. Noise can
produce significant effects in chaotic systems. In fact, noise can induce superpersistent
transients [20]. Noise-induced synchronization has been studied in the effects of small-world
connectivity on noise-induced temporal and spatial order in neural media [21]. Moreover,
persistency of noise-induced spatial periodicity in excitable media has been reported [22].

This article is organized as follows. In section 2 we present the coupled Colpitts oscil-
lators. In section 3 we study the onset of synchronization and show the existence of
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superpersistent transients. In section 4 we describe the effect of noise on the system. The last
section contains our conclusions.

2. The Colpitts oscillator

The Colpitts oscillator is a type of resonant circuit with a transistor for feedback. This
oscillator has been used in electronic devices and communication systems, due to the fact that
it can exhibit chaos [23]. Figure 1(a) exhibits the circuit configuration containing a bipolar
junction transistor (BJT), according to figure 1(b). The state equations are given by
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where the voltages VC1 and VC2 are associated with the capacitors C1 and C2, respectively, Vcc

is the voltage supply, IL is the current through the inductor L and t is the time. There is a
current generator I0 to maintain a constant biasing emitter current. The function f () is the
driving point characteristic of the nonlinear resistor RE and it can be expressed as

= = −I f V f V( ) ( )E C BE2 , where αF is the common-base forward short-circuit gain.

Figure 1. The circuit diagram of a Colpitts oscillator. (a) The circuit configuration and
(b) the bipolar junction transistor (BJT).
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We consider two Colpitts oscillators in a master–slave configuration, in accordance with
the scheme shown by figure 2. If this coupled system were to be used for communication
purposes, the transmitter would be the master and the receiver the slave. We also consider
noise in the channel.

Introducing the following dimensionless variables
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Figure 2. The circuit diagram of a coupled Colpitts system with a master–slave
configuration.
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we obtain the equations for a unidirectional master–slave configuration
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where x1, x2 and x3 belong to the master circuit, y1, y2 and y3 belong to the slave circuit, and
ω0 is the resonant frequency of the tank circuit due to L, C1 and C2. The time derivative of y2
containing the coupling term depends on variables of both circuits. The nonlinear terms are
given by = −−n x( ) e 1x and = −−n y( ) e 1y . The dimensionless parameters are
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and ε is the coupling strength, which is defined as ε = −L C R*1
1. We use k = 0.5,

α = 0.996F , Ω=R 80 , =C C1 2 = 1 μF, L = 18.2 μH, =V 27T mV, and Q = 1.77. With these
values set and g = 2.863, the Colpitts oscillator presents chaotic behaviour. The system
presents a broad range of different dynamical regimes as the parameter g is varied, such as
chaotic behaviour, periodic solutions, Hopf bifurcation, and coexistence of solutions. In this
work, in order to study chaos synchronization, we consider a small interval of the values of g
such that the system only presents chaotic behaviour.

3. Chaos synchronization

Chaotic systems have applications in secure and spread spectrum communications. Previous
works have presented applications of chaos synchronization in wireless communications [24]
and multiplexing mixed chaotic signals generated by different electronic oscillators [25].
Chaos synchronization occurs when the state variables of the two circuits are equal. Such a
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condition is achieved after a transient time that depends on the stability of the synchronization
manifold.

A numerical diagnostic allowing statements to be made about the synchronous state is
provided by the synchronization error

Δ = −x y . (12)1 1

Figure 3 shows the time evolution of Δ for two situations: (a) when there is no
synchronization between the Colpitts oscillators and (b) when there is chaos synchronization.
When the oscillators are completely synchronized we have Δ = 0. If the system presents
chaos synchronization, the synchronization errors Δ = −x y| |2 2 and Δ = −x y| |3 3 will
exhibit the same result.

We investigate the dependence of the synchronization error on the control parameter g
and the coupling strength ε. Using the time-averaged error

∑Δ Δ=
−t t

t¯ 1
( ), (13)

t

t

2 1
1

2

where −t t2 1 is the time window for measurements, chaos synchronization is stated to occur
when Δ < −¯ 10 4. We consider =t 50001 and =t 10 0002 , but similar results were obtained for

=t 18 0001 and =t 20 0002 . Figure 4 shows a parameter space, indicating by the colours
regions of parameters that lead to no synchronization (white) and regions of parameters that
lead to synchronization (green), representing parameters for which Δ < −¯ 10 4.

We calculate the spectrum of Lyapunov exponents of the synchronization manifold and
its transverse directions in order to verify the local stability of the synchronization manifold.
We obtain the spectrum considering the same initial conditions for the two circuits:

= =x y 0.021 1 , = = −x y 102 2
4 and = = −x y 103 3

4. We are interested in the largest two
Lyapunov exponents. When the maximal exponent is positive and the second largest is
negative, the system presents chaos synchronization [26]. The synchronization manifold is
locally stable, since the negative exponent measures how perturbation propagates along the
direction transverse to the synchronization manifold. Consequently, the circuits can

Figure 3. Time evolution of the synchronization error considering (a) ε = 0.05 and (b)
ε = 0.089.
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synchronize. The black line, shown in figure 4, separates two regions. In region I the coupled
oscillators do not synchronize, while in region II synchronization occurs.

We can see in figure 4 that the boundary between the two regions has an irregular pattern.
This suggests the existence of an entangled basin boundary for the synchronous attractor [27].
Consequently, the time taken to reach the synchronous state will strongly depend on the initial
conditions, some of them being responsible for very long transients. The transient time is
denoted by τ, and its average value is τM .

The histogram of the transient time for an ensemble of initial conditions is shown in
figure 5, where the red circles correspond to ε = 0.090 and the black squares to ε = 0.086.
The statistical distribution of the transient sizes was obtained by considering 104 different
initial conditions for x2 and y2, and shows that small transients become more common when

Figure 4. Synchronized domains (green region) in the g–ε parameter plane. The black
line separates the regions for which the synchronization manifold is unstable (I) and
stable (II). Stability is measured via the Lyapunov exponents of the synchronization
manifold.

Figure 5. Histogram of the transient time intervals for a total of 104 different initial
conditions for x2 and y2 in the interval [0, 0.001], where we consider g = 2.863,
ε = 0.086 (red circles) and ε = 0.090 (black squares).
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the value of the coupling strength increases. Therefore, for some values of g and ε, around the
region of the boundary in the green area of figure 4, the circuits may present large transients,
depending on the initial conditions.

Here we recall that there is a distinct class of chaotic transients that are referred to as
superpersistent [14, 15]. Such transient times are characterized by the following scaling law
for their average transient

⎡⎣ ⎤⎦τ β∼ − γ−p pexp ( ) , (14)M c

where β and γ are positive constants, pc is a critical parameter value, and the transient occurs
for >p pc. In this work the critical parameter is the coupling strength. The least-squares fit in
figure 6 exhibits an exponential distribution for τM and ε ε− c, which indicates a
superpersistent transient with exponent γ = 1.

The mechanism for a persistent transient is an unstable–unstable pair bifurcation [28].
After this bifurcation the trajectory spends a time T(p) in the channel centred about an earlier
existing unstable periodic orbit. The basic dynamics can be described by

= +ψ−x

t
x p

d

d
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∼
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where the root of the channel is x = 0, and l is its length. Then, substituting equation (16) into
the average transient lifetime, which is associated with the tunnelling time via
τ β∼p T p( ) exp ( ( ))M , we obtain

τ β∼ −ψ
ψ

−
−( )pexp , (17)M

2
1

Figure 6. Scaling of the superpersistent transient on varying the coupling strength, for
g = 2.863 and ε = 0.078c . Each point represents the average over 100 different initial
conditions for x2 and y2. The solid line is an exponential fitting with exponent −470.31.
The value of εc is obtained when the synchronization manifold becomes stable.
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where β > 0 is a constant, and ψ ψ− − <( 2) ( 1) 1. Therefore, the average transient lifetime
diverges in an exponential algebraic way [29].

4. The effect of noise

We analyse chaos synchronization under realistic conditions, with noise in the experiments
[30]. We add a stochastic perturbation to the variable y t( )2 of equation (6)

⎡⎣ ⎤⎦α ε= − + + − +( )
y

t

g

Qk
n y y x y Ar t

d

d
1 ( ) [ ] ( ), (18)F

2
2 3 2 2

where A is the level of the stochastic perturbation and r(t) is a pseudorandom variable. We
consider a random number generator that returns a normally distributed deviate with zero
mean and unit variance. In other words, the noise is a white Gaussian noise (AWGN) [31].

To understand the effect of noise under the synchronization conditions, we measure the
synchronization error for different values of the noise level and the coupling strength. In
figure 7, we plot the time-averaged synchronization error versus the coupling strength for
three values of the noise level. When the noise level is small (green circles) the value of the
time-averaged error decreases sharply when the coupling strength increases. For larger values
of A (red and black circles) the time-averaged error decays less abruptly as a function of ε. For
all situations, Δ >¯ 0, showing that synchronization is suppressed.

Synchronization is affected by noise. In figure 8 we consider the same parameters as were
adopted in figure 4 but add noise with level = × −A 3 10 5. Comparing figure 8 (with noise)
with figure 4 (without noise), it is possible to observe that due to the effect of the noise, a
larger value of ε is necessary to make the systems synchronize. Like for figure 4, the structure
of the boundary between the synchronous region and the nonsynchronous region is a con-
sequence of the existence of an entangled basin boundary that produces superpersistent
transients. We obtain the synchronized region by checking whether Δ < −¯ 10 4, for =t 10001

and =t 20 0002 . We analyse the noise effect on the synchronized region, fixing the value of g

Figure 7. Synchronization error versus coupling strength for g = 2.863, A = 0.1 (green
circles), A = 0.5 (red circles) and A = 1.0 (black circles). These three cases have exactly
the same initial conditions.
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and varying the noise amplitude A, to obtain the ε* for which the average transient τM is
approximately 104 (figure 9(a)). Therefore, the larger the noise amplitude is, the larger the
coupling strength must be to synchronize.

The phenomenon of the superpersistent transient is affected by the noise; that is, a small
noise leads to an increased transient time. Figure 9(b) shows histograms for g = 2.863, ε = 1,

= × −A 5 10 5 (black circles) and = × −A 6 10 5 (red squares), in order to show that the noise
induces longer transients. When ⩽ × −A 4 10 5 the transients have values around 103.
Moreover, for ⩾ × −A 7 10 5 the noise may suppress chaos synchronization. It is worthy of
comment that near the critical parameter εc, the average transient τM quickly increases when
the noise amplitude grows, according to an exponential relationship τ ϕ φ∼ Aexp ( )M , where
ϕ and φ are positive constants.

5. Conclusions

In this paper, we have studied some aspects of the chaos synchronization displayed by two
coupled Colpitts systems with a master–slave configuration. We obtained a set of parameters
which may lead the coupled circuits to adopt a synchronized or a nonsynchronized state. We
verified the existence of superpersistent transients. Such transients are mainly situated in the
border of the synchronized domain in the parameter space of g versus ε, where g is the loop
gain of the oscillator, and ε is the coupling strength.

The effects of noise on the coupled circuits were considered. Noise acts on the system in
such a way that synchronization can only be achieved for higher coupling strength. Moreover,
the transients become longer.

Our results enable us to predict a set of parameters for the coupled Colpitts oscillators
needed to observe superpersistent transients that can be used in laboratory experiments. The
persistent transients described are similar to those observed in dissipative systems, and should
be related to the chaotic saddle of the coupled systems [32, 33]. Moreover, the analysis
realized in this work can be extended to application to other oscillators. Superpersistent
chaotic transients have been observed in coupled Chua circuits and coupled Rössler oscil-
lators [15].

Figure 8. Synchronized domains (green region), considering the same parameters as for
figure 4, and a small noise = × −A 3 10 5.
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In future works, we plan to study such coupled systems considering electronic simula-
tions [34], and also to obtain experimental results through the use of an electronic circuit.
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