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Abstract Brain plasticity, also known as neuroplasticity,
is a fundamental mechanism of neuronal adaptation in
response to changes in the environment or due to brain
injury. In this review, we show our results about the effects
of synaptic plasticity on neuronal networks composed by
Hodgkin-Huxley neurons. We show that the final topol-
ogy of the evolved network depends crucially on the ratio
between the strengths of the inhibitory and excitatory
synapses. Excitation of the same order of inhibition revels
an evolved network that presents the rich-club phenomenon,
well known to exist in the brain. For initial networks with
considerably larger inhibitory strengths, we observe the
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emergence of a complex evolved topology, where neurons
sparsely connected to other neurons, also a typical topology
of the brain. The presence of noise enhances the strength
of both types of synapses, but if the initial network has
synapses of both natures with similar strengths. Finally,
we show how the synchronous behaviour of the evolved
network will reflect its evolved topology.

Keywords Neuronal network · Plasticity · Synchronisation

1 Introduction

The brain1 is the most complex organ in the human body. It
contains approximately 102 billion neurons and 103 trillion
synaptic connections, where each neuron can be connected
to up to 104 other neurons [1]. The neuron is the basic work-
ing unit of the brain and it is responsible for carrying out the
communication and the processing of information within
the brain [2]. Those tasks are achieved through neuronal fir-
ing spatio-temporal patterns that are depended on the neuron
own dynamics and the way they are networked.

Towards the goal to understand the brain, over the past
several years, mathematical models have been introduced
to emulate neuronal firing patterns. A simple model that
has been considered to describe neuronal spiking is based
on the cellular automaton [3, 4]. This model uses discrete
state variables, coordinates and time [5]. Another proposed
bursting behaviour model is a simplification of the neu-
ron model described by differential equations, where the

1The Brain is wider than the Sky,
For, put them side by side,
The one the other will include
With ease, and you beside.
Emily Dickinson, Complete Poems. 1924 (1830-1886).
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state variables are continuous, while the coordinates and the
time are discrete [6–8]. Girardi-Schappo et al. [9, 10] and
Ibarz et al. [11] proposed a map-based model that repro-
duces neuronal excitatory and autonomous behaviour that
are observed experimentally.

Differential equations have also been used to model neu-
ronal patterns [12–15]. The integrate-and-fire model was
developed by Lapicque in 1907 [16] and it is still widely
used. But one of the most successful and cerebrated math-
ematical models using differential equations was proposed
by Hodgkin and Huxley in 1952 [17]. The Hodgkin-Huxley
model explains the ionic mechanisms related to propaga-
tion and initiation of action potentials, i.e. the characteristic
potential pulse that propagates in the neurons. In 1984,
Hindmarsh and Rose [18] developed a model that simulates
bursts of spikes. The phenomenological Hindmarsh-Rose
model may be seen as a simplification of the Hodgkin-
Huxley model.

Hodgkin-Huxley neuron networks have been success-
fully used as a mathematical model to describe processes
occurring in the brain. An important brain activity phe-
nomenon is the neuronal synchronisation. This phenomenon
is related to cognitive functions, memory processes, percep-
tual and motor skills and information transfer [15, 19–22].

There has been much work on neuronal synchronisa-
tion. Temporal synchronisation of neuronal activity happens
when neurons are excited synchronously, namely assem-
blies of neurons fire simultaneously [15, 23]. Newly, Borges
and collaborators [24] modelled spiking and bursting syn-
chronous behaviour in a neuronal network. They showed
that not only synchronisation, but also the kind of syn-
chronous behaviour depends on the coupling strength and
neuronal network connectivity. Studies showed that phase
synchronisation is related to information transfer between
brain areas at different frequency bands [25]. Neuronal
synchronisation can be related to brain disorders, such as
epilepsy and Parkinson’s disease. Parkinson’s disease is
associated with synchronised oscillatory activity in some
specific part of the brain [26]. Based on that, Lameu et al.
[27] proposed interventions in neuronal networks to provide
a procedure to suppress pathological rhythms associated
with forms of synchronisation.

In this review, we focus the attention on the weakly and
strongly synchronous states in dependence with brain plas-
ticity. Brain plasticity, also known as neuroplasticity, is a
fundamental mechanism for neuronal adaptation in response
to changes in the environment or to new situations [28]. In
1890, James [29] proposed that the interconnection among
the neurons in the brain and so the functional behaviour
carried on by neurons are not static. Experimental evi-
dence of plasticity was demonstrated by Lashley in 1923
[30] through experiments on monkeys. Scientific evidence

of anatomical brain plasticity was published in 1964 by
Bennett et al. [31] and Diamond et al. [32].

In the field of theoretical neuroscience, Hebb [33] wrote
his ideas in words that inspired mathematical modelling
related to synaptic plasticity [34]. According to Hebbian
theory, the synaptic strength increases when a presynaptic
neuron participates in the firing of a postsynaptic neuron; in
other words, neurons that fire together, also wire together.
The Hebbian plasticity led to the modelling of spike timing-
dependent plasticity (STDP) [35, 36]. It was possible to
obtain the STDP function for excitatory synapses by means
of synaptic plasticity experiments performed by Bi and
Poo [37]. The STDP function for inhibitory synapses was
reported in experimental results in the entorhinal cortex by
Haas et al. [38].

In this review, we show results that allow to understand
the relation between spike synchronisation and synaptic
plasticity and this dependence with the non-trivial topol-
ogy that is induced in the brain due to STDP. As so, we
consider an initial all-to-all network, where the neuronal
network is built by connecting neurons by means of exci-
tatory and inhibitory synapses. We show that the transition
from weakly synchronous to strongly synchronous states
depends on the neuronal network architecture, as well as to
the STDP network evolves to non-trivial topology. When
the strength of the inhibitory connections is of the same
order of that of the excitatory connections, the final topol-
ogy in the plastic brain presents the rich-club phenomenon,
where neurons that have high degree connectivity towards
neurons of the same presynaptical group (either excitatory
of inhibitory) become strongly connected to neurons of
the other postsynaptical group. The final topology has all
the features of a non-trivial topology, when the strength of
the synapses becomes reasonably larger than the strength
of the excitatory connections, where neurons only sparsely
connect to other neurons.

The structure of the review is the following. In Section 2,
we introduce the Hodgkin-Huxley model for a neuron and the
synchronisation dynamics of neuronal networks. Section 3
presents the Hebbian rule and the spike-timing dependent
plasticity (STDP) in excitatory and inhibitory synapses. In
Section 4, we show the effects of the synaptic plasticity on
the network topology and synchronous behaviour. Finally,
in the last section, we draw the conclusions.

2 Hodgkin-Huxley Neuronal Networks

2.1 Neurons

Neurons are cells responsible for receiving, processing and
transmitting information in the neuronal system [39]. They
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Fig. 1 Schematic illustration showing the three main parts of neurons
(dendrite, soma and axon), including the presynaptic and postsynaptic
neurons

have differences in sizes, length of axons and dendrites, in
the number of dendrites and axons terminals. Figure 1 illus-
trates the three main parts of the neuron: dendrite, cell body
or soma and axon [40]. The dendrites are responsible for
the signal reception, and the axons drive the impulse from
the cell body to another neuron. The neurons are connected
through synapses, where the neuron that sends the signal is
called presynaptic and the postsynaptic is the neuron that
receives it. The most common form of neuron communica-
tion is by means of the chemical synapses, where the signal
is propagated from the presynaptic to postsynaptic neurons
by releasing neurotransmitters.
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Fig. 2 Plot of the action potential showing the various phases at a
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Fig. 3 Schematic diagram of the ions traffic across cell membranes,
a ion channels and b ion pumps

The signal propagates by means of the variation of inter-
nal neuron electric potential. An action potential occurs
when a neuron sends information from the soma to the axon.
The action potential is characterised by a rapid change in
the membrane potential, as shown in Fig. 2. In the absence
of stimulus, the membrane potential remains near a base-
line level. A depolarisation occurs when the action potential
is greater than a threshold value. After the depolarisation,
the action potential goes through a certain repolarisation
stage, where the action potential rapidly reaches the refrac-
tory period or hyperpolarisation. The refractory period is
the time interval in which the axon does not transmit the
impulse [40].

Action potentials are generated and propagates due to
different ions crossing the neuron membrane. The ions can
cross the membrane through ion channels and ion pumps
[41]. Figure 3a shows the ion channels of sodium (Na+) and
potassium (K+). In the depolarisation stage, a great amount
of sodium ions move into the axon (I), while the repolarisa-
tion occurs when the potassium ions move out of the axon
(II). Figure 3b shows the transport of sodium (I and II) and
potassium ions (III and IV) through the pumps. The sodium-
potassium pumps transport sodium ions out and potassium
ions in, and it is responsible for maintaining the resting
potential [41].

2.2 Hodgkin-Huxley Model

Hodgkin and Huxley [17] performed experiments on the
giant squid axon using microelectrodes introduced into the
intracellular medium. They proposed a mathematical model
that allowed the development of a quantitative approxima-
tion to understand the biophysical mechanism of action
potential generation. In 1963, Hodgkin and Huxley were
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awarded with the Nobel Prize in Physiology or Medicine for
their work. The Hodgkin-Huxley model is given by

CV̇ = I − gKn4(V − EK) − gNam
3h(V − ENa)

−gL(V − EL), (1)

ṅ = αn(V )(1 − n) − βn(V )n, (2)

ṁ = αm(V )(1 − m) − βm(V )m, (3)

ḣ = αh(V )(1 − h) − βh(V )h, (4)

where C is the membrane capacitance (μF/cm2), V is the
membrane potential (mV), I is the constant current density,
parameter g is the conductance and E the reversal potentials
for each ion. The functions m(V ) and n(V ) represent the
activation for sodium and potassium, respectively, and h(V )

is the function for the inactivation of sodium. The functions
αn, βn, αm, βm, αh, βn are given by

αn(v) = 0.01v + 0.55

1 − exp (−0.1v − 5.5)
, (5)

βn(v) = 0.125 exp

(−v − 65

80

)
, (6)

αm(v) = 0.1v + 4

1 − exp (−0.1v − 4)
, (7)

βm(v) = 4 exp

(−v − 65

18

)
, (8)

αh(v) = 0.07 exp

(−v − 65

20

)
, (9)

βh(v) = 1

1 + exp (−0.1v − 3.5)
, (10)

where v = V/[mV]. We consider C = 1 μF/cm2, gK =
36 mS/cm2, EK = −77 mV, gNa = 120 mS/cm2, ENa =
50 mV, gL = 0.3 mS/cm2, EL = −54.4 mV [24]. Depend-
ing on the value of the external current density I (μA/cm2),
the neuron can present periodic spikings or single spike
activity. In the case of periodic spikes, if the constant I

increases, the spiking frequency also increases. Figure 4
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Fig. 4 Membrane potential V of a Hodgkin-Huxley neuron with
I = 0 μA/cm2 (black line) and I = 9 μA/cm2 (red line).

shows the temporal evolution of the membrane potential of
a Hodgkin-Huxley neuron for I = 0 μA/cm2 (black line)
and for I = 9 μA/cm2 (red line). For the case without cur-
rent, the neuron shows an initial firing and, after the spike,
it remains in the resting potential. In the second case, the
external current I is greater than the required threshold and
the neuron exhibits firings.

2.3 Neuronal Synchronisation

The synchronisation process here is related to natural phe-
nomena ranging from metabolic processes in our cells to
the highest cognitive activities [42]. Neuronal synchronisa-
tion has been found in the brain during different tasks and
at rest [43]. We study in this text neuronal synchronisation
process in a network of coupled Hodgkin-Huxley neurons.
The network dynamics is given by [44]

CV̇i = Ii − gKn4(Vi − EK) − gNam
3h(Vi − ENa)

−gL(Vi − EL) + (V Exc
r − Vi)

ωExc

NExc∑
j=1

εijsj

+ (V Inhib
r − Vi)

ωInhib

NInhib∑
j=1

σijsj + �i, (11)

where the elements of the matrix εij (σij) are the intensity
of the excitatory (inhibitory) synapse (coupling strength)
between the presynaptic neuron j and the postsynaptic
neuron i, ωExc (ωInhib) represents the mean number of
excitatory (inhibitory) synapses of each neuron, �i is an
external perturbation so that the neuron is randomly cho-
sen and the chosen one receives an input with a constant
intensity γ , NExc is the number of excitatory neurons, and
NInhib is the number of inhibitory neurons. The excitatory
(inhibitory)neurons are connected with reverse potential
V Exc

r = 20 mV (V Inhib
r = −75 mV), and the postsynaptic

potential si is given by [44]

dsi

dt
= 5(1 − si)

1 + exp(−Vi+3
8 )

− si . (12)

One measure that we adopt to quantify synchronous
behaviour is the Kuramoto order parameter that reads as
[45]

Z(t) = R(t)eiψ(t) = 1

N

N∑
j=1

eiθj (t), (13)

where R(t) is the amplitude, ψ(t) is the angle of a centroid
phase vector, and

θj (t) = 2π
t − tj,m

tj,m+1 − tj,m
(14)
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Fig. 5 Raster plots of spike onsets for a random network with 100
Hodgkin-Huxley neurons, γ = 0, a εij = 0.1 and b εij = 0.5. In c, the
time evolution of the Kuramoto order parameter for εij = 0.1 (black
line) and εij = 0.5 (red line) (Colour online)

is the phase of the neuron j , with tj,m < t < tj,m+1. The
time tj,m denotes the mth spike of the neuron j . In a com-
plete synchronised state, the network exhibits R = 1. For
a strongly synchronised regime, it has R ≥ 0.9, whereas a
weakly synchronous behaviour occurs for R < 0.9.

Figure 5a, b exhibits the raster plots of spike onsets for
a random network with 100 Hodgkin-Huxley neurons cou-
pled by means of excitatory synapses, mean degree K = 10,
γ = 0, excitatory coupling intensity εij = 0.1 and εij =
0.5, respectively. In Fig. 5a, the neuronal network presents
weakly synchronous behaviour, while in Fig. 5b the network
shows strongly synchronised spiking (though not complete
synchronisation). Figure 5c shows the order parameter R(t)

for εij = 0.1 (black line) and εij = 0.5 (red line). By increas-
ing the coupling strength, from 0.1 to 0.5, the neuronal
network asymptotes to a synchronous behaviour.

3 Spike-Timing Dependent Plasticity

Work carried to try to unveil the role of synaptic plasticity
in learning and memory has the Hebb rule as a basis. Hebb
rule is a postulate proposed in 1949 by Hebb in his book
“The organisation of behaviour” [33]. He conjectured that
the synapse from presynaptic to postsynaptic neuron should
be maximally strengthened if the input from presynaptic

neuron contributes to the firing of postsynaptic. In this way,
a long-term potentiation is caused when there is coincident
spiking of presynaptic and postsynaptic neurons [46].

In the synaptic plasticity, synapse weakening and
strengthening are implemented by long-term depression
(LTD) and potentiation (LTP), respectively [47]. LTP refers
to a long-lasting increase in excitatory postsynaptic poten-
tial, while LTD decreases the efficacy of a synapse. Bliss
et al. [48] suggested that low-frequency firing drives LTD,
whereas LTP is driven by presynaptic firing of the high-
frequency. Synaptic plasticity alteration as a function of
the relative timing of presynaptic and postsynaptic firing
was named as spike timing-dependent plasticity (STDP) by
Song et al. [49]. STDP has been observed in brain regions,
and relevant studies on it were carried out by Gerstner [50]
and Markram et al. [51, 52]. Frégnac et al. [53] provided
the existence of STDP in cat visual cortex in vivo. More-
over, research on STDP has focused in the hippocampus and
cortex [54].

We have studied the changes in synchronous and desyn-
chronous states caused in a Hodgkin-Huxley network due
to excitatory (eSTDP), as well as inhibitory (iSTDP) spike
timing-dependent plasticity. We have considered the plas-
ticity as a function of the difference of postsynaptic and
presynaptic excitatory and inhibitory firing according to
refs. [37] and [38], respectively.

The excitatory eSTDP is given by

�εij =
{

A1 exp(−�tij /τ1) , �tij ≥ 0
−A2 exp(�tij /τ2) , �tij < 0

, (15)

where

�tij = ti − tj = tpos − tpre, (16)

tpos is the spike time of the postsynaptic neuron, and tpre is
the spike time of the presynaptic one.

Figure 6a shows the result obtained from (15) for A1 =
1.0, A2 = 0.5, τ1 = 1.8 ms, and τ2 = 6.0 ms. The initial
synaptic weights εij are normally distributed with mean and
standard deviation equal to 0.25 and 0.02, respectively (0 ≤
εij ≤ 0.5). They are updated according to (15), where

εij → εij + 10−3�εij . (17)

The green dashed line denotes the intersection between the
absolute values of the depression (black line) and potentia-
tion (red line) curves. For �tExc

c < 1.8 ms, the potentiation
is larger than the depression. In addition, the red line denotes
the absolute value of the coupling strength (|�εij |).

In the inhibitory iSTDP synapses, the coupling strength
σij is adjusted according to the equation

�σij = g0

gnorm
αβ |�tij |�tij

β−1 exp(−α|�tij |), (18)

where g0 is the scaling factor accounting for the amount of
change in inhibitory conductance induced by the synaptic
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Fig. 6 Plasticity as a function of the difference of spike timing of
postsynaptic and presynaptic synapses for a excitatory (eSTDP) and
b inhibitory (iSTDP). The green dashed line indicates the intersection
between the potential and depression curves

plasticity rule, and gnorm = ββ exp(−β) is the normalising
constant. In Fig. 6b, we see the result obtained from (18) for
g0 = 0.02, β = 10.0, α = 0.94 if �tij > 0, and for α = 1.1
if �tij < 0. As a result, �σij > 0 for �tij > 0, and �σij <

0 for �tij < 0. The initial inhibitory synaptic weights σij

are normally distributed with mean and standard deviation
equal to σ = cε (1 ≤ c ≤ 3) and 0.02, respectively (0 ≤
σij ≤ 2cε). The coupling strengths are updated according
to (18), where

σij → σij + 10−3�σij . (19)

The updates for εij and σij are applied to the last postsynap-
tic spike. For �t Inhib

c < 9.8 ms, the depression is larger than
the potentiation.

4 Influence of the Synaptic Plasticity
on the Network Topology

4.1 Without External Perturbation

About 20% of the synapses in the brain have inhibitory
characteristics [55]. We consider that the intensities of both
excitatory and inhibitory synapses are modifiable over time
by a plasticity rule. We use a network of 200 Hodgkin-
Huxley neurons with Ii normally distributed in the interval
[9.0-10.0]. Ei represents the ith excitatory neurons with
sub-index i in the interval [1-160] and Ii represents the ith

inhibitory neuron with the sub-index i in [161-200]. In all
the simulations, we consider a total time interval of 2000 s.

When the initial intensity of the inhibitory synapses is
small (σ

ε
≈ 1), we show that the potentiation occurs

in both kinds of synapses and the final coupling matrix
exhibits a triangular shape, as seen in Fig. 7. In the excita-
tory synapses, a reinforcement is observed from the neurons
of greater to smaller frequency (Fig. 7a), whereas in the
inhibitory synapses, the potentiation occurs from the neu-
rons of smaller to greater frequency (Fig. 7b). Figure 7a
points out that presynaptic excitatory neurons that are more
likely to strongly connect to a large number of postsynaptic
excitatory neurons are also more likely to strongly con-
nect to postsynaptic inhibitory neurons. Similarly, Fig. 7b
points out that presynaptic inhibitory neurons that are more
likely to strongly connect to a large number of postsynaptic
inhibitory neurons are also more likely to strongly connect
to postsynaptic excitatory neurons. This reveal a rich club
phenomenon in the neural plasticity, where the neurons with
larger degrees to its own “club” (either the excitatory or the
inhibitory community) tend to be also more connected to the
other “club”. The rich-club phenomenon is known to exist
in the topological organisation of the brain [56] and was
recently hypothetised to be an effect of Hebbian learning
mechanisms in Ref. [57].

In Fig. 8, it is exhibited the value of the excitatory (ε̄) and
the inhibitory (σ̄ ) mean coupling as a function of σ

ε
. A small

variability around the mean values of the excitatory and
inhibitory couplings is observed for small values of σ

ε
. How-

ever, increasing the inhibitory synapse implies in an increase
in the variability around both mean values, as indicated by
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ε
, where we consider simulations with-

out external perturbations. The bars indicate the standard deviation
calculated for the mean value from 30 simulations

the standard deviation bars. This fact becomes notable when
the initial intensity of the inhibitory synapses is greater than
σ
ε

= 1.5. As a result, the inhibitory synapses act more
intensely on the neuronal network dynamics, and a differ-
ent asymptotic behaviour can be observed. Figures 9 and 10,
at t = 2000 s, show the coupling matrices with the val-
ues of the excitatory and inhibitory couplings for an initial
value given by σ

ε
= 2.7. In some simulations, the synap-

tic connections tend to zero, namely, the network becomes
disconnected (Fig. 9). In other simulations, disconnected
blocks are observed, as shown in Fig. 10. Nevertheless, for
the same value of the σ

ε
parameter, the system can exhibit
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Fig. 9 Intensity of the couplings for σ
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= 2.7, γ = 0, t = 2000 s,
a excitatory and b inhibitory synapses. The network has disconnected
neurons
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Fig. 10 Intensity of the couplings for σ
ε

= 2.7, γ = 0, t = 2000 s,
a excitatory and b inhibitory synapses. The neural network contains
disconnected blocks

an asymptotic behaviour similar to the case when initial
coupling have σ

ε
= 1.0 (Fig. 7).

The behaviour observed in the synapse intensity can be
explained in terms of the average time between spikes. For
that, we defined the mean time between spikes among neu-
rons having both excitatory and inhibitory synapses by the
equations

�̄t
Exc
ij = 1

τ

∑
i �=j

|tExc
pre − tpos|, (20)

�̄t
Inhib
ij = 1

τ

∑
i �=j

|t Inhib
pre − tpos|. (21)

In Fig. 11, �̄t
Exc
ij and �̄t

Inhib
ij values are show for the

extreme case of initial couplings given by σ
ε

= 2.7 (black
lines) and initial coupling given by σ

ε
= 1.0 (red lines).

For the case where the neuronal network becomes dis-
connected (black lines), the average time values that are
more frequently are found in the depression region of the

eSTDP and iSTDP models (�̄t
Exc
ij > �tExc

c = 1.8 ms

and �̄t
Inhib
ij < �t Inhib

c = 9.8ms). However, in simulations
where a neuronal network becomes strongly connected,
a higher concentration of the average time values in the
potentiation regions of the plasticity models is observed

(�̄t
Exc
ij < �tExc

c = 1.8ms and �̄t
Inhib
ij > �t Inhib

c = 9.8 ms).
So, potentiation happening for high frequencies excitatory
synapses and lower frequencies inhibitory synapses pro-
mote the strengthening of synaptic connectivity and the
rich-club phenomenon.
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completely opposite case observed in Fig. 9. The values of �tc were
obtained in Fig. 6

4.2 With External Perturbation

An external perturbation combined with eSTDP and iSTDP
can provide a positive contribution to the excitatory and
inhibitory mean coupling. In this case, we observe that when
the influence of the inhibitory is smaller than the excitatory
synapse (σ

ε
< 2.3), the potentiation occurs in approximately

all the synapses (excitatory and inhibitory) (Fig. 12). Then,
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Fig. 12 Perturbed intensity of the final coupling for σ
ε

= 2.2,
γ = 10 μA/cm2, a excitatory and b inhibitory synapses. Almost all
connections in the neuronal networks are reinforced

the network remains strongly connected, with a topology
close to all-to-all. Almost all the intensities of the connec-
tions converge to high values (ε̄ij ≥ 0.4 and σ̄ij ≈ 0.5).
Only a few connections, where the presynaptic neurons have
lower frequency, tend to zero.

For larger σ
ε

values, we also observe that the inhibi-
tory connections become strengthened. The inhibitory mean
coupling converges to the largest value allowed in the inter-
val when σ

ε
> 2.3. However, for this same value of σ

ε
,

there is a trend of decreasing intensity of excitatory synapses
( ¯εij ≈ 0). The neurons remain connected through the
inhibitory synapses (Fig. 13).

An abrupt transition in the mean excitatory coupling val-
ues can also be seen for σ

ε
≈ 2.3. For values slightly less

than 2.3 (σ
ε

= 2.2), both excitatory and inhibitory synapses
undergo an increase in their intensities, whereas for val-
ues of σ

ε
larger than this threshold, the inhibitory synapses

undergo potentiation while the excitatory synapses tend to
zero (Fig. 14).

The time evolution of both excitatory and inhibitory
synapses depend on the time interval between spikes of
presynaptic and postsynaptic neurons. Figure 15 shows the
frequency between the mean times among presynaptic and
postsynaptic spikes. This figure exhibits the two extreme
cases, when the neuronal network converges to a stron-
gly connected global topology or to a network with only
inhibitory synapses, for σ

ε
= 2.3. When the increase of

the weights occurs in almost all the synapses, the ¯�tij val-
ues appear more frequently in the regions of potentiation of

both models of plasticity (�̄t
Exc
ij < �tExc

c = 1.8 ms and
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Fig. 13 Perturbed intensity of the final coupling for for initial cou-
pling given by σ

ε
= 2.4, γ = 10 μA/cm2, a excitatory and b inhibitory

synapses. All the excitatory connections in the neuronal networks
disappear, but the inhibitory synapses are enhanced
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Fig. 14 Perturbed mean excitatory (black circles) and inhibitory (red
triangles) couplings as a function of σ

ε
, where we consider γ =

10 μA/cm2

�̄t
Inhib
ij > �t Inhib

c = 9.8ms). However, when only strong
inhibitory synapses are observed in the final neuronal net-
work, it is verified that ¯�tij values in excitatory synapses
are more frequently found in the depression region of the

eSTDP model (�̄t
Exc
ij > �tExc

c = 1.8ms). In this case,
the inhibitory synapses are reinforced due to the fact that
the ¯�tij values are more frequently found in the region of
potentiation of the iSTDP model (�t Inhib

ij > �t Inhib
c =

9.8 ms).
Therefore, noise can always enhance inhibitory sy-

napses in the plastic brain. Excitatory synapses can also be
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Fig. 15 Probability distribution function of the average firing times
for σ

ε
= 2.3, γ = 10 μA/cm2, a excitatory and b inhibitory synapses.

For all-to-all topology (Fig 12, the ¯�tij vales are more frequently
found in the potentiation regions (red curves in (a) and (b)). The black
lines in (a) and (b) illustrate the completely opposite case observed in
Fig. 13. The values of �tc were obtained from Fig. 6

enhanced if the initial network has sufficiently large excita-
tory synaptic strength (no less than about half the value of
the inhibitory synapses strength).

5 Influence of the Synaptic Plasticity
on the Synchronous Behaviour

5.1 Without External Perturbation

The change in the behaviour of the synapse intensity
between presynaptic and postsynaptic neurons due to plas-
ticity is reflected on the spike synchronisation. In Fig. 16,
we observe different behaviours in relation to synchroni-
sation, where we calculate the order parameter. Figure 16
exhibits the behaviour of the order parameter as a function
of time for simulations without external perturbations, dis-
carding a large transient time. The neuronal network evolves
to the strong synchronised state with R(t) > 0.9 (black line)
if the initial ratio of intensities of the inhibitory synapses
are weak (σ

ε
≈ 1.0); this inhibition and excitation have

similar initial strengths. However, with the increase of the
inhibitory synapses intensities σ

ε
> 1.5, different final states

are observed in relation to the synchronisation (red, green
and blue lines).

5.2 With External Perturbation

We consider an external perturbation (γ = 10 μA/cm2)
when the initial inhibitory synapses intensity ratio are small
(σ

ε
≈ 1.0). In this case, the network has a synchronous

behaviour (R̄(t) > 0.9), as shown in Fig. 17 (black line).
When inhibitory synapses intensities have a great influence
on the network dynamics (σ

ε
≈ 3.0), neurons tend to exhibit

desynchronised firing behaviour with R̄(t) ≈ 0.1 (red line).

1999 2000
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Fig. 16 Order parameter for σ
ε

= 1.0 (black line) and σ
ε

= 2.7 (red,
blue and green lines)
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Fig. 17 Order parameter for γ = 10 μA/cm2, σ
ε

= 1.0 (black line),
σ
ε

= 3.0 (red line) and σ
ε

= 2.3 (blue and green lines)

However, when σ
ε

≈ 2.3, we observe two possible asymp-
totic values for the order parameter. In some simulations
a strongly synchronised behaviour appears, while in oth-
ers it is observed a weakly synchronous evolution of spikes
between the neurons in the network (green and blue lines).

6 Conclusions

Neuronal networks based on the Hodgkin-Huxley model
have been used to simulate coupled spiking neurons. The
Hodgkin-Huxley neuron is a coupled set of ordinary non-
linear differential equations that describes the ionic basis
of the membrane potential. In this review, we considered a
Hodgkin-Huxley network with synaptic plasticity (STDP).
The STDP is a process that adjusts the strength of the
synapses in the brain according to time interval between
presynaptic and postsynaptic spikes.

We studied the effects of STDP on the topology and spike
synchronisation. Regarding the final topology and depend-
ing on the balance between inhibitory and excitatory cou-
plings, the network can evolve not only to different coupling
strength configurations, but also to different connectivities.

When the strength of the inhibitory connections is of
the same order of that of the excitatory connections, the
final topology in the plastic brain exhibits the rich-club phe-
nomenon, where neurons that have high degree connectivity
towards neurons of the same presynaptical group (either
excitatory of inhibitory) become strongly connected to neu-
rons of the other postsynaptical group, i.e. a presynaptical
neuron that is highly connected to presynaptical excitatory
neurons (or inhibitory ones) becomes strongly connected to
postsynaptical inhibitory (or excitatory ones).

When the strength of the synapses becomes reasonably
larger than the strength of the excitatory connections, then
the final topology has all the features of a complex topology,

where neurons only sparsely connect to other neurons with
a non-trivial topology.

When noise is introduced in the neural network, we
observe that inhibitory synapses are always enhanced in the
plastic brain. Excitatory synapses can also be enhanced if
the initial network has sufficiently large excitatory synaptic
strength (no less than about half the value of the inhibitory
synapsis strength).

The changes in the synapse strength and the connec-
tivities due to STDP produce significant alterations in the
synchronous states of the neuronal network. We observe
that the synchronous states depend on the balance between
the excitatory and inhibitory intensities. We also find coex-
istence of strongly synchronous and weakly synchronous
behaviours.
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G. Zamora-López, J. Kurths, R.L. Viana, Phys. Rev. E 86, 016211
(2012)

7. E.L. Lameu, F.S. Borges, R.R. Borges, K.C. Iarosz, I.L. Caldas,
A.M. Batista, R.L. Viana, J. Kurths. Chaos 26, 043107 (2016)

8. E.L. Lameu, F.S. Borges, R.R. Borges, A.M. Batista, M.S. Bap-
tista, R.L. Viana, Commun. Nonlinear Sci. Numer. Simul. 34, 45
(2016)

9. M. Girardi-Schappo, M.H.R. Tragtenberg, O. Kinouchi, J. Neu-
rosci. Meth. 220, 116 (2013)

10. M. Girardi-Schappo, G.S. Bortolotto, R.V. Stenzinger, J.J. Gon-
salves, M.H.R. Tragtenberg, PLoS ONE 12(3), e0174621 (2017)

11. B. Ibarz, J.M. Casado, M.A.F. Sanjuán, Phys. Rep. 501, 1 (2011)
12. L.F. Abbott, Brain Res. Bull. 50, 303 (1999)
13. M.I. Rabinovich, P. Varona, A.I. Selverston, H.D.I. Abarbanel,

Rev. Mod. Phys. 78, 1213 (2006)
14. C.A.S. Batista, R.L. Viana, S.R. Lopes, A.M. Batista, Phys. A 410,

628 (2014)
15. M.S. Baptista, F.M. Kakmeni, C. Grebogi, Phys. Rev. E 82,

036203 (2010)
16. L. Lapicque, J. Physiol, Pathol. Gen. 9, 620 (1907)
17. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)



688 Braz J Phys (2017) 47:678–688

18. L.J. Hindmarsh, R.M. Rose, Lond. Proc. R. Soc. B 221, 87 (1984)
19. M.S. Baptista, J. Kurths, Phys. Rev. E 77, 026205 (2008)
20. M.S. Baptista, J.X. de Carvalho, M.S. Hussein, PloS ONE 3,

e3479 (2008)
21. C.G. Antonopoulos, S. Srivastava, S.S. Pinto, M.S. Baptista, PLoS

Comput. Biol. 11, e1004372 (2015)
22. P. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D.
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