

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  MAY 10 2023

Temporal relation between human mobility, climate, and
COVID-19 disease 
Carlos F. O. Mendes; Eduardo L. Brugnago; Marcus W. Beims ; ... et. al

Chaos 33, 053110 (2023)
https://doi.org/10.1063/5.0138469

Articles You May Be Interested In

Natural Radiation from Soil using Gamma‐Ray Spectrometry

AIP Conference Proceedings (June 2009)

Effective gamma‐ray doses due to natural radiation from soils of southeastern Brazil

AIP Conference Proceedings (August 2010)

Letters from the edge: Less conventional acoustical solutions

Proc. Mtgs. Acoust (June 2013)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0138469/17446402/053110_1_5.0138469.pdf

https://pubs.aip.org/aip/cha/article/33/5/053110/2890079/Temporal-relation-between-human-mobility-climate
https://pubs.aip.org/aip/cha/article/33/5/053110/2890079/Temporal-relation-between-human-mobility-climate?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/33/5/053110/2890079/Temporal-relation-between-human-mobility-climate?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0138469
https://pubs.aip.org/aip/acp/article/1139/1/153/844592/Natural-Radiation-from-Soil-using-Gamma-Ray
https://pubs.aip.org/aip/acp/article/1265/1/465/858025/Effective-gamma-ray-doses-due-to-natural-radiation
https://pubs.aip.org/asa/poma/article/19/1/015091/806816/Letters-from-the-edge-Less-conventional-acoustical
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063251&setID=592934&channelID=0&CID=754911&banID=520996571&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1684870220000922&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0138469%2F17446402%2F053110_1_5.0138469.pdf&hc=8fa9b4fcf7fa8570fddd9c15b4679ad31704dc47&location=


Chaos ARTICLE scitation.org/journal/cha

Temporal relation between human mobility,
climate, and COVID-19 disease

Cite as: Chaos 33, 053110 (2023); doi: 10.1063/5.0138469

Submitted: 12 December 2022 · Accepted: 20March 2023 ·
Published Online: 10May 2023 View Online Export Citation CrossMark

Carlos F. O. Mendes,1,a) Eduardo L. Brugnago,2,3,b) Marcus W. Beims,3,c) and Alice M. Grimm3,d)

AFFILIATIONS

1Escola Normal Superior, Universidade do Estado do Amazonas, 69050-010 Manaus, Amazonas, Brazil
2Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
3Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil

a)Electronic mail: cfabio.mendes@gmail.com
b)Electronic mail: elb@if.usp.br
c)Author to whom correspondence should be addressed: mbeims@fisica.ufpr.br
d)Electronic mail: grimm@fisica.ufpr.br

ABSTRACT

Using the example of the city of São Paulo (Brazil), in this paper, we analyze the temporal relation between human mobility and meteorological
variables with the number of infected individuals by the COVID-19 disease. For the temporal relation, we use the significant values of distance
correlation t0(DC), which is a recently proposed quantity capable of detecting nonlinear correlations between time series. The analyzed period
was from February 26, 2020 to June 28, 2020. Fewer movements in recreation and transit stations and the increase in the maximal temperature
have strong correlations with the number of newly infected cases occurring 17 days after. Furthermore, more significant changes in grocery
and pharmacy, parks, and recreation and sudden changes in the maximal pressure occurring 10 and 11 days before the disease begins are also
correlated with it. Scanning the whole period of the data, not only the early stage of the disease, we observe that changes in human mobility
also primarily affect the disease for 0–19 days after. In other words, our results demonstrate the crucial role of the municipal decree declaring
an emergency in the city to influence the number of infected individuals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138469

Since 2019, the spreading of coronavirus SARS-CoV-2 worldwide
has been a crucial issue in human life. Many processes can affect
the dissemination of the virus, ranging from the distance between
humans, vaccination, correct use of masks, intrinsic rate of infec-
tion of the virus, human health, and human mobility, which can
be a consequence of the weather, climate, or government contain-
ment measures, for example. It is a nonlinear complex system
in which many variables may become relevant. In the present
work, we study the temporal relation between newly infected
individuals by the coronavirus, human mobility, and weather
in São Paulo (Brazil) from February 26, 2020 to June 28, 2020.
For human mobility, we considered the categories grocery and
pharmacy, parks, residential, retail and recreation, transit sta-
tions, and workplaces, and for meteorological variables, we have
radiation, precipitation, wind, and maximum, minimum, and
mean values of temperature, pressure, and humidity. To find the
temporal relation between all variables, we use the distance corre-
lation, one of the latest statistical measures that detect nonlinear

correlations. We show that while some meteorological variables
can affect the number of newly infected cases around 17 days
after, changes in human mobility are crucial to deciding what
happens in the coming three weeks. The underlying mechanism
that correlates newly infected individuals with viruses, human
mobility, and weather should be independent of the time they
occur and applicable to present circumstances.

I. INTRODUCTION

The relation between meteorological data and individuals’ con-
tamination by the coronavirus SARS-CoV-2 is an actual open issue
of major relevance. Such a relation can be studied based on the direct
effects of meteorological data on the coronavirus contamination
of individuals or indirectly via meteorological effects on the social
behavior, which then affects the contamination. While almost all
recent studies focus on direct analysis, the indirect effect is certainly
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relevant and whose importance should be quantified. In this context,
it has been suggested that specific meteorological variables may play
a role in the spread of the coronavirus in some countries,1–19 while
others oppose strong seasonal effects.20,21 There are also proposals
that several meteorological factors combined could describe the epi-
demic trend much better than single-factor models.22 On the other
hand, big social events were shown to be analogous to the perturba-
tions of information dissemination, increasing the predominance of
the coronavirus infection.23 Furthermore, social distancing in social
networks24 can also affect the spreading of the coronavirus.

It is known in statistics that correlation does not necessarily
imply causation. The adequate term for the causality between times
series is temporal relation.25 A time-series X is temporally related to
a time-series Y if the t0-student test indicates that X and Y have a sta-
tistically significant relationship within a given lag between the time
series. In the present paper, we use the distance correlation (DC)26 to
analyze the temporal relation between meteorological quantities and
individuals’ cases with the coronavirus. The DC varies between −1
and 1, meaning maximal anti-correlation and correlation, respec-
tively. In opposition to the Pearson correlation (ρ), the DC has the
advantage of detecting nonlinear correlations, and it will be zero
if and only if the analyzed quantities are independent. The Pear-
son correlation can be zero, for example, even though the quantities
are still correlated. Therefore, the DC vanishes only when data are
completely uncorrelated.

DC is a robust statistical measure that extracts nonlinear prop-
erties from dynamical systems. Thus, DC is most welcome in the
context of chaotic time series, and we mention some examples. The
DC and Pearson’s correlation between noisy and noiseless quadratic
maps are studied in periodic and chaotic regimes.27 In distinction
to Pearson’s correlations, DC can recognize the correct qualitative
behavior of noise-induced escape time decays and the mixing of
chaotic trajectories. Furthermore, the decay of the DC has been
shown to be related to the Lyapunov exponent of discrete dynam-
ical systems with one positive Lyapunov.28 In the study of spatially
extended systems, DC is used as a powerful quantifier to describe
correlation and synchronization (chimera states).29 In other con-
texts, DC has been shown to be a suitable statistical procedure
for the analysis of disease spreading, such as COVID-19 (SARS-
CoV-2), between different countries30 and distinct large territories
inside Brazil.31 Other utilities of DC in physical systems are still
under analysis. It is used, for example, in astrophysical databases,32

in clinical data analysis,33 functional connectivity in neuroimages,34

in the detection of nonlinear model structure in the parameter
estimation,35 and in the climate system and the human heart.36 Thus,
the conclusions obtained using the computation of DC and the elim-
ination of insignificant values through the test statistics, as described
in the Appendix, are in the context of chaotic time series. Another
causal measure could be used as, for example, the PCMCI mea-
sure, which includes mutual information between large datasets.36

However, for the purpose of the present work, the DC and Pearson
correlations are robust and sufficient.

Here, we use the DC and ρ to analyze the temporal relation
between meteorological quantities, human mobility, and individu-
als’ cases with the coronavirus in the city of São Paulo (SP), Brazil.
Its population is over 12 × 106 inhabitants so that our analysis is
representative of large cities around the world. Meteorological data

were obtained from the stations Mirante de Santana and Interlagos
from the INMET (Instituto Nacional de Meteorologia), the Brazil-
ian Meteorological Service. While the Mirante de Santana station is
localized in the north part of the city, the Interlagos station is an
automatic station localized in the south part of the city. Together,
both stations appropriately describe the weather in the city of SP.
Human mobility was considered in the following categories: gro-
cery and pharmacy (places like grocery markets, food warehouses,
farmers markets, specialty food shops, drug stores, and pharmacies),
parks (national parks, public beaches, marinas, dog parks, plazas,
and public gardens), residential, retail and recreation (restaurants,
cafes, shopping centers, theme parks, museums, libraries, and movie
theaters), transit stations (public transport hubs such as subway, bus,
and train stations), and workplaces. Data were obtained from the
community mobility reports provided by Google.37 Finally, data for
COVID-19 were obtained from the FIOCRUZ (Fundação Oswaldo
Cruz)38 and the coronavirus panel of the Ministry of Health.39

In short, our analysis demonstrates that social behavior mostly
affects the earlier stage of the disease after 8–17 days. Specifically
relevant are (i) fewer movements in recreation and transit stations
and increasing values of the maximal temperature occurring 17 days
before the early stage of the disease and (ii) larger changes in gro-
cery and pharmacy, parks, and recreation and sudden change in the
maximal pressure occurring 10–11 days before the disease.

II. COVID-19 EVOLUTION FOR THE CITY OF SP

Figure 1(a) displays the data for the new cases (NCs) of infected
individuals used in our analyses as a function of time from Febru-
ary 26, 2020 to June 28, 2020. In Fig. 1(b), the two time windows
with 7 and 14 days in the early stages of the disease are shown.
While the 7-day window has a sudden increase of NC on April 1,
the 14-day window includes some additional slow increases of NC
for days between March 22 and 27, followed by a slight decrease
until March 30. The NC values inside the 7(14)-day window are
used to calculate the DC with data from the human mobility and
meteorology inside another 7(14)-day window but shifted by a lag,
as illustrated schematically in Fig. 1(c). For lag (0), the two win-
dows overlap. The computational procedures to determine DC and
ρ with their significances through the test statistics are presented
in the Appendix. The test statistics analysis guarantees statistically
relevant values for the temporal relation mentioned in the Intro-
duction. From the definition, DC is always positive, but in order to
describe anti-correlations, we incorporate the signal of ρ in the DC,
namely, DC = sgn(ρ)DC. Furthermore, while the mean value of the
NC inside the 7-day window is 433.57 with relative variance 251.89,
for the 14-day window, the mean is 216.78 with relative variance
163.12. For later purposes, we call to attention that when comparing
the meteorological data with the 7-day and 14-day windows of the
NC in Fig. 1(b), larger variations of the NC data occur in the former.

Results presented in this paper are a compendium of an exten-
sive numerical analysis calculating the DC, ρ, t0(DC), and t0(ρ)

between quantities related to the spread of the COVID-19 with
human mobility and meteorological data. For the disease, we used
the number of daily new cases (NC) and total cases (TC) of indi-
viduals infected, the daily number of new deaths (ND) and the
total number of deaths (TD). We used the meteorological variables:
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FIG. 1. (a) Number of new cases (NCs) in the city of SP starting on February 26
for 124 days. The vertical black straight line on March 16 demarcates the date
of the municipal decree declaring emergency situation in the city of SP; (b) NC
showing the two time windows at the early stage of the disease which are used
for the analysis of DC in Sec. III; and (c) illustration of the lag between the mete-
orological or mobility data windows (hatched, Q2) with the NC window (Q1), used
in Sec. IV.

radiation, precipitation, wind, and maximum, minimum, and mean
values of temperature, pressure, and humidity. After analyzing all
correlations, we concluded that NC comprises the main results of
the analyzed COVID-19 data and that only significant values of DC
between NC and Tmax and Pmax are of relevance. In addition, not
all results are shown here for both windows of 7 and 14 days, just
those with the most significant values. In general, the autocorrela-
tion of NC data displays (not shown) large values for 7-day lags, a
consequence that data from Sunday are included in Monday’s data.
That is why we use 7- and 14-day time windows to avoid apparent
correlations irrelevant to the paper.

A relevant point is the ability to recognize if significant values
of DC and ρ [indicated by t0(DC) and t0(ρ), respectively] are related
to increasing or decreasing cases of NC. We do not have a general
answer to this point since the NC data oscillate too much. However,
some hints can be furnished. Figure 1(b) shows the two time win-
dows in the early stage of the disease. While the 7-day time window
includes a sudden increase of NC on March 30, the 14-day time win-
dow includes this sudden increase but also some additional smaller
values of NC for days between March 22 and 29. Roughly speak-
ing, when comparing to the 14-day window, we can argue that the
7-day window has proportionally more cases with larger values of
NC and also a proportionally larger sudden increase. Consequently,
larger correlations obtained using 7-day windows when compared
to those obtained using 14-day windows suggest a worsening of the
disease situation.

III. THE EARLY STAGE OF THE DISEASE (SCANNING

ONE WINDOW)

In this section, we discuss results regarding the correla-
tion between the moving 7- and 14-day time windows for
the human mobility, Tmax, Pmax, and the corresponding 7-
and 14-day time windows for the NC in the early stage of

the disease, as shown in Fig. 1(b). For the numerical pro-
cedure, we use X for the COVID-19 data and Y for mete-
orological data and human mobility. For the case of 7-day
time windows, this means (X, Y) = {(Xk, Yk−lag) : k = 1, . . . , 7; lag

= 0, −1, −2, . . . , −32}, with k referring to the dates inside the
red window from Fig. 1(b), namely, 3/29, 3/30, . . . , 4/4. For the
case of 14-day time windows, this means (X, Y) = {(Xk, Yk−lag) :

k = 1, . . . , 14; lag = 0, −1, −2, . . . , −25}, with k referring to the
dates inside the blue window from Fig. 1(b), namely, 3/22,
3/23, . . . , 4/4.

Here, by scanning only one window, the meteorological data
and human mobility windows intersect for lags from 0 (full intersec-
tion) to −6 (−13) (1-day intersection) for 7(14)-day time window.

A. Influence of human mobility

Figure 2 displays the community mobility as a function for the
considered time interval in different locations: Fig. 2(a) for grocery
and pharmacy, Fig. 2(b) parks, Fig. 2(c) residential, Fig. 2(g) retail
and recreation, Fig. 2(h) transit stations, and Fig. 2(i) for workplaces.
The vertical pink dashed lines mark the day of the municipal decree
number 59 283 declaring an emergency in the city of SP. Changes
for each day are compared to a baseline value for that day of the
week: the baseline is the median value for the corresponding day
of the week, during the five weeks from January 3 to February 6,
2020. During the period of the determination of the baseline, there
was one holiday on January 25. Since this is at the weekend, we do
not expect to have significant changes in the baseline. Changes in
mobility are relative changes compared to the baseline values. For
example, the value of 30% in the parks on Friday, March 6, corre-
sponds to a relative change, which occurred on this day compared to
Friday, February 28. Significant changes in mobility are observed in
all locations (except for grocery, pharmacy, and residential) around
March 16, the municipal decree day. For the grocery and pharmacy,
a relevant mobility change was observed on March 21. The mobility
for residential essentially increases smoothly for the whole period.

Figures 2(d)–2(f) and 2(j)–2(l) show the corresponding values
of t0(DC) in dark blue filled circles and t0(ρ) in orange filled circles,
between the 14-day time window of the human mobility and the 14-
day time window from NC, shown in Fig. 1(b), as a function of the
time lag between both windows. The light blue (yellow) background
colors mark the positive (negative) significant values of DC. While
positive values reflect correlations between the time series, negative
values belong to anti-correlations between the signals. In all cases,
t0(DC)> t0(ρ), which reveals the relevance of nonlinear effects in
the time series. However, significant values of both correlators occur
essentially at the same lags (some exceptions occur with a one-day
delay). For each lag, there is a corresponding 14-day window demar-
cated with a light blue or yellow rectangle in Figs. 2(a)–2(c). For
example, in Fig. 2(d), we have 11 points at lags (0, −4 → −13),
which are significant for both correlators. The lags at (−4 → −13),
which belong to the time interval from March 9 to 31, are marked
by the yellow rectangle in the positive part of the vertical axis in
Fig. 2(a). Thus, an anti-correlation between the series is observed,
not meaning that the decrease in human mobility in grocery and
pharmacy is responsible for the increase of NC. It is merely a conse-
quence that the data from one series decrease while from the other
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FIG. 2. Human mobility in the city of SP, starting at February 26 for five weeks in
different locations (a) grocery and pharmacy, (b) parks, (c) residential, (g) retail
and recreation, (h) transit stations, and (i) workplaces. Positive (negative) mobility
is plotted by green (red) filled circles. Panels (d)–(f) and (j)–(l) display the statis-
tically significant tests, t0(DC) and t0(ρ), between the 14-day time window from
the human mobility and the 14-day time window from NC. Vertical dashed lines in
panels (a)–(c) and (g)–(i) mark the day of the emergency decree.

increase in the time interval. For the lag (0), the corresponding time
interval is from March 21 to April 4 and is marked by the light blue
rectangle in the negative part of the vertical axis in Fig. 2(a). Such
identification with the light blue and yellow rectangles allows us to
analyze in all figures the periods of human mobility, which have sig-
nificant values of DC and ρ. All light blue and yellow background
rectangles in the upper part of Figs. 2(a)–2(c) and Figs. 2(g)–2(i)
encompass days for which big changes from positive to negative
human mobility occur. The second observation is that there are lags
with pronounced significant values of DC and ρ for most cases.
Examples are the lags (−10, −11) in Fig. 2(d), lags (−11, −15) in
Fig. 2(e), and, finally, lag (−17) in Figs. 2(j) and 2(k), related to
recreation and transit stations. Since (−17) is the largest lag with
the most pronounced significant values, we can associate the pri-
mordial human mobility in retail, recreation and transit stations as
the most relevant for the earlier stage of the disease. Following this
way of thinking, the next pronounced lag occurs at (−15) for parks
in Fig. 2(e). This lag is also relevant for residential [Fig. 2(f)] but with
previous positive mobility values in this location associated with
NC reduction. The corresponding light blue and yellow windows
are shown in Figs. 2(b) and 2(c), respectively. Thus, parks and resi-
dential human mobility appear to be the next in the relevant order.
The additional pronounced lags that appear around (−12, −11) for
retail, recreation and parks could be interpreted as a “second wave”
effect from these locations. Workplaces and residential movements

are almost equally relevant for lags between (−8 → −17), but with
opposite signals of the correlations. Furthermore, we may argue that
our analysis’s most relevant quantity is the light blue and yellow area
below t0(DC) and t0(ρ) curves in Figs. 2(d)–2(f) and 2(j)–2(l). From
this point of view, all analyzed locations have roughly the same rel-
evance for lags between (−8 → −17), and we conclude that social
behavior mostly affects the earlier stage of the disease for these lags.

B. Influence of maximum temperature and maximum

pressure

Figure 3 displays meteorological data in the city of SP for
39 days in the early stage of the disease, starting on February
26 and finishing on April 4. While in Figs. 3(c)–3(d) we present
results for the 7-day time window, Figs. 3(g)–3(h) show results for
the 14-day time window. Figures 3(a) and 3(b) show data from
the Interlagos station for Pmax and Tmax, respectively. Figures 3(c)
and 3(d) display t0(DC) and t0(ρ) as a function of the lag, cal-
culated for DC and ρ, respectively, between the 7-day time win-
dows for Pmax and Tmax, and the NC values inside the 7-day
time window from Fig. 1(b). Significant values of DC are seen
in Figs. 3(c) and 3(d) at lags (−6, −7, −10, −16, −17, −29) and
(−4, −5, −6, −10, −11, −12, −17, −22, −23, −24, −28), respec-
tively. On the other hand, significant values for ρ in Figs. 3(c)
and 3(d) occur at lags (−6, −7, −10, −29) and (−4, −5, −11, −17,
−22, −23), respectively. The corresponding windows for significant
DC values are shown as light blue and yellow background rectan-
gles in Figs. 3(a) and 3(b). The largest significant values of DC and ρ

occur for lag (−10) in Fig. 3(c) and lag (−4, −11, −17) in Fig. 3(d).
The lag (−10) from Fig. 3(c) corresponds to the light blue rectan-
gle in Fig. 3(a) for days 19–26 of March, for which a pronounced
minimum followed by a sudden increase of Pmax is seen. For the
lag (−4, −5, −6) in Fig. 3(d), the corresponding light blue rectan-
gle in Fig. 3(b) occurs for days 23–31 of March, for which a relative
increase of Tmax is observed. The next two lags with significant values
in Fig. 3(d) occur for (−11) with negative correlation, and for (−17)
with positive correlation, and corresponds to a sudden decrease (yel-
low rectangle from March 17 to 25) and a sudden increase (light
blue rectangle from March 11 to 18) of Tmax in Fig. 3(b), respec-
tively. Thus, apparently, a sudden increase (decrease) of Tmax induce
significant correlations (anti-correlations) between this meteorologi-
cal quantity and NC. The same conclusion can be made regarding
Pmax. Furthermore, let us compare this with human mobility using
just some pronounced peaks of t0(DC). The minimum in Fig. 3(d) at
lag (−11) is related to the rectangle from 17 to 25 of March (sudden
decrease of Tmax) that corresponds to the period for which almost all
relevant changes occurred in human mobility, as seen in Fig. 2.

Figure 3(e) displays the Tmax for the Interlagos station, and
Fig. 3(f) exhibits the Tmax for the Mirante de Santana station.
Figures 3(g) and 3(h) show, respectively, to Figs. 3(e) and 3(f), the
corresponding t0(DC) and t0(ρ), as a function of the lags, calcu-
lated for DC and ρ between the 14-day time window of Tmax and
NC from Fig. 1(b). The yellow and blue backgrounds and rectangles
have the same meaning as in Fig. 2. Significant values for DC occur
at lags (−1, → −5, −8, → −12, −15, → −25) in Fig. 3(g). The cor-
responding yellow and blue rectangles are shown in Fig. 3(e). The
pronounced significant value at lag (−17) is related to an increasing
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FIG. 3. Shown are data for (a) and (b) Pmax and Tmax, respectively, for the Inter-
lagos station, (e) Tmax for the Interlagos station, and (f) Tmax for the Mirante de
Santana station. The time interval corresponds to Fig. 1(b) in the early stage of
the disease. While panels (c) and (d) display t0(DC) and t0(ρ) using a 7-day time
window, panels (g) and (h) present results for a 14-day time window [see Fig. 1(b)].

Tmax in the interval 4–18 of March, as seen inside the light blue rect-
angle in Fig. 3(e). In Fig. 3(h), significant values for DC occur at lags
(−1, −2, −8 →, −13, −17 → −25). The pronounced negative sig-
nificant value occurs at lag (−11), which corresponds to decreasing
Tmax from 10 to 24 of March, inside the yellow rectangle in Fig. 3(f).
These results confirm what has been seen for the 7-day time window,
that increasing (decreasing) values of Tmax induce significant cor-
relations (anti-correlations) between the maximal temperature and
NC.

Now, we compare Figs. 3(d) and 3(g) for which the data for the
Tmax are the same and solely the time window is changed from 7 to
14, respectively. We observe that the pronounced significant value at
lag (−4) in Fig. 3(d) for the 7-day time window is barely significant
in the 14-day time window of Fig. 3(e). Something similar occurs,
with less intensity, however, at lag (−11) in Figs. 3(d) and 3(g). The
peak in the latter is almost not significant anymore, which means
that significant values of DC at lags (−4, −11) are more relevant
to the 7-day window. Furthermore, the prominent significant val-
ues of DC and ρ at lag (−17) seem to be independent of the size
of the time window used. Thus, the increasing values of Tmax around
March 11–18 seem to have strong positive (and size-window stable)
correlations, independent of the used window size.

C. Human mobility vs temperature and pressure

Here, we compare results obtained in Secs. III A and III B.
For this, we focus on the most significant values of DC at specific
lags. One example is the lag (−17) for which prominent t0(DC) val-
ues are seen in Figs. 2(j) and 2(k) and in Figs. 3(d) and 3(g). In
Fig. 3(b), this corresponds to the time window from March 11 to
18 and in Fig. 3(e) to the time window from March 6 to 20, which
are related to a continuous increase of Tmax. In Figs. 2(g) and 2(h),
this corresponds to the period of relevant changes in recreation and
transit stations. Thus, increasing Tmax, lesser mobility in recreation
and transit stations have all the strongest positive correlations with
the increase of NC in the early stages of the disease. Another exam-
ple occurs for lags around (−10, −11) in Figs. 3(c) and 3(d) and
Figs. 2(d), 2(e), and 2(j). For human mobility, this corresponds to
larger changes in grocery and pharmacy, parks, and recreation and
is related to a sudden increase in Pmax [see the light blue rectangle
from March 19 to 26 in Fig. 3(a)].

IV. THE PERIOD UNTIL JUNE 28 (FIXED LAG)

In this section, instead of keeping the NC window fixed at the
early stage of the disease [Fig. 1(b)] and changing the lag, we keep
fixed the lag and scan from February 26 to June 28. In other words,
in the schematic representation of Fig. 1(c), while the window in
Q2 contains the human mobility or meteorological data, the window
in Q1 contains NC data. Thus, we determine t0(DC) between data
inside the left and right windows in Fig. 1(c), keeping fixed the lag
and scanning the whole times’ axis. Here, we use the 14-day time
window exclusively, and the lags vary from −30 to 0.

For the numerical procedure, we use X for the COVID-19
data and Y for meteorological data or human mobility, meaning
(X, Y) = {(Xk,i, Yk−lag,i

) : k = 1, . . . , 14; i = 1, . . . , I}, for a fixed lag

and k referring to the dates inside the corresponding time window.
For better comprehension, we mention two examples: for lag (0),
k = 1, . . . , 14 corresponds to dates from February 26 to June 28
and i = 1, . . . , I(= 50) represents the time scanning along the whole
analyzed period. For lag (−5), k = 1, . . . , 14, and while the meteoro-
logical and mobility windows start on February 26, the NC window
starts on March 1 (here I = 44).

In this case, meteorological data and human mobility win-
dows intersect for lags from 0 (full intersection) to −13 (1-day
intersection).

A. Human mobility

In Fig. 4, t0(DC) is plotted in colors (see color palette) between
human mobility and NC for lags in the interval [−30, 0]. While
significant values of DC increase from light blue to dark blue for cor-
relations and from yellow to red for anti-correlation, non-significant
values of DC decrease from black to gray. For reference, the day of
the emergency decree in the city of SP, namely, March 16, is shown
by the pink horizontal line.

It is worth mentioning some statistical properties (not shown)
of the NC data when scanning the 14-day time windows from Febru-
ary 26 to June 15. While the mean values of NC increase when times
go by, the relative variance σ 2(NC) has a sudden increase on the 6th
scanning day, which remains almost constant (plateau) until the 21st
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FIG. 4. Values (see color bar) of t0(DC) between human mobility and NC for the
whole considered period and different lags between the 14-day windows. The pink
horizontal line marks the day of the emergency decree in the city of SP, namely,
March 16. The white dashed (continuous) horizontal line marks the day March
2 for which the 14-day time window of the human mobility does not include the
decree day. Panels (a) grocery and pharmacy, (b) parks, (c) residential, (d) retail
and recreation, (e) transit stations, and (f) workplaces.

scanning day. This plateau will become relevant later on. A second
sudden increase of the variance of NC occurs by the 22nd scanning
day.

To make the presentation easy, we separate the discussion of
Fig. 4 into three periods: (1) Before the data of the human mobility
that includes the emergency decree day. This means that the win-
dow starts for days below the white horizontal line; (2) During the
days for which the data of the human mobility includes the decree
day. Window starts between pink and white horizontal lines; and (3)
After data of human mobility, which include the decree day. Above
the pink horizontal line.

1. Period of human mobility data before including

the health emergency decree (February 26–March 2)

For lags around (−1, 0) and days from February 26 to March
10, only residential and workplaces do not have significant values
in DC, and all other human mobilities display positive correlations.
Subsequent significant values of DC occur at lags around (−3, −2),

but now for residentials, transit stations, and workplaces. For lag
(−2), the scanned NC 14-day windows are located from February
28 to March 12, and for lag (−3), they are located from February 29
to March 13. The general tendency is that for increasing lags, the
mean number of NC inside the 14-day windows increases. More
specifically, from lag (−1) to lags (−2), data show that the num-
ber of NC increases by around 400% (not shown). This means that
human mobilities in residentials, transit stations, and workplaces are
somehow correlated with the abrupt increase of NC in these 2 days.

Successive significant correlations along the horizontal are
observed from lags (−21) to (−6) for parks, recreation, and transit
stations, which match with the plateau of σ 2(NC) mentioned above,
suggesting that the larger relative variances of the NC data are corre-
lated with these human mobilities. The scanned NC 14-day windows
for these lags range from March 2–15 to March 23 to April 5. Positive
correlations are essentially the increasing values of NC compared to
the increasing mean mobilities in parks, recreation, and transit sta-
tions. No significant values relative to pharmacy and workplaces are
seen inside the plateau mentioned above. Some anti-correlations are
observed for residential at lags (−21) to (−10) (inside the plateau),
a clear consequence of the increasing NC values and decreasing
Residential mobility. Finally, correlations are also observed for lags
around (−28) and (−25) for pharmacy, parks, recreations, and tran-
sit stations. The NC windows range from March 8–21 to 11–24.
Furthermore, lags from (−29) to (−30) display significant values for
pharmacy and residential with anti-correlations and transit stations
and workplaces with positive correlations.

2. Period of human mobility data that includes the

health emergency decree day (March 3–16)

Here, the period for which Fig. 4 contains the largest concen-
trated areas with significant values of DC for all human mobility,
going essentially from lags (−19 → 0) and starting on March 3.
The exception occurs for grocery and pharmacy, for which the area
is a bit smaller, occurring for lags (−13 → 0) and starting later,
around March 7. The delayed correlation for pharmacy is a conse-
quence of the later reaction of this human mobility to the emergency
decree, as observed in Fig. 2(a). Only residential presents a positive
correlation with the NC, and all other human mobilities are anti-
correlated to the increasing values of NC as time goes on. These
results demonstrate the crucial role of the emergency decree in
affecting the NC.

3. Period after the human mobility data includes the

health emergency decree day (>March 16)

In general, for later days that do not include the emergency
decree, Fig. 4 demonstrates (above the pink line) the existence of
many cases of (anti-)correlations for specific dates and lags, which
we will not discuss in full detail here. However, some vertical stripes
with significant values of DC are visible. To be more specific, stripes
with positive correlations in Figs. 4(c) and stripes with negative
correlations in 4(f). These stripes appear in intervals of 7 days, at
lags (−2, −9, −16, −23, −30). The most relevant stripes occur at the
lag (−2), while the stripes at the other lags are a consequence of
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FIG. 5. (a) Residential and (b) workplace mobility changes and NC for the whole
analyzed period. Light green boxes indicate the period for which the stripe at
lag (−2) has significant values of t0(DC). In other words, the dark green boxes
(hatched for the mobilities) with fixed lag (−2) are the 14-day analyzed time win-
dows with the strongest significant values of t0 (DC) inside the period determined
by the light green boxes. This period corresponds to the whole stripe observed
in Figs. 4(c) and 4(f) for lag (−2). The arrows indicate that the dark green boxes
move inside the light green boxes.

weekly periodicity in the data. At the lag (−2), the largest signif-
icant values of DC occur around May 29–30, being positive (dark
blue) for residential and negative (dark red) for workplaces. These
most significant values of t0(DC) are essentially repeated at the lags
(−9, −16, −30) for May 20, 10, and 2, respectively, meaning that
something relevant occurred inside the 14-day time windows of
residential workplaces around May 29–30.

For better visualization, the whole period of the data for the
corresponding mobility changes is plotted in Fig. 5(a) for residen-
tial and Fig. 5(b) for workplaces, together with NC. The green boxes
with fixed lag (−2) are the 14-day analyzed time windows with the
largest significant values of DC, namely, May 29, mentioned above.

B. Influence of maximal temperature

Figure 6 displays the t0(DC) between the 14-day time window
of Tmax and NC for lags varying in the interval (−30, 0) for sta-
tions Interlagos in Fig. 6(a) and Mirante de Santana in Fig. 6(b).
While significant positive values of DC increase from light to dark
blue, negative values increase from yellow to red. Not-significant
values of DC decrease from black to gray. We observe that regions
with significant positive values of DC in Fig. 6 (large blue region)
occur for lags from (−26 → 0) and days from February 26 to March
7. In Figs. 3(e) and 3(f), this corresponds to the increasing mean
values of Tmax inside the 14-day time window from February 26
to March 7. Furthermore, significant negative values of DC are
seen at lag (−12 → −9) and (−6 → 0) for the days from March
7 to 16 and are a consequence of the decreasing mean values of
Tmax in Figs. 3(e) and 3(f). Additional positive significant values
are observed for lags (−6 → 0) and days around March 17–22.
This corresponds to increasing mean values of Tmax inside the 14-
day time window in Figs. 3(e) and 3(f). These cases essentially say
that increasing/decreasing values of Tmax lead to significant corre-
lations to the increasing values of NC as time goes on. In general,

FIG. 6. For the period February 26 to June 15, this figure displays t0(DC) in colors
between Tmax and NC for lags varying in the interval (−30, 0) for (a) Interlagos
and (b) Mirante de Santana station.

many other significant (anti-) correlation values are observed in
Figs. 6(a) and 6(b) and occur approximately for the same days and
lags, independent of the chosen station.

V. CONCLUSIONS

This paper uses the distance correlation (DC) and the Pearson
correlation (ρ) to study the influence of meteorological and human
mobility data on the number of new cases (NC) of COVID-19
infected individuals in the city of São Paulo, Brazil. For this analy-
sis, we use the period between 26th February and 28th June of 2020,
related to the early stage of the disease in this city. Meteorological
data from the Interlagos and Mirante de Santana stations are used in
this study. Results are presented only for the most relevant results,
obtained after doing an extensive numerical analysis calculating Stu-
dent’s t-distribution t0(DC) (significant values of DC), and t0(ρ)

(significant values of ρ), between quantities like NC, TC, ND, and
TD, related to the spread of the COVID-19, with human mobility
data and meteorological variables like radiation, precipitation, wind,
and maxima, minima, and mean values of the temperature, pressure,
and humidity. We focused our presentation on the temporal relation
of DC and ρ between meteorological and human mobility data and
NC considering two distinct situations. The first one, presented in
Sec. III, analyzes the effects in the early stages of the disease in the
city of São Paulo. In the second situation, presented in Sec. IV, we
scanned the whole analyzed period keeping a constant lag between
the windows. Data are analyzed inside windows of 7 and 14 days.

In Sec. III, results are shown in Fig. 2 for the human mobil-
ity and in Fig. 3 for meteorological data Tmax and Pmax. Combining
human mobility and Tmax and Pmax, we found two relevant situa-
tions: (a) increasing (decreasing) values of Tmax induce significant
correlations (anti-correlations) between the maximal temperature
and NC; (b) most prominent significant values of DC and ρ occur at
lag (−17), meaning that fewer movements in recreation and transit
stations, and increasing values Tmax, have strong correlations with
the early stage of the disease; (c) at lags (−10, −11), we observe that
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larger changes in grocery and pharmacy, parks, and recreation, and
sudden change in Pmax are very correlated. Social behavior mostly
affects the earlier stage of the disease after 8 to 17 days. In the case
of Sec. IV, we use a 14-day time window, keep the lag fixed and
scan the whole analyzed period of 50 days, from February 26 to June
28. Relevant contributions are observed essentially for lags between
(0) and (−19) in the early stage of the disease. Days March 8–18
are affected by the human mobility changes, and days February 26
to March 15 are affected by Pmax and Tmax. Finally, the emergency
decree for human mobility and increasing/decreasing values of Tmax

have shown to present the most significant correlations with the NC.
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APPENDIX: CORRELATIONS AND SIGNIFICANT

VALUES

In this appendix, we show computational methodology to
determine the statistical measures of the distance correlation26 and
the Pearson correlation40 and also the procedure for the significance
test.

Distance correlation (DC). Consider a joint random sam-
ple (X, Y) = {(Xk, Yk) : k = 1, . . . , N} with X ∈ R

p and N ≥ 2, the
matrix, with i, j = 1, . . . , N, is defined by

Aij = aij − āi. − ā.j + ā.., (A1)

where aij = |Xi − Xj|p is the Euclidean distance; āi. = 1
N

∑N
j=1 aij and

ā.j = 1
N

∑N
i=1 aij are the arithmetic mean of the rows and columns,

respectively; and general mean is defined by ā.. = 1
N2

∑N
i,j=1 aij. Sim-

ilarly, with Y ∈ R
q, matrix Bij is obtained.

The empirical distance covariance for a joint sample (X, Y) is
defined by

σN(X, Y) =
1

N





N
∑

i,j=1

AijBij





1/2

. (A2)

The empirical distance variance for a sample X is

σN(X) =
1

N





N
∑

i,j=1

A2
ij





1/2

(A3)

and for Y,

σN(Y) =
1

N





N
∑

i,j=1

B2
ij





1/2

. (A4)

The distance correlation coefficient is given by

DCN(X, Y) =
σN(X, Y)

√
σN(X)

√
σN(Y)

, (A5)

with DC varying in the interval [0, 1], but we consider between −1
and +1 with DC = sgn(ρ)DC. For simplicity, let us consider the
notation DCN(X, Y) = DC.

Pearson correlation (ρ). Assuming we have a sample (X, Y)

= {(Xk, Yk) : k = 1, . . . , N} with N ≥ 2, the statistical measure can
be calculated using the expressions

SXX ≡
N

∑

k=1

(Xk − X)
2
, (A6)

SYY ≡
N

∑

k=1

(Yk − Y)
2
, (A7)

and

SXY ≡
N

∑

k=1

(Xk − X)(Yk − Y). (A8)

The Pearson correlation coefficient can be obtained by replac-
ing (A6)–(A8) in the expression

ρN(X, Y) =
SXY√
SXXSYY

, (A9)

resulting in

ρN(X, Y) =
∑N

k=1(Xk − X)(Yk − Y)
√

∑N
k=1 (Xk − X)

2
.
∑N

k=1 (Yk − Y)
2
. (A10)

Here, X = 1
N

∑N
k=1 Xk and Y = 1

N

∑N
k=1 Yk are the arithmetic means

of the samples.32,41 Its values belong to the range [−1, +1]. For
simplicity, let us consider the notation ρN(X, Y) = ρ.
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Student’s t-test (t0). Now follows the procedure for the signif-
icance test:

(a) Choose a critical value for the significance, α = 0.05.
(b) As the sample (X, Y) contains N pairs of data, we consult a table

of Student’s t-distribution42,43 to obtain the value of t(df) for the
chosen α value, where df = N − 2 are the degrees of freedom. As
shown in Sec. II, we use 7- and 14-day time windows. Therefore,
we have, respectively,

df = 7 − 2 = 5 ⇒ t(5) = 2.5706,

df = 14 − 2 = 12 ⇒ t(12) = 2.1788.

(c) Calculate t0 for DC or ρ by the relations44,45

t0(DC) = DC

√

N − 2

1 − DC2
or t0(ρ) = ρ

√

N − 2

1 − ρ2
. (A11)

(d) If t0 > t(df) or t0 < −t(df), the coefficients are considered sig-
nificant. Thus, we consider t0 > 2.5706 or t0 < −2.5706 and
t0 > 2.1788 or t0 < −2.1788 for the corresponding 7-day and
14-day time windows, respectively.
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