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Neuronal synchronization is important for communication between brain regions and plays a key role in
learning. However, changes in connectivity can lead to hyper-synchronized states related to epileptic sei-
zures that occur intermittently with asynchronous states. The activity-regulated cytoskeleton-associated
protein (ARC) is related to synaptic alterations which can lead to epilepsy. Induction of status epilepticus
in rodent models causes the appearance of intense ARC immunoreactive neurons (IAINs), which present a
higher number of connections and conductance intensity than non-IAINs. This alteration might con-
tribute to abnormal epileptic seizure activity. In this work, we investigated how IAINs connectivity influ-
ences the firing pattern and synchronization in neural networks. Firstly, we showed the appearance of
synchronized burst patterns due to the emergence of IAINs. Second, we described how the increase of
IAINs connectivity favors the appearance of intermittent up and down activities associated with syn-
chronous bursts and asynchronous spikes, respectively. Once the intermittent activity was properly char-
acterized, we applied the optogenetics control of the high synchronous activities in the intermittent
regime. To do this, we considered that 1% of neurons were transfected and became photosensitive. We
observed that optogenetics methods to control synchronized burst patterns are effective when IAINs
are chosen as photosensitive, but not effective in non-IAINs. Therefore, our analyses suggest that IAINs
play a pivotal role in both the generation and suppression of highly synchronized activities.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

According to International League Against Epilepsy (ILAE), a sei-
zure is a transient state characterized by abnormal excessive or
synchronous activity in the brain [1]. Although seizure activity
can occur in different time scales, there is not a minimum time
characterized so far [2]. For instance, the duration of an absence
seizure is in the time range of 3 to 30 s [3]. Tonic seizures are typ-
ically less than 15 s, although they can reach up to 1 min [4]. In
turn, generalized tonic–clonic seizures commonly are not longer
than 2-3 min [5]. Also, status epileptic, an extreme epileptic activ-
ity, can persist over 5 min [6,7]. Jenssen et al. [8] highlighted the
necessity of new studies about long seizures to improve treat-
ments. Several studies indicated that epileptic activity emerges
from modifications in the neuronal network [9–11]. Borges et al.
[12] determined that spike-to-burst activity emerges in a neuronal
model with excitability adaptation and a high excitatory synaptic
conductance. Also, Kinjo et al. [13] reported that the degree of con-
nections plays an essential role in neuronal activity control.
Besides that, Morgan and Soltesz demonstrated that high-
interconnected-excitatory neurons, denominated ‘‘hub neurons”,
strongly influence the activity in the hippocampal neuronal net-
work, increasing its excitability [14].

Network modifications are triggered by distinct mechanisms
that regulate synaptic plasticity [15]. Janz et al. [17] reported that
excessive synapses in the excitatory neurons of the hippocampus
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contribute to epileptic activity. In this context, activity-regulated
cytoskeleton-associated protein (ARC), also known as Arc/Arg3.1
or Arg3.1, assumes a pivotal role by promoting network reorgani-
zation, due to its participation in synaptic plasticity [18,19].
Indeed, ARC might participate in synaptic alterations which can
lead to epilepsy [20]. High ARC expression in excitatory neurons
is correlated with persistent firing patterns due to an increase in
the number of excitatory connections in specific cortical neuronal
populations [21]. Interestingly, it was reported that even a small
number of excitatory highly-connected neurons are able to
increase excitability and create potential epileptic circuits [14].
Also, the severity and frequency of epileptic discharges have been
associated with aberrant integration of excitatory neurons origi-
nated by hippocampal neurogenesis in animal models of temporal
lobe epilepsy (TLE) [22]. Although high ARC expression has been
largely observed in excitatory neurons, in inhibitory interneurons
it is less expressed [23]. Several aspects underlie the establishment
of an epileptic network, including changes in synaptic inputs and
neuronal biophysical properties [24]. Despite the great number of
studies related to network changes in epilepsy, several questions
remain unsolved. Therefore, there is an effort to understand how
the epileptic networks establish an intermittent state, comprising
the shift between a balanced network of events to a hyperexcitable
and hyper synchronized network of events [25].

Hauptmann et al. [26] discuss how burst intermittent patterns
can be related to epileptic activities in a neuronal network model.
Koronovskii et al. [27] showed that the time distribution of spike-
wave discharges and sleep spindles in epileptic brains exhibit two
types of intermittent behavior alternating over time. The theoreti-
cal statistic proposed by them agrees with experimental intermit-
tent power-law distributions observed on WAG/Rij rats [27]. Other
work-related phenomenon of intermittent phase synchronization
to the epileptic activities [28]. Moreover, phase synchronization
has been associated with seizure termination [29]. Moskalenko
et al. [30] proposed a method to estimate intermittent phase syn-
chronization in the human epileptic brain using the Lyapunov
exponent.

The optogenetics methodology allows precise control of neuron
functions using optics, genetics, and bioengineering [31], which
support the investigation of distinct neuronal network mecha-
nisms including in epilepsy [32]. By expressing an exogenous
photo-sensitive channel, neurons become responsive to light and
their dynamics can be controlled [33]. Optogenetics provides an
excitability-neuronal control by different frequencies of light
[34]. Channelrhodopsin-2 and Halorhodopsin are two common
light-sensitive channels used to excite and inhibit neurons, respec-
tively. Channelrhodopsin-2 is activated by blue light causing exci-
tation, while Halorhodopsin is activated with yellow light causing
neuronal inhibition [35]. Light emission is capable of reducing high
synchronous activities and avoids epileptiform activities [36]. The
inhibition of excitatory and inhibitory cells by optogenetics was
considered to control spontaneous seizures in temporal lobe epi-
lepsy [37]. In neocortical drug-resistant epilepsy, the optogenetics
inhibition of some neurons were capable of reducing seizures [38].
Although more studies are necessary, the optogenetics approach is
a promising treatment for epilepsy [39].

In this work, using immunofluorescence analyzes of ARC in
coronal sections of the hippocampus, we observed that intense
ARC immunoreactive neurons (IAINs) appear in the rat hippocam-
pus after status epilepticus. To understand the effect of network
alteration in brain activity, we proposed a random neuronal net-
work model [40] composed of excitatory and inhibitory adaptive
exponential integrate-and-fire neurons (AdEx) [41]. Networks of
the AdEx model have been shown to be efficient to describe char-
acteristics of epileptic burst synchronization in the brain
[12,10,49], as well as asynchronous firing patterns [42,43]. First,
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we modeled a nonepileptic network (control), characterized by
an asynchronous activity [44,45], where all neurons have the same
probability and strength of the connection. Then, we randomly
selected a fraction of excitatory neurons to increase their afferent
probability connection and/or synaptic strength, making them
behave as ‘‘hub” (stronger and/or highly connected) neurons, such
as observed in high-expressed ARC neurons. For this reason, the
selected neurons were called IAINs (intense ARC immunoreactive
neurons).

Our numerical simulations indicated that increasing afferent
probability or synaptic strength has the same effect on the random
network model. In both cases, we observed an intermittent-firing-
pattern behavior between asynchronous rhythm and burst-
synchronization pattern. As the strength of IAIN connections
increases, hyper-synchronized burst events emerge. Initially, the
duration of most hyper-synchronous events (s) is less than 10 s,
and the distribution of these s can be fitted in a power law. There-
fore, this may represent a mild-to-moderate state of epilepsy,
where most seizures are local. When the strength of connections
to IAINs is even greater, the frequency and duration of hyper-
synchronization events increase, lasting longer than tens of min-
utes. Moreover, the s distribution of fewer than 10 s events follows
a power-law distribution, and longer events are best fitted by
exponential distributions. These long seizures are usually general-
ized and related to severe epilepsy that is fatal if not treated effec-
tively [16]. Finally, we proposed a model based on optogenetics for
seizure control targeting IAIN cells. Application of light stimuli to
10% of ARC cells for 3 s proved to be effective for silencing seizures
(hyper synchronization). When the same stimulus was applied
randomly to the same number of neurons, it did not interrupt
the hyper-synchronization activity. Therefore, our model demon-
strates that intense ARC immunoreactive neurons (IAINs) may
have the potential to control epileptic seizures.

Our work is organized as follows: In Section 2, we presented the
methodology of the animal model and numerical simulations. Sec-
tion 3, shows our results of epileptic pattern simulations as well as
the optogenetics approach to suppress the high neuronal synchro-
nization. In the last section, we draw our conclusions.
2. Methodology

2.1. ARC in the epileptogenesis

Several experimental evidences show that seizure induction
promotes neuronal up-regulation of ARC expression in the hip-
pocampus [17,46]. However, the distribution pattern and the char-
acteristics of this expressing ARC cells during epileptogenesis have
not been characterized so far. In order to clarify this, pilocarpine-
induced status epilepticus (SE) was performed in male adult Wistar
rats (Rattus norvegicus). ARC immunolabeling was analyzed 48 h
after SE interruption in the hippocampal region. The results of
the control and after-status epilepticus (ASE) groups were com-
pared. The most evident change observed in the experimental hip-
pocampi was the emergence of intense ARC immunoreactive
neurons (IAINs) in the ASE group.

Fig. 1 shows the CA1 region of a representative control hip-
pocampus (Fig. 1(a)), and of an after-status epilepticus (ASE) group,
where the appearance of IAINs was observed (Fig. 1(b)). These neu-
rons shared features of high immunoreactivity for ARC in the cyto-
sol, neurites, and the nucleus. To evaluate whether the IAINs
observed in the ASE period represent a different neuronal popula-
tion regarding ARC expression, we calculated the probability den-
sity distribution of ARC intensity of control and ASE animals
using a method known as Kernel Density Estimation [47]. Then,
the density probability distribution of each region was fitted using



Fig. 1. Characterization of intense ARC immunoreactive neurons (IAINs) in the rat hippocampus after status epilepticus (ASE). Immunofluorescence analyses of ARC (green) in
coronal sections of hippocampi from controls and ASE animals counterstained with DAPI (blue). (a) In the representative image of CA1, where we did not detect IAINs. (b) In
CA1 of ASE animals, we observed a high accumulation of ARC in the cytosol, processes, and especially in the nucleus in some neurons, as confirmed by the pixel intensity
profile. (c, d) Probability density distributions of ARC intensity in CA1 region of control and ASE group, respectively. The probability density distributions were fitted using two
Gaussians to identify different types of cells regarding their accumulation of ARC. Note that in the control group, there is an overlap of both Gaussians, while in the ASE group,
this overlap is absent, indicating that there are two populations of neurons regarding the intensity of ARC staining in the experimental group. The same analysis was
performed for the CA3 and the hilus. (e) The proportion of IAINs relative to the total number of neurons in CA1, CA3, and hilus of the experimental hippocampus. Bars
represent standard errors of the mean. Scale bars: 50 lm (a, b).

Fig. 2. (a) Schematic representation of the neuronal network composed of
excitatory non-IAINs (red triangles), excitatory IAINs (brown triangles), and
inhibitory neurons (blue circles). (b) Typical excitatory connection probability (p)
arriving at a non-IAIN excitatory neuron. (c) Augmented excitatory connections
probability in an IAIN excitatory neuron associated with the nIAIN parameter. (d)
Increased the excitatory synaptic strength arriving on an IAIN excitatory neuron
associated with the gIAIN parameter.

F.S. Borges, E.C. Gabrick, P.R. Protachevicz et al. Epilepsy & Behavior 139 (2023) 109072
Gaussian curves to identify different groups of cells regarding their
pixel intensity. Fig. 1(c) shows an overlap between both Gaussians
in CA1 of the control group, indicating the presence of just one
neuronal population regarding ARC expression. In contrast, in
CA1 of the ASE group, we did not observe an overlap of the curves
(Fig. 1(d)). In this case, the red curve (red arrow) is distributed over
higher pixel intensity values with lower probability density and
may represent the IAIN population that appears in CA1 only in
ASE animals. A similar pattern was observed in CA3 and in the
hilus. These results indicated the appearance of a new neuronal
population regarding ARC protein accumulation in CA1, CA3, and
in the hilus during the ASE period of the pilocarpine model of
TLE, in agreement with our morphological observations of IAINs
in these areas. Finally, we determined the proportion of this neu-
ronal population in the hippocampus. The mean point of intersec-
tion between the Gaussian curves in CA1, CA3, and hilus (1.95 ± 0.
11, normalized intensity) of the experimental group was used as a
threshold to quantify the number of IAINs in each region. These
analyses showed that IAINs represent 4.73% ± 0.91 of the entire
neuronal population in CA1, 3.26% ± 0.61 in CA3 and 4.18% ±
1.46 in the hilus (Fig. 1(e)). These results are also consistent with
our mathematical approach, where the probabilities of appearance
for IAINs were low in experimental animals.

2.2. Network model

We constructed a random neuronal network [40] composed of
N = 1000 neurons where 80% were excitatory and 20% inhibitory,
connected by chemical synapses. This neural population ratio
together with the consideration that synaptic conductance is 4
times greater for inhibitory than excitatory synapses, represents
the balance between excitation and inhibition in our hippocampus
model. This network reproduces some hippocampal activities
observed in vitro [42] and in vivo [48]. We do not create self-
connections for both excitatory and inhibitory neurons [49,50].
The excitatory neurons were subdivided into two types: IAIN and
non-IAIN. The fraction of IAINs in the excitatory network was iden-
tified by the parameter f IAIN. Fig. 2 shows a schematic representa-
tion of connection in the considered neuronal network. Fig. 2(a)
shows excitatory non-IAINs (red triangles) and IAINs (brown trian-
gles), as well as the inhibitory ones (blue circles) in the neuronal
network. Excitatory and inhibitory connections are represented
3

by red and blue lines, respectively. The intensity of each connec-
tion is proportional to the line thickness. Fig. 2(b-d) highlights
the differences between non-IAINs and IAINs. Fig. 2(b) shows an
excitatory non-IAIN with a typical connection probability p and
excitatory conductance gexc. Note that in this case, the amount
and the intensity of connections are relatively small and weaker
than in Fig. 2(c) and 2(d), respectively. In Fig. 2(c), it is represented
by an increase in afferent synapse number, where the relative pro-
portion of afferent synapse numbers between IAINs and non-IAIN
(nIAIN) cells is greater than one. Fig. 2(d) shows an increase in the



Table 1
Standard neuronal parameters.

Symbol Description Value

N Number of neurons 1000
p Connection probability 0.1

f IAIN Fraction of IAIN neurons [0,0.2]
nIAIN Ratio of IAIN and non-IAIN [1.0,1.4]

afferent synapse number
C Neuronal capacitance 200 pF
gL Leak conductance 12 nS
EL Leak reversal potential �70 mV
DT Slope factor 2 mV
VT Threshold potential �50 mV
I Constant current 512.4 pA

Vex
rev Excitatory reversal potential 0 mV

V in
rev

Inhibitory reversal potential �80 mV

Vpeak Peak potential 0 mV
V r Reset potential �58 mV
sw Adaptation time constant 300 ms
a Sub-threshold adaptation 2 nS
b Triggered adaptation 70 pA
ss Synaptic time constant 2.728 ms
gin Inh. conductance 2.0 nS
gex Exc. non-IAIN conductance 0.5 nS
gIAIN Ratio IAIN conductance [1.0,2.0]
gexIAIN Exc. IAIN conductance [0.5,1.0] nS
dt Integration time step 10�2 ms
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synaptic conductance arriving on IAINs. This increase is associated
with the IAIN relative conductance intensity (gIAIN P 1) in the
mathematical model.

2.3. Neuron dynamics

The membrane potential of each neuron was described by the
adaptive exponential integrate-and-fire model that consists of a
two differential equations system [41,51]. The correspondent
dynamics and synaptic transmission of each neuron i in the net-
work is given by

C dVi
dt ¼ �gL Vi � ELð Þ þ gLDT exp

Vi�VT
DT

� �

�wi þ I þ
XN

k¼1

Vk
rev � Vi

� �
Aikgk

sw dwi
dt ¼ a Vi � ELð Þ �wi;

ss dgi
dt ¼ �gi;

ð1Þ

where Vi is the membrane potential, wi is the adaptation current,
and gi is the synaptic conductance of each neuron i. C parameter
represents neuronal capacitance. gL and EL correspond to the leak
conductance and reversal potential, respectively. I and VT corre-
spond to the current applied and the threshold potential, respec-
tively. The parameter DT controls the sharpness of the initial
phase of the spike [52] and in the limit DT ! 0 the neuron model
becomes the adaptive integrate-and-fire model [53]. The synaptic
reversal potentials and conductances depend on the type of chem-

ical connection. Vk
rev assume Vex

rev value for excitatory connections

and V in
rev for inhibitory ones. gk is the synaptic conductance from

the presynaptic neuron k. Aik represents the adjacency matrix where
1 value elements indicate that there is a connection from k to i
while 0 value represents the absence of such connection. a and ss
represent the sub-threshold adaptation intensity and adaptation
time decay, respectively. In this model, if Vi tð Þ reaches to a peak
potential Vpeak, a reset condition is applied

Vi !V r; ð2Þ
wi !wr ¼ wi þ b; ð3Þ
gi !gi þ gs: ð4Þ

In the first, V r represents the reset potential. In the second, b
indicates the value of spike-triggered adaptation current. In the
last, gs assume value gex for afferent excitatory synapses in non-
IAINs, gex

IAIN ¼ gIAIN � gex for IAINs afferent excitatory synapses,
and gin for inhibitory connections. All numerical simulations were
implemented in C and we considered the Fourth Order Runge–
Kutta integration method with a time step equal to dt = 0.01 ms.
Table 1 shows the standard neuronal parameters considered in
the simulations.

2.4. Diagnostics

To identify spiking and bursting firing patterns, we utilize the
mean coefficient of variation (CV) of the neuronal inter-spike inter-
val (ISI), which is given by

CV ¼ rISI

ISI
; ð5Þ

where rISI is the standard deviation of the ISI normalized by the
mean ISI [54,55], both rISI and ISI were calculated over all neuron
spikes. In the considered model, spiking patterns produces
CV < 0:5 while bursting ones CV P 0:5 [10,12]. As the patterns of
spikes and bursts of intermittent behavior change over time, for this
4

reason, an instantaneous coefficient of variation CV tð Þ was also cal-
culated, where for each time t, 4 ISIs before and 4 after time t were
used in the calculation.

To determine synchronous behavior, we considered the com-
plex phase order parameter [56] defined as

R tð Þ ¼ 1
N

XN

i¼1

exp jwið Þ
�����

�����; ð6Þ

where j=
ffiffiffiffiffiffiffi
�1

p
, and the phase of each neuron i is given by

wi tð Þ ¼ 2pmþ 2p t � tmi
tmþ1
i � tmi

: ð7Þ

tmi corresponds to the time when a spikem (m ¼ 0;1;2; . . .) of a neu-
ron i happens (tmi < t < tmþ1

i ). We have considered the beginning of
the spike when Vi > 0 mV. The value of the order parameter goes to
1 in a totally synchronized state and 0 for totally asynchronized
ones. To study the neuronal synchronization of the network, we
have calculated the time-average order parameter, which is given
by

R ¼ 1
tfin � tini

Xtfin
tini

R tð Þ; ð8Þ

where tfin � tini is the time window for calculating R. The burst syn-
chronization is observed when CV tð Þ P 0:5 and R P 0:5.

2.5. Experimental procedures in the animal model

The experiments were performed using male adult Wistar rats
(Rattus norvegicus) weighing 290 g-320 g maintained under con-
trolled temperature (20�-22�C) with a 12-h dark/light cycle at
the vivarium of Universidade Federal do ABC in São Bernardo do
Campo-SP with free access to food and water. All experimental
procedures were performed under the Ethics Committee for Ani-
mal Experimentation of Universidade Federal do ABC (Protocol
No. 013/2014). Animals were pretreated with subcutaneous injec-
tion (SC) of methyl-scopolamine nitrate (1 mg/kg, Sigma–Aldrich).
Then, animals receive an intraperitoneal injection of pilocarpine
hydrochloride (360 mg/kg, Sigma–Aldrich) to induce SE. After
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90 min of SE onset, seizures were interrupted by SC administration
of diazepam (10mg/kg, União Química). Control animals received a
similar volume of sterile saline instead of pilocarpine. Rats were
transcardially perfused for brain fixation 48 h after the induction
of SE. Perfusion consisted of 0.9% saline solution followed by 1%
paraformaldehyde (PFA). The brains were removed, submitted to
post-fixation in 1% PFA (at 4�C for 4 h), and dehydrated in 30%
sucrose (4 �C) until precipitation. The brains were embedded in
cryoprotectant material (OCT) and 12 lm sections were obtained
with a cryostat (Leica, CM1860). Section brain tissues were incu-
bated with antibodies against ARC 1:1000 (Synaptic System, cat
n�156003) diluted in 0.3% Triton X-100 in phosphate buffer (PB)
with 5% normal goat serum (NGS) overnight at room temperature.
Next, the sections were incubated with appropriate secondary
antibodies conjugated to Alexa 488 (Invitrogen) in PB containing
0.3% Triton X-100 with 3% NGS for 2 h. Counterstaining of brain
sections was achieved using 4’,6-diamidino-2-phenylindole (DAPI),
diluted in the secondary antibody solution. Controls for the exper-
iments consisted of the omission of primary antibodies. The tissue
was analyzed in Leica DM5500B inverted microscope (Leica
Microsystems). Figures were mounted with Adobe Photoshop
CS5 (Adobe Systems Inc.). Image analyses were performed with
ImageJ software (National Institute of Mental Health, Bethesda,
Maryland, USA) and NIS elements (Nikon Instruments Inc.), using
24 hippocampal slices (n = 4) for each experiment. For ARC analy-
ses in hippocampal principal cell layers, quantifications of the
mean pixel intensity in CA1, CA3, and granular cell layer (GCL)
were performed for the control and experimental groups after
channel separation (RGB) of color images. We calculated the pro-
portional mean pixel intensity of each area relative to the intensity
of the three regions summed, where values correspond to the
brightness of the pixels. Values from analyses of both groups were
entered into a one-way analysis of variance (ANOVA), followed by
pairwise comparisons in Tukey’s HSD test, with the significance
level set at 5%. To characterize the so-called intense ARC
immunoreactive neurons (IAIN), we randomly determined the
mean pixel intensity of these cells (�50 cells) in the three regions
where this phenotype was observed (CA1, CA3, and hilus). The
intensity values of each image were normalized by its median
and clustered by group and region. This data was used to calculate
the probability density distribution. For this purpose, the method
known as Kernel Density Estimation was applied. This is a non-
parametric statistical method to estimate the probability density,
used instead of histograms to obtain smoother curves [47]. The
probability density distributions were fitted using Gaussian curves
to identify different groups of cells regarding their pixel intensities.
It was considered the existence of two different populations of cells
in the case of the absence of overlap between the curves. The point
of intersection between two Gaussian was used as a threshold to
identify, count, and compare the number of IAINs in the control
and experimental group. Values from analyses were entered into
unpaired two-sample t-tests with the significance level set at 5%.
All mathematical calculations for these analyses were performed
using the software MATLAB and the Curve Fitting Toolbox.
3. Results

It has been shown that networks of adaptive neurons present
synchronized bursts when there is an increase in excitatory cou-
pling [12] and/or a decrease in inhibitory coupling [10] in networks
with random connectivity. Here, we first explored what happens
when only 10% of the neurons (only IAINs) have changes in their
synaptic input. Fig. 3 compares the network dynamics when all
cells have the same excitatory conductance (Fig. 3(a-d)) with the
activity pattern when IAINs have an increase in 50% the excitatory
5

conductance gIAIN = 1.5 (Fig. 3 (e-h)). Fig. 3(a) and 3(e) show the
raster plot of the neuronal network. In these figures, the spike of
each neuron i is represented by a green dot on the time axis.
Fig. 3(b) and 3(f) show three examples of the membrane potential
of the dynamics shown in the raster plots. Fig. 3(c) and 3(g) show
the instantaneous order parameter (red line) and the instanta-
neous coefficient of variation (blue line). The time interval shown
in Fig. 3(a-c) and 3(e-g) correspond to interval identified with a
green square dash line in Fig. 3(d) and 3(h), respectively.

The control case shows all neurons firing in the spike asyn-
chronous pattern characterized by CV< 0:5 and R< 0:75 (Fig. 3(a-
d)), this is similar to physiological states, where most neurons
show the spike pattern. However, for the case where IAINs have
stronger connections (Fig. 3(e-h)), burst synchronization is
observed with CV> 0:5 and R> 0:75, this exacerbated synchroniza-
tion is related with epileptic seizure. Therefore, when we increased
the incoming excitatory synaptic weight of IAINs from gex

IAIN ¼ 0:5
nS to gex

IAIN ¼ 0:75 nS the firing pattern changed from asynchronous
to burst synchronization.

Epileptic seizures lasted from a few seconds to a few minutes. A
firing pattern similar to the physiological state was observed
between crises in epileptic animals. Therefore, to simulate the
behavior of an animal with chronic epilepsy for a long time, it
was necessary to model an intermittent behavior between the
two firing patterns. For some parameters of our model, this was
observed. Fig. 4(a) shows the instantaneous order parameter (red
line) and the coefficient of variation (blue line) for intermittent
activity in the neuronal network. As shown in Fig. 4(a), such activ-
ity was characterized by states of asynchronous spikes and syn-
chronous burst activities. We associated these two activities with
the up (synchronous bursts) and down states (asynchronous
spikes). Unlike the activity that occurs under anesthesia and sleep
states, here we have up and down states with firing frequency
related to epileptic seizures. In our model, during the synchronous
burst pattern, the instantaneous mean firing frequency reaches
values above 10 Hz (Fig. 3(e)), consistent with ripples observed
in epilepsy [48]. Note that, R tð Þ and CV tð Þ are distinct diagnostics
associated with synchronization and firing patterns (spike or
burst), respectively. However, in this model, such diagnostics are
correlated in time. Fig. 4(b) shows a magnification of R tð Þ and
CV tð Þ time series, for the time around 400 s, indicated by the
dashed green square in Fig. 4(a). Each time period of synchronized
bursting activity was characterized by the symbol s.

We explored the parameter space f IAIN � gIAIN to find the values
where intermittent activity was observed. Fig. 4(c) shows the mean
coefficient of variation for the neuronal network varying f IAIN and
gIAIN. The increase of both fractions of IAINs and conductance asso-
ciated with IAINs contributed to the appearance of burst firing pat-
terns. The parameter region where CV <0.5 presented
asynchronous states, while CV >0.7 only synchronous bursts were
presented. In the transition, however, a mix of both up and down
states could be found for CV � 0.6. Fig. 4(d) shows the up states
number (nup) in the parameter space, in the color region where
intermittent activity is observed.

In order to better characterize these transitions, we fixed f IAIN
and explored gIAIN in a small range. Fig. 4(e) shows the mean order
parameter and coefficient of variation as a function of gIAIN for a
fixed f IAIN=0.1. The mean of these two diagnostics, beyond the
instantaneous one, were also strongly correlated. In the intermit-
tency case, each up state period, k, was characterized by a sk.
Fig. 4(f) shows the number of up states (nup) and the total up period
(Tup), which was considered as the sum of all s’s values, namely Tup

=
P

ksk. An optimal value of gIAIN generates the bigger nup value and
increasing gIAIN generates an enlargement of the total time of up
states Tup.



Fig. 3. Comparison of the dynamical behavior between gIAIN ¼ 1:0, in (a-d), and gIAIN ¼ 1:5, in (e-h). Figures (a) and (e) display the raster plot with a spike histogram above, the
vertical bar corresponding to 50 spikes per second and bin width of 10 s was considered. In (b) and (f) the curves show the potential membrane in the function of time, the
interval for each curve is 100 mV. (c) and (g) display the order parameter R, in red curves, and the CV in blue curves. These curves are the amplification of the region delimited
by the dashed green rectangle in (d) and (h).

Fig. 4. Intermittent dynamic activity is found in the neuronal network. In (a) the red curve shows the order parameter R, and the blue curve shows the CV overtime, with
gIAIN ¼ 1:31. The region delimited by the green rectangle is amplified in (b), where s � 16 s. In (c) and (d), the dependence of CV and nup with f IAIN and gIAIN are shown in color
scale, respectively. (e) R (red) and CV (blue) in function of gIAIN. (f) nup (red) and Tup (blue) in function of gIAIN. (g) CV in function of nIAIN and gIAIN in color scale. (h-l) Distribution
of s (blue circles) in logarithmic scale. The red and green curves are power-law and exponential fit, respectively. In (a-b) and (e-l) f IAIN ¼ 0:1.
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To model the increase in IAIN connectivity, we varied the num-
ber of afferent synapses. All neurons have connection probability
p ¼ 0:1 when the ratio of IAIN and non-IAIN afferent synapse num-
bers nIAIN=1. When nIAIN=1.4 the afferent connection probability for
IAINs neurons are 40% bigger. Fig. 4(g) shows the mean coefficient
of variation as a function of gIAIN and nIAIN. The ratio of IAIN and
non-IAIN together with the increase of gIAIN also leads the neuron
dynamics to show burst activity. The effect of both parameters in
the alteration of the firing pattern is very similar in our model.

The period of each synchronized bursting activity (up state) s
might be related to the duration of an epileptic seizure. Therefore,
it is possible to relate the severity of epilepsy by looking at the s
values in simulations with long time duration. Fig. 4(h-l) show
the s distribution considering different values of gIAIN, namely (h)
gIAIN= 1.28, (i) gIAIN= 1.29, (j) gIAIN= 1.30, (k) gIAIN= 1.31, and (l)
gIAIN= 1.32. We observed that for gIAIN= 1.28, s periods were lower
than 30 s, it could become larger as 1 min period for gIAIN=1.29
(Fig. 4(i)). Comparing these two cases it was also possible to note
that the first one was more related to a power-law distribution
than the second one. This distancing of the power-law fit becomes
more evident with the gIAIN increase. In Fig. 4(h-l) the power-law
adjusts to become less pronounced for high gIAIN. The coefficients
obtained from the power-law fit (Fig. 4(h-l)) can be used as a rule
for future predictions in addition to simulations. For the result
adjusted in Fig. 4(h) the coefficient was �2.27 while in Fig. 4(l)
was �1.84. In Fig. 4(j), (k), and (l), it is also notable that larger peri-
Table 2
Curve fits of the probability related to the Fig. 4(h-l). In the red lines P(s) = A s�c while P(s) =
seconds.

Fig. 4 A c

(h) 8:24� 10�4 2.27

(i) 6:16� 10�4 1.92

(j) 4:85� 10�4 1.67

(k) 3:60� 10�4 1.62

(l) 2:74� 10�4 1.84

Fig. 5. Simulation of optogenetics methods to suppress the synchronized bursting activity
of yellow light. (d-f) Increase of excitability and increasing the firing rate of non-IAINs by
on). In (d-f) the same cell amount was excited for 3 s (blue light on). The membrane pote
while the orange and green are from photosensible cells. Figures (b) and (e) show the ras
delimited by the green rectangle. A curve in (c) and (f) shows the R in the function of tim
same as (a-f) but considering that the 10 photosensible neurons were IAINs. f IAIN ¼ 0:1
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ods of up states are found by the neuronal dynamics. Moreover, for
s larger than 10 s the probability is given by P(s) / exp(-ks) in
Fig. 4(i-l), with k equal to 9:4� 10�2;3:5� 10�2;0:9� 10�2, and
0:19� 10�2, respectively. P(s) is progressively going towards
higher values for s > 1 min, it was observed P(s) > 10�7 in Fig. 4(-
i-l), and for s > 10 min P(s) > 10�7 only in Fig. 4(l). In Table 2, we
show the fitted coefficients of the Fig. 4(h-l) (red and green lines).

To deepen the understanding of the influence of IAINs and non-
IAINs in the synchronized burst control, we investigated how the
application of yellow and blue light in non-IAINs and IAINs could
have a role to suppress the high synchronous activities in the inter-
mittent regimes. While yellow light generated a reduction in neu-
ron excitability, blue one increased the firing rate of the target
cells. The effect of light on the neurons was taken into account con-
sidering a negative and positive current as of the effect of yellow
and blue light. To simulate a very non-invasive situation, we con-
sidered that only 1% of neurons were transfected and became pho-
tosensitive. Our main objective was to verify whether light stimuli
have more effect on IANIs than on non-IANIs.

First, we considered the application of optogenetics control in
non-IAINs. Fig. 5(a-f) shows an attempt to suppress intermittent
activity using the optogenetics method applied in the non-IAINs
of the network. Fig. 5(a) shows three membrane potentials of
non-IAINs, the first one without photosensitivity, the second and
third with yellow photosensitivity. Fig. 5(b) shows the raster plot
for part of the neuronal network (i=[700,900]) where it is possible
B � exp(-ks) in the green lines. The coefficients (A, c, B, k) were fitted considering s in

B k

1:9� 10�5 9:4� 10�2

1:3� 10�5 3:5� 10�2

0:47� 10�5 0:9� 10�2

0:14� 10�5 0:19� 10�2

(up states). (a-c) Reduction of excitability and silencing of non-IAINs by application
application of blue light. In (a-c) 1% of neurons were inhibited for 3 s (yellow light
ntials are exhibited in (a) and (d). The Cyan curve is from a non-photosensible cell,
ter plot for 200 neurons with the 20 photosensible in the middle. The range time is
e. The yellow and blue lines indicate the period when the light was on. (g-l) are the
and gIAIN ¼ 1:30 for all simulations.
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to observe the neurons which are silent due to yellow light. Fig. 5
(a) and (b) represent the time windows of the instantaneous order
parameter shown in Fig. 5(c). The time period that yellow light was
on (3 s) is represented by a yellow bar in Fig. 5(c). As can be noticed
in Fig. 5(b) and (c), during and after the yellow light application
any significant modification in the firing pattern and synchroniza-
tion of all the neuronal networks was observed.

Since the previous approach did not control the high synchro-
nization, we considered the increase of non-IAIN excitability.
Fig. 5(d) shows three membrane potentials of non-IAINs, the first
one without photosensitivity, the second and third with photosen-
sitivity due to blue light. Fig. 5(b) shows the raster plot for part of
the neuronal network (i=[700,900]) where it is possible to observe
higher firing rate neurons due to the application of blue light. Fig. 5
(d) and (e) represent the time windows of the instantaneous order
parameter shown in Fig. 5(f). The time period that blue light was
on (3 s) is represented by a blue bar in Fig. 5(f). Similarly to the yel-
low light, the blue one application did not generate any significant
modification in the firing pattern and synchronization of all the
neuronal networks.

We finally considered the application of optogenetics control in
IAINs. Fig. 5(g-l) shows the application of yellow and blue light in
IAINs. Fig. 5(g) three membrane potentials of IAIN neurons, the first
one without photosensitivity (cyan curve), the second (orange
curve), and the third (green curve) with yellow light photosensitiv-
ity. Fig. 5(h) shows the raster plot for part of the neuronal network
(i=[1]) where it is possible to observe silent neurons due to yellow
light. Significant modification in the firing pattern and synchro-
nization of all the neuronal networks was observed during and
after the yellow application. The instantaneous order parameter
decreased even after the light was turned off (Fig. 5(i)). The same
effect was observed for the blue light in IAINs (Fig. 5(j-l)). There-
fore, the light application led the network dynamics from syn-
chronous to asynchronous activity when IANIs were chosen to be
photosensitive.
4. Conclusion

In this work, we considered a random network composed of
excitatory and inhibitory neurons, where the individual neuronal
dynamics were described by the adaptive exponential integrate-
and-fire model. This neuronal model is capable of exhibiting both
spikes and burst-firing activities. After status epilepticus, excita-
tory neurons can be identified as non-IAINs or IAINs. In the consid-
ered model, initially, all neurons were randomly connected with
the same probability, then only the excitatory connections
received by the IAINs were changed. IAINs may have a higher prob-
ability and strength of received excitatory connections, while inhi-
bitory connections between non-IAINs were not altered. This
modification in the excitatory connections can participate in
epileptogenesis.

We observed that the increase in fraction and synaptic conduc-
tance of excitatory IAINs improved the emergence of synchronized
burst firing. Besides that, favor the appearance of intermittent
behaviors on the synchronization and firing patterns in a neuronal
network that did not exhibit this pronounced activity. Such inter-
mittent behavior between synchronous bursts and asynchronous
spikes was associated with up and down states of activity. Since
intermittent synchronization can be related to epileptic activities,
we utilized the instantaneous coefficient of variation to monitor
the intermittency of spike and burst patterns along the time. The
intermittency of the firing pattern is also related to synchronous
and asynchronous activities of the network. For weak increases
in IAINs conductance, we observed an approximate power-law dis-
tribution of the up states periods. As the IAINs conductance
8

increased, we observed the intermittency behavior in two distinct
time scales of burst synchronized activities (up states). Power-law
adjustments were made from the distribution of the up states peri-
ods, the values of the coefficients obtained can be used in a rule for
future prediction in addition to simulations. For the conductance of
weak IAINs the angular coefficient was �2.27 while for the strong
IAINs the conductance was �1.84, showing that longer events are
more likely to happen in the latter case. Moreover, in the distribu-
tion of events larger than 10s exponential fit was observed with
strong IAINs, however, the probabilities of the events occurring
were less than 10�4. The duration of up states depended on the
excitatory conductance of IAINs. Therefore, the connections
received by IAINs are directly related to the onset of epileptic
seizures.

As a method of controlling the high synchronous burst (up
states), we simulated the application of optogenetics on non-
IAINs and IAINs in the intermittent activities, more specifically
during up states. In non-IAINs, both the reduction and increase of
excitability by yellow and blue light did not lead the neuron
dynamics to asynchronous activity. Otherwise, in IAINs, such appli-
cation of both yellow and blue light exhibited a strong influence on
the network dynamics to return for asynchronous spikes. These
results point to the importance of IAINs for high synchronous
activity generation and control using optogenetics methods. Taken
together, our results revealed that neurons that have more
synapses than average (IAINs) may constitute a therapeutic target
for the treatment of epileptic seizures.
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