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a b s t r a c t

We study the capacity of Hodgkin–Huxley neuron in a network to change temporarily or permanently
their connections and behavior, the so called spike timing-dependent plasticity (STDP), as a function of
their synchronous behavior. We consider STDP of excitatory and inhibitory synapses driven by Hebbian
rules. We show that the final state of networks evolved by a STDP depend on the initial network
configuration. Specifically, an initial all-to-all topology evolves to a complex topology. Moreover, external
perturbations can induce co-existence of clusters, thosewhose neurons are synchronous and thosewhose
neurons are desynchronous. This work reveals that STDP based on Hebbian rules leads to a change in the
direction of the synapses between high and low frequency neurons, and therefore, Hebbian learning can
be explained in terms of preferential attachment between these two diverse communities of neurons,
those with low-frequency spiking neurons, and those with higher-frequency spiking neurons.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Neuroplasticity, also known as brain plasticity or brain mal-
leability (Brenner, Bialek, & Van Steveninck, 2000; Strong, Koberle,
Van Steveninck, & Bialek, 1998), refers to the ability of the brain to
reorganize neural pathways in response to new information, envi-
ronment, development, sensory stimulation, or damage (Draganski
et al., 2004; James, 1890; Lashley, 1923). The term neuroplastic-
ity was firstly introduced in 1948 by neuroscientist J. Konorski in
a work (Konorski, 1948) that showed the associative learning as a
result of the adaptation of the brain to external stimuli. In 1949,
D. O. Hebb, in his book entitled ‘‘The Organization of Behavior’’
(Hebb, 1949), proposed a plasticity rule, today known as Hebb’s
rule.

Scientific advances in neuroimaging and in noninvasive brain
stimulation have provided insights to understand better neu-
roplasticity. Learning-induced structural alterations in gray and
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white matter have been documented in human brain (Dayan & Co-
hen, 2011). Draganski et al. (2004) used whole-brain magnetic-
resonance imaging to observe learning-induced neuroplasticity.
They verified structural changes in areas of the brain associated
with the processing and storage of complex visual motion. Lu et al.
(2003) demonstrated that neuroplasticity is affected by environ-
mental stimuli. In addition, neuroimaging studies have showed
alterations of neuroplasticity in depression, namely depressive
disorder may be associated with impairment of neuroplasticity
(Fuchs, Czéh, Kole, Michaelis, & Lucassen, 2004).

Aiming at understanding the fundamental mechanisms be-
hind plasticity, Popovych and collaborators studied the effect
of noise on synchronous behavior in globally-coupled spiking
Hodgkin–Huxley neurons with spike timing-dependent plasticity
(STDP) and excitatory synapses (Borges et al., 2016; Popovych,
Yanchuk, & Tass, 2013). STDP networks have nodes that adapt their
synaptic strength according to some rule based on their spike tim-
ings (Gilson, Burkitt, & Van Hemmen, 2010; Markram, Gerstner, &
Sjostrom, 2011, 2012). Abarbanel and Talathi (2006) studied a neu-
ral circuit responsible for recognizing interspike interval sequences
by means of STDP of inhibitory synapses. Similar results, though
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using different kinds of neural models, have been reported earlier
by Kalitzin, Van Dijk, and Spekreijse (2000), where it was shown
that coherent input can enhance synapses inducing high connec-
tivity, whereas mutually anti-correlated inputs to individual neu-
rons weaken connectivity. On the contrary, the work in Popovych
et al. (2013) however shows that a fully uncorrelated input can en-
hance connectivity. Sadeh, Clopath, and Rotter (2015) studied the
emergence of functionally specific connectivity in the visual cortex
with Hebbian plasticity based on visual experience. They showed
that plasticity can lead to functionally specific and stable connec-
tions in random networks composed of leaky integrate-and-fire
neurons. In our work, we focus the attention on the network de-
pendence on plasticity. To do that, we consider an initial all-to-all
topology and focus on the changes in synchronous and non syn-
chronous states caused in a Hodgkin–Huxley neural network with
excitatory (eSTDP) and inhibitory synapses (iSTDP).

Neural spike synchronization is responsible for information
transfer (Antonopoulos, Srivastava, Pinto, & Baptista, 2015; Bap-
tista, Szmoski, Pereira, & Pinto, 2016), and can be associated with
forms of dysfunction. For instance, abnormally synchronized os-
cillatory activity has been reported in Parkinson’s disease (Ham-
mond, Bergman, & Brown, 2007), epilepsy (Uhlhaas & Singer, 2006)
and some other neurological disorders. Synchronous behavior was
analyzed in systems of synfire chains to solve binding problems.
It was verified that dynamics of binding may be modeled by
competitive synchronization among synfire chains (Abeles, Hayon,
& Lehmann, 2004; Hayon & Lehmann, 2005). Moreover, synfire
chains have been considered to describe information transfer phe-
nomena and coherent spiking (Wang, Sornborger, & Tao, 2016).

Our main goal is to show that spike timing-dependent
plasticity of excitatory and inhibitory synapses induces non-trivial
topologies in the plastic brain. Initial networks of neurons fully
connected, evolve to a non trivial complex network. Consequently,
this non-trivial topology alters the synchronous behavior. In our
results, we have observed for some parameter conditions not only
the improvement of neural spiking synchronization, but also for
other parameter conditions that promote desynchronization. We
have also observed concurrent synchronous and non synchronous
behavior in the neurons of a network constructed for a particular
set of parameters. Therefore, the onset of synchronicity comes
along side with desynchronicity in the plastic brain. This balance
between different synchronous behaviors is vital to maintain
a fundamental property of a brain network. Clusters need to
be sufficiently synchronous for information to be efficiently
exchanged, but at the same time sufficiently desynchronous to
behave independently. Finally, we show that when there is an
external perturbation, the plastic neural network has an abrupt
change in behavior characterized by a first-order transition.

This paper is organized as follows: In Section 2 we introduce
the neural network described by coupled Hodgkin–Huxley neural
model. In Section 3, we discuss our results about neural synchro-
nization considering eSTDP and iSTDP. In Section 4 we draw our
conclusions.

2. Neural network

In this work, we focus on eSTDP and iSTDP based on Hebbian
theory proposed in Ref. Hebb (1949). These plastic mechanisms
consist of synapses that become stronger or weaker depending on
the pre and postsynaptic neurons’ activity. We have considered
an initial network with a global coupling, with chemical synapses
where the connections are unidirectional, and the local dynamics is
described by theHodgkin–Huxleymodel (Hodgkin&Huxley, 1952;
Izhikevich, 2004). The system is given by

CV̇i = Ii − gKn4
i (Vi − EK)− gNam3

i hi(Vi − ENa)

− gL(Vi − EL)+
(V Exc

r − Vi)

ωExc

NExc
j=1

εijsj

+
(V Inhib

r − Vi)

ωInhib

NInhib
j=1

σijsj + Γi, (1)

ṅi = αni(Vi)(1 − ni)− βni(Vi)ni, (2)
ṁi = αmi(Vi)(1 − mi)− βmi(Vi)mi, (3)

ḣi = αhi(Vi)(1 − hi)− βhi(Vi)hi, (4)

where C is the membrane capacitance (µF/cm2), Vi is the
membrane potential (mV) of neuron i (i = 1, . . . ,N), Ii is
a constant current density randomly distributed in the interval
[9.0, 10.0], ωExc (excitatory) and ωInhib (inhibitory) are the
average degree connectivities, εij and σij are the excitatory and
inhibitory coupling strengths from the presynaptic neuron j to
the postsynaptic neuron i (Gray, 1959). The εij values are in the
interval [0, 0.5] and the σij values are in the interval [0, 2σM ]. In
our simulations, themaximumvalue for εij is equal to 0.5 according
to Ref. Popovych et al. (2013), and we consider the maximum
value for σM equal to 0.75 due to the fact that for σij < 1.5 we
observe a transition from synchronized to desynchronized states.
In addition, we have discarded a transient of 1.95 × 106 ms.
We consider that 80% of the neurons are excitatorily coupled
(NExc) and 20% of them are inhibitorily coupled (NInhib) according
to anatomical estimates for the neocortex (Noback, Strominger,
Demarest, & Ruggiero, 2005). Both populations receive input from
all other neurons in ownpopulation and from the other population.
We also consider an external perturbation Γi, so that each neuron
randomly chosen receives an input with a constant intensity γ =

10 µA/cm2 during 1 ms. In each time step tstep = 0.01 ms
a random input with amplitude γ is applied to each neuron
with a probability equal to tstep/14, where 14 ms approximately
corresponds to the inter-spike interval of the Hodgkin–Huxley
neuron. Functions m(Vi) and n(Vi) represent the activation for
sodium and potassium, respectively, and h(Vi) is the function for
the inactivation of sodium. Functions αn, βn, αm, βm, αh, βn are
given by

αn(v) =
0.01v + 0.55

1 − exp (−0.1v − 5.5)
, (5)

βn(v) = 0.125 exp


−v − 65
80


, (6)

αm(v) =
0.1v + 4

1 − exp (−0.1v − 4)
, (7)

βm(v) = 4 exp


−v − 65
18


, (8)

αh(v) = 0.07 exp


−v − 65
20


, (9)

βh(v) =
1

1 + exp (−0.1v − 3.5)
, (10)

where v = V/[mV]. Parameter g is the conductance and E the
reversal potentials for each ion. Depending on the value of the
external current density Ii (µA/cm2) the neuron can present single
spike activity or periodic spikings. In the case of periodic spikes,
if the constant Ii increases, the spiking frequency also increases.
In this work, we consider C = 1 µF/cm2, ENa = 50 mV, EK =

−77 mV, EL = −54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2,
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gL = 0.3 mS/cm2. The neurons are excitatorily coupled with a
reversal potential V Exc

r = 20 mV, and inhibitorily coupled with a
reversal potential V Inhib

r = −75 mV. The presynaptic potential si is
given by Destexhe, Mainen, and Sejnowki (1994) and Golomb and
Rinzel (1993)

dsi
dt

=
5(1 − si)

1 + exp

−
vi+3
8

 − si, (11)

where vi = Vi/[mV].
One of the key principles of behavioral neuroscience is that

experience can modify the brain structure, what is known as
neuroplasticity (Ramon & Cajal, 1928). Although the idea that
experience may modify the brain structure can probably be traced
back to the 1890s (Bliss & Collingridge, 1993; Bliss & Gardner-
Medwin, 1973), it was Hebb who made this a central feature in
his neuropsychological theory (Hebb, 1961). With this in mind,
we consider excitatory and inhibitory spike timing-dependent
plasticity according to the Hebbian rule. The coupling strengths
εij and σij are adjusted based on the relative timing between the
spikes of presynaptic and postsynaptic neurons (Bi & Poo, 1998;
Haas, Nowotny, & Abarbanel, 2006).

The plasticity dynamics can be mathematically defined as

d1ε(t)
dt

= f (1ε, V , t), (12)

where1ε is the update value of the synaptic weight. Kalitzin et al.
(2000) considered a function f that depends on the activation of the
synapse, the transmembrane potential of the postsynaptic neuron,
and the thresholds for switching on long-term potentiation and
the long-term depression (Artola, Bröcher, & Singer, 1990). In this
work, we consider a linear function f of the form f (1ε, t) =

(a+ c/t)1ε. The solution to the differential equation (12), is given
by 1ε = btc exp(at), where a, b and c are constants. For c =

0 and c ≠ 0, eSTDP and iSTDP are obtained, respectively. The
plasticity dynamics introduced by means of this linear function is
not fundamentally related to physiological processes (Artola et al.,
1990), but, by means of this function it is possible to find a fit
that describes experimental results of eSTDP and iSTDP obtained
in Refs. Bi and Poo (1998) and Haas et al. (2006).

The excitatory eSTDP is given by

1εij =


A1 exp(−1tij/τ1), 1tij ≥ 0
−A2 exp(1tij/τ2), 1tij < 0, (13)

where 1tij = ti − tj = tpos − tpre, tpre is the spike time
of the presynaptic and tpos the spike time of the postsynaptic
neuron. Fig. 1(a) exhibits the result obtained from Eq. (13) for
A1 = 1.0, A2 = 0.5, τ1 = 1.8 ms, and τ2 = 6.0 ms. The
initial synaptic weights εij are normally distributed withmean and
standard deviation equal to εM = 0.25 and 0.02, respectively
(0 ≤ εij ≤ 2εM ). Then, they are updated according to Eq. (13),
where εij → εij + 10−31εij. The insets in Fig. 1 show the absolute
value of the plasticity function, where the red and black lines are
the potentiation and depression values, respectively, as a function
of 1tij. The green dashed line in the inset figures denotes the
1tij value at which the curves of potentiation and depression
intersect. The inset in Fig. 1(a) shows that for |1tij| < 1.8 ms the
potentiation of εij is bigger than the depression. Whereas in the
case of iSTDP (inset in Fig. 1(b)) the potentiation of σij is bigger than
the depression for |1tij| > 9.8 ms.

For the inhibitory iSTDP synapses, the coupling strength σij is
adjusted based on the equation

1σij =
g0

gnorm
αβ |1tij|1tijβ−1 exp(−α|1tij|), (14)
Fig. 1. (Color online) Plasticity as a function of the difference of spike timing of
post and presynaptic (a) excitatory (eSTDP) and (b) inhibitory (iSTDP) synapse. The
insets show the absolute value of the plasticity function.

where g0 is the scaling factor accounting for the amount of change
in inhibitory conductance induced by the synaptic plasticity rule,
and gnorm = ββ exp(−β) is the normalizing constant. Fig. 1(b)
exhibits the result obtained from Eq. (14) for g0 = 0.02, β = 10.0,
α = 0.94 if1tij > 0, and for α = 1.1 if1tij < 0 (Talathi, Hwang, &
Ditto, 2008). As a consequence,1σij > 0 for1tij > 0, and1σij < 0
for1tij < 0. The initial inhibitory synapticweights σij are normally
distributed with mean and standard deviation equal to σM and
0.02, respectively (0 ≤ σij ≤ 2σM ). Then, the coupling strengths
are updated according to Eq. (14), where σij → σij +10−31σij. The
updates for εij and σij are applied for the last postsynaptic spike.

3. Spiking neuron synchronization

To study the effect of plasticity on the neural network, we
have calculated the coupling strengths, and used the time-average
order-parameter as a probe of spike synchronization, a quantity
expressed by

R =
1

tfinal − tinitial

tfinal
tinitial

 1N
N
j=1

exp(iψj)

 , (15)

where tfinal − tinitial is the time window for our estimation and the
phases are calculated by

ψj(t) = m +
t − tj,m

tj,m+1 − tj,m
, (16)

where tj,m represents the time when a spike m (m = 0, 1, 2, . . .)
in neuron j occurs (tj,m < t < tj,m+1), with the beginning
of each spike being when Vj > 0. In synchronous behavior,
the order-parameter magnitude approaches unity. In addition, if
the spike times are uncorrelated, the order-parameter magnitude
is typically small and vanishes for N → ∞. When identical
neurons are coupled, the neural network may exhibit complete
synchronization among spiking neurons, in other words, all other
neurons may present identical time evolution of their action
potentials. In this work, we are not considering identical neurons,
and as result it is not possible to observe complete synchronization.
However, an almost-complete synchronization may be observed.
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Fig. 2. (a) Mean order-parameter R̄ versus σM for γ = 0.0 and εM = 0.25, a result
without STDP (black circles) and the other one with STDP (red triangles). The bar is
the standard deviation for 30 different initial conditions. In the inset we consider
σM = 0.675. Panels (b) and (c) exhibit the time evolution of the average time-
difference for excitatory and inhibitory connections, respectively. The black and red
lines, for σM = 0.675, correspond to R̄ ≈ 0.1 and R̄ ≈ 1, respectively. The green line
represents the separation between potentiation and depression. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2(a) shows the mean order-parameter (R̄) that is calculated
for different initial conditions, as a function of the inhibitory
coupling strength σM for a neural network with excitatory and
inhibitory synapses, where we consider one case without STDP
(black circles) and another with STDP (red triangles). For εM equal
to 0.25 and varying σM , we do not observe a significant alteration
of the R̄ value without STDP, due to the fact that initially the
network has an all-to-all topology. Nevertheless, considering STDP
we verify that the R̄ values decrease with the increase of σM
and present a large standard deviation. This standard deviation
occurs due to the existence of different synchronization states.
Then, both the upper border of the inhibitory coupling 2σ and the
different initial conditions are important to change the dynamics
of the network with STDP and without external perturbation.
This is verified by means of the decay of the R values and the
large standard deviation bar. In the inset (Fig. 2(a)), we consider
σM = 0.675 and calculate the order-parameter for different
initial conditions. As a result, we can see a distribution presenting
different synchronization states, including desynchronization and
synchronization. In Fig. 2(b) and (c) we consider σM = 0.675
according to the inset, and calculate the time evolution of the
Fig. 3. (Color online) Time courses of the mean (a) excitatory and (b) inhibitory
coupling strengths from some regimes shown in Fig. 2(a).

average time-difference for excitatory and inhibitory connections,

1̄tExcij =
1
τ


i≠j

|tExcpre − tpos|, (17)

1̄t Inhibij =
1
τ


i≠j

|t Inhibpre − tpos|, (18)

respectively, for different configurations of the initial networks
and τ = 100 ms. The black line shows the case in which the
network goes to a desynchronized state (R̄ ≈ 0.1), whereas the
red line exhibits the case of a network that presents synchronous
behavior (R̄ ≈ 1). In both cases, we consider the same parameters,
except the seed to generate the randomdistribution of the constant
current density Ii. Through Fig. 2(b) and (c) it is possible to verify
why and when the coupling matrix suffer substantial changes. The
transition occurs when the black or red curves cross the green line.
At this time, depreciation induces weak strength in the coupling
matrix, and potentiation induces strong strength.

Fig. 3 exhibits the time courses of themean excitatory (Fig. 3(a))
and inhibitory (Fig. 3(b)) coupling strengths from the multiple
coexisting regimes that are shown in Fig. 2(a). We see that for
σM = 0.25 both ε̄ij and σ̄ij have constant values for the time
approximately greater than 700 s, and the learning produces a
triangular-type connecting matrix (as shown in Fig. 4), meaning
that the connections among all neurons become preferentially
directed. For σM = 0.5 the ε̄ij values decrease to approximately
0.15, while σ̄ij values oscillate about 0.25, and the coupling matrix
becomes partitioned, indicating the existence of larger clusters.
Increasing the upper border σM to 0.75 both ε̄ij and σ̄ij tend to 0,
and the coupling matrix becomes sparse.

In Fig. 4, the synaptic weights εij and σij are encoded in color
for γ = 0.0, εM = 0.25, and σM = 0.675, where we choose
values of the parameters that provide the cases for (a) R̄ ≈ 0.1
and (b) R̄ ≈ 1 according to the inset in Fig. 2(a). The synaptic
weights are suppressed in the desynchronized regime (Fig. 4(a)),
and consequently the coupling matrix presents a small number of
connections. This behavior can be verified by means of the black
lines in Fig. 2(b) and (c). In addition, the synaptic weights are
potentiated (red lines in Fig. 2(b) and (c)) in the synchronized
regime (Fig. 4(b)), and the coupling matrix exhibits a triangular
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Fig. 4. Couplingmatrix for γ = 0.0, εM = 0.25, and σM = 0.675, wherewe choose
values for parameters to provide the cases for (a) R̄ ≈ 0.1 showingmany uncoupled
neurons, and (b) R̄ ≈ 1 exhibiting many directed couplings, according to the inset
in Fig. 2(a). The synaptic weights are encoded in color, where the maximum value
for εij (yellow) is 0.5 and the maximum value for σij (blue) is 1.36. The neurons are
ordered according to Ii ≤ Ij for i < j. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

shape.Wehave verified that, in this case, the synchronous behavior
has a dependence on the direction of synapses. In other words,
when the presynaptic neurons are excitatory the synapses from
the high frequency to the low frequency neurons become stronger.
When the presynaptic neurons are inhibitory, the synapses from
the low frequency to the high frequency neurons become stronger.

Fig. 4 shows the final topologies for two networks initially set
with a global coupling topologies after being evolved by a STDP
process. We see that the STDP induces a non-trivial topology in
the network resulting in networks sparsely connected, moderately
connected (Fig. 4(a)), or densely connectedwith strongpreferential
attachment (Fig. 4(b)).

Considering an external perturbation (Γi > 0), we also
study the cases without and with plasticity. In the case without
STDP, we verify that the mean order-parameter has a small decay
when σM increases, as shown in Fig. 5(a) with black circles. The
red triangles represent the case with STDP, and unlike the case
without perturbation (Fig. 2(a)), there is an abrupt transition
(blue triangles), due to a first-order transition in the average
order parameter. First-order transition is a term that comes from
Thermodynamics and here represents a discontinuity of the mean
order-parameter function with respect to the inhibitory coupling
strength. In this case, the upper border of the inhibitory coupling is
relevant to produce alteration in the dynamics, while the different
initial conditions are important only at the transition. Based on
the results in the inset (Fig. 5(a)), we verify that the network
in the transition can be either in one of the states: (i) high R̄
with potentiation of the average-time difference for excitatory and
inhibitory connections (red lines in Fig. 5(b) and (c)), or (ii) low R̄
with excitatory average time-difference in the depression region
and inhibitory in the potentiation region (black lines).

The transition from the synchronized to the desynchronized
states was reported in studies on how stimulation impact on
Fig. 5. (a) Mean order-parameter versus σM for γ = 10.0 µA/cm2 , εM = 0.25,
a result without STDP (black circles) and another one with STDP (red triangles).
Inset plot for σM = 0.575 (blue triangles) and 30 values of R, where each R is
calculated from a different initial configuration. Figures (b) and (c) exhibit the time
evolution of the average time-difference for excitatory and inhibitory connections,
respectively, where σM is equal to 0.575. The black and red lines correspond to
R̄ ≈ 0.1 and R̄ ≈ 0.8, respectively. The green dash represents the separation
between potentiation and depression. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

neurological disorders induced by an abnormal neuronal synchro-
nization (Popovych & Tass, 2012; Tass & Majtanik, 2006). A first
order transition was also observed in Popovych et al. (2013) when
the stimulation intensity varies in a neural network with eSTDP.
In our simulations, we observe the transition to desynchronization
caused by a variation in the inhibitory coupling in neural networks
with both eSTDP and iSTDP.

Fig. 6 illustrates the coupling matrix for the two states of the
first-order transition. In Fig. 6(a), we can see the coupling configu-
ration that corresponds to high R̄. The network presents high con-
nectivity, and for this reason it is possible to observe synchronous
behavior. For the case of low R̄, we verify that the network has only
connections from neurons belonging to the inhibitory population
to any other neuron, as shown in Fig. 6(b).

4. Conclusion

In conclusion, we have studied the effects of spike timing-
dependent plasticity on the synchronous behavior and the
evolved connecting topology of neural networks constructed
with Hodgkin–Huxley neurons. In our simulations, we considered
parameter values for the Hodgkin–Huxley system and STDP
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Fig. 6. Coupling matrix for γ = 10.0 µA/cm2 , εM = 0.25. (a) σM = 0.55
(R̄ ≈ 1) showing a large quantity of coupled neurons, and (b) σM = 0.6 (R̄ ≈ 0.1)
exhibiting connections from inhibitory to excitatory neurons. The synaptic weights
are encoded in color, where themaximumvalue for εij (yellow) is 0.5, themaximum
value for σij (blue) is 1.1 in (a) and 1.2 in (b). The neurons are ordered according to
Ii ≤ Ij for i < j. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

according to experimental values found in the neuroscience
literature (Bi & Poo, 1998; Haas et al., 2006). Regarding the evolved
topology, ourmain conclusion is that learning under a STDP results
in evolved networks that present complex topology. Concerning
the dynamic synchronous behavior of the evolved networks, we
observe that the studied networks exhibit concurrent synchronous
and non synchronous states with characteristics that depend
on both the upper border of the inhibitory coupling and the
initial conditions. Specifically, we verify that the main role of the
inhibitory connections is to produce a delay in the spiking time of
the postsynaptic neurons. As a consequence, the increase of the
inhibitory coupling strength can suppress synchronous behavior,
which contributes to a decrease in the mean order parameter.
Moreover, the transition from low to a high synchronous state is
smooth by alterations of the inhibitory synapses. When a random
external perturbation is introduced in the network, this transition
becomes discontinuous, i.e., we observe a first-order transition.
Similarly to the non-perturbed network, we also find coexistence
of synchronous and non-synchronous neurons in the perturbed
networks.

In future works, we plan to study synchronous states in the
brain considering plasticity dynamics in terms of the thresholds
for switching on the long-term potentiation and the long-term
depression. We also plan to investigate how the final behavior
of the network depends on the initial population of excitatory
neuron.
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