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ABSTRACT

In this work, we study the dynamics of a susceptible-exposed-infectious-recovered-susceptible epidemic model with a periodic time-
dependent transmission rate. Emphasizing the influence of the seasonality frequency on the system dynamics, we analyze the largest Lyapunov
exponent along parameter planes finding large chaotic regions. Furthermore, in some ranges, there are shrimp-like periodic structures. We
highlight the system multistability, identifying the coexistence of periodic orbits for the same parameter values, with the infections max-
imum distinguishing by up one order of magnitude, depending only on the initial conditions. In this case, the basins of attraction have
self-similarity. Parametric configurations, for which both periodic and non-periodic orbits occur, cover 13.20% of the evaluated range. We
also identified the coexistence of periodic and chaotic attractors with different maxima of infectious cases, where the periodic scenario peak
reaches approximately 50% higher than the chaotic one.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156452

Seasonality is a factor that influences many infections spread.
Namely, a time-dependent transmission rate leads to a non-
autonomous differential equations system, enriching the dynam-
ics and bringing features not observed in the autonomous
models. Causes beyond weather seasons, such as control mea-
sures and various environmental factors, may be related to tem-
poral variations in the transmission rate of infections. It is
known that the seasonality degree is relevant to changing the
epidemic system dynamics, as well as the average transmissiv-
ity. In addition, some diseases have distinct seasonality, such
as annual (e.g., rubella and measles), biannual (e.g., chicken-
pox), and irregular (e.g., mumps) peaks. In a general picture,
the seasonality frequency does not need to be linked to annual
cycles. In this way, we investigate how the seasonality parameters
affect the susceptible-exposed-infectious-recovered-susceptible
(SEIRS) model dynamics, emphasizing the role of seasonality
frequency.

I. INTRODUCTION

Mathematical models are a fundamental tool to understand
the epidemic dynamics,1 where approximations are made in order
to replicate the focus behavior and provide a better understanding.
Several diseases present periodic outbreaks,2 that are related to non-
constant transmission rates.3 In this way, deterministic systems with
constant transmission rate is not realistic.4 In addition to the bet-
ter description of real data, the inclusion of the non-constant term
leads to chaotic solutions.5 Non-autonomous epidemic models, with
periodic transmission rates, make it possible to model the behav-
ior of various seasonal diseases and present rich dynamics.6–8 The
chaotic solutions have a connection with reported data. For exam-
ple, time series of many epidemic diseases as measles,9 dengue,10

mumps,11 and others,12 can be chaotic. Such behavior is associated
with the seasonality present in recurrent infections.13,14 In order to
simulate the chaotic dynamic, a non-linear term is included in the
equations,2,15 which can be given, for example, by a square wave or
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sine function.14 The implications of chaotic regimes raise relevant
questions in epidemiology,16 where a consequence of the chaotic
dynamics is a reduction of forecast horizons for new outbreaks.1

From a mathematical modeling perspective, many of the classic epi-
demiological models have a compartmental structure, distributing
the host population into classes according to considered stages of
the disease spread evolution. Essentially, there is a compartment for
the population susceptible to infection, identified by the variable S,
in addition to another one for infectious individuals, identified by
I. There may be several other compartments, adapting the model to
the studied disease characteristics.17,18 It is assumed these groups of
individuals homogeneously distributed in the population, as well as
concentrations with different contagion probabilities do not occur.
Homogeneity of mean disease characteristics, such as duration of
infectious and latency, is also considered. The mathematical descrip-
tion of a compartmental epidemiological model encompasses
both: host population subdivision and transition rules between
the disease stages. Secondary infections usually are described by
means of an interaction term between populations in S and I
compartments.

Since the seminal work of Kermack and McKendrick,19 these
models have been employed to study many diseases spread.20–30 For-
mulations closer to the original proposals do not produce chaotic
dynamics,31–33 however, inclusion of multistrain34 or seasonal35

terms are able to reproduce chaos in a wide parameters range. Con-
sidering a susceptible-infectious-recovered (SIR) seasonal forced
model, Stollenwerk et al.36 investigated the dynamics of respiratory
diseases, like influenza. In this case, the seasonality is related to
the winter months. In their results, they found a route to chaotic
dynamics via period doubling bifurcations as a function of seasonal-
ity degree, similar to the bifurcation cascade found by Yi et al.35 in a
SEIR forced model. However, in the second case, in addition to the
chaotic dynamics, the authors obtained hyperchaotic solutions for
some parameter ranges. Completely, they investigated the dynam-
ical behavior by Poincaré sections and parameter planes assessing
Lyapunov exponents. Another way to enrich the dynamics is by
the time-dependent modulation of the transmission rate,37 where
the system exhibits multistability, by the coexistence of chaotic and
periodic attractors for some seasonality degrees.

Bifurcation cascades as a function of various parameters in
compartmental models are found in other works. Considering a
SIR forced model with multistrain, Kamo and Sasaki38 showed that
the cross-immunity exerts significant influence on the dynamical
behavior. For two strains, multiple attractors coexists, from which
the population can switch by the introduction of small random noise
in seasonal transmission. However, the complex dynamics also is
present in models with one strain. In a SEIRS seasonal forced frame-
work, Gabrick et al.39 showed multistable dynamics between chaotic
and periodic attractors. To evidence this, they generated hysteresis-
type bifurcation diagrams as a function of the recovery and average
contact rates, seasonality degree, inverse of immunity, and latent
periods. Numerical simulations showed coexistence of chaotic and
periodic attractors depending on the parameter range. Furthermore,
by investigating the dynamical behavior as a function of the inverse
of the latent period, it is possible to associate critical transitions with
tipping points.40 Once crossed this threshold, the spread diseases
become chaotic.

A common characteristic of the works mentioned above is a
period doubling route to chaos given as a function of the seasonality
degree. However, the authors did not take into account the effects
of varied seasonality frequency. Usually, seasonality is attributed to
environmental factors and, as expected, it is very common to be
related to the weather seasons throughout the year.2 These seasonal
forcings lead to oscillations in the infection transmission rate, being
conditioned by changes in the contact rate between infectious and
susceptible individuals, the circulation of infectious agents, and their
infectiousness. In this study, we consider different frequencies for
a seasonality function, focusing on the influence of this parameter
on the system dynamics. This easing of the oscillation frequency
beyond the usual seasonality, together with its amplitude, allows us
to model diverse disturbances in the infection spread.

First, we obtain the disease-free (DFE) solution, which is
defined by the infection eradication in the host population. The sta-
bility of this solution is associated with the basic reproduction ratio17

(R0). Due to the non-autonomous nature of the differential equa-
tions system that describes the model, R0 is also time-dependent
and oscillates between two extremes, bounded according to season-
ality degree. In the autonomous case, for R0 < 1, the infection is
extinguished, and otherwise, if R0 > 1, then the infection grows
spreading in the host population. However, for non-autonomous
epidemiological systems, this criterion is not directly applicable,
requiring additional and more sophisticated evaluations41 to deter-
mine the DFE solution stability. To analyze the system dynamics,42

we compute the Lyapunov spectrum along parameter planes. Our
results show a wide range of chaotic behavior in all four evaluated
planes. In some regions, there are shrimp-like periodic structures43

immersed in the chaotic bands. In addition, we find multistability.
The orbit resulting from the system evolution depends on the initial
conditions.44–46 Even in periodic scenarios, the predictability of the
final state is hard to be determined.47 Also, for the same parametric
configurations, we highlight the coexistence of periodic and chaotic
attractors in scenarios where the maximum number of infections is
higher in the periodic ones.

This article is organized as follows: In Sec. II, we explain the
SEIRS model and the system formulation by its variables and param-
eters. After, we develop a normalized version of it and include
the seasonality term, which is used throughout the study. We also
present the analytical DFE solution and the time-dependent basic
reproduction ratio as a function of the system parameters. In Sec. III,
we present numerical results, starting with an analysis of Lyapunov
exponents along parameter planes, then to attraction basins evidenc-
ing the multistability. Complementarily, we compute the proportion
of initial conditions that evolve to periodic dynamics along the
parameter plane formed by the average transmission rate and the
seasonality frequency. Finally, Sec. IV is devoted to a brief summary
of the main results and our conclusions.

II. MODEL

Typically, presented as a system of four coupled first-order
ordinary differential equations, SEIRS model describes the disease
spread in a host population subdivided into four compartments,
which are identified as the dynamic variables S, E, I, and R, each
corresponding to a portion of the population at different infection
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FIG. 1. Illustrative scheme of the SEIRS model. The host population is divided
into compartments according to the stages of infection. System (1) dynamic vari-
ables refer to states: susceptible (S in green diamond); exposed (E in yellow
triangle); infectious (I in red triangle); and recovered (R in the blue triangle). Arrows
connecting compartments indicate the direction of transition between them, with
the respective rates. Natural mortality (µ) just decreases the population allocated
to each compartment.

stages. Given in the form48,49

dS

dt
= ηN + δR −

(

β
I

N
+ µ

)

S,

dE

dt
= β

SI

N
− (α + µ)E,

dI

dt
= αE − (γ + µ)I,

dR

dt
= γ I − (δ + µ)R,

(1)

this system models the population transitions between its compart-
ments. Note that the contagion occurs only through interaction
between infectious (compartment I) and susceptible (compartment
S) populations. In order to obtain epidemic scenarios, it is neces-
sary to consider an initial condition with already exposed or infected
individuals. A latency interval is considered, for which a portion
of the population exposed (compartment E) to the pathogen is not
yet capable to spread the infection. Once an infectious period has
elapsed, individuals in I acquire temporary immunity passing to the
recovered compartment (R), where they remain until become sus-
ceptible to infection again. The host population size is the sum N
= S + E + I + R. An illustrative scheme of this transition dynamics
between compartments is shown in Fig. 1.

The six parameters of the model correspond to Refs. 41, 48,
and 49: host population birth rate (η); natural death rate (µ);
transmission rate (β); mean latent time after the contagion (1/α);
mean infectious period (1/γ ), where γ is known as recovery rate;
and mean duration of immunity consequent to infection (1/δ). All
parameters are non-negative real numbers.

A. System normalization and inclusion of seasonality

We seek a mathematical formulation of the model that allows
us to study its dynamics independently of the population size. Then,
without loss of generality, we perform the following transformation
of variables:50,51

S 7→ Ns; E 7→ Ne; I 7→ Ni; R 7→ Nr, (2)

where lowercase ones describe the normalized quantities and the
total population N > 0. Adding the four equations of system (1), by
means of algebraic manipulation, we obtain an expression for the
exponential growth of the host population, being

dN

dt
= (η − µ)N. (3)

From this fact and the relations proposed in (2), considering a
generic variable X = Nx, we obtain

dX

dt
=

d(Nx)

dt
= N

dx

dt
+ x

dN

dt
. (4)

Thus, we get the following transformation for the time derivatives:

dX

dt
= N

{

dx

dt
+ (η − µ)x

}

, (5)

dx

dt
=

1

N

{

dX

dt
− (η − µ)X

}

, (6)

where the uppercase X is a non-normalized system variable and the
lowercase x is its normalized counterpart. Operating these transfor-
mations and, additionally, taking into account the constraint s + e
+ i + r = 1, we reduce the model to a system of three equations,
given by

ds

dt
= (δ + η)(1 − s) − βsi − δ(e + i),

de

dt
= βsi − (α + η)e,

di

dt
= αe − (γ + η)i,

(7)

whose form is identical to that arising from the constant population
approximation39 (η = µ).

Dynamic variables normalized according to (2) represent frac-
tions of the host population in each compartment, such that
s, e, i, r ∈ [0, 1], respecting the constraint between them. Thus, sys-
tem (7) allows simulating epidemic dynamics even in non-constant
population scenarios.51

In order to model a seasonal behavior of the transmission rate,
we replace the constant parameter β by the periodic function9

β(t) = β0 [1 + β1 cos(ωt)] , (8)

such that β(t) oscillates sinusoidally around the average transmis-
sion β0, with a peak-to-peak variation equal to 2β0β1. Throughout
the text, we refer to β1 as seasonality degree. To preserve the mean-
ing of the epidemiological model, β(t) ≥ 0 is required, hence β0 ≥ 0
and β1 ∈ [0, 1]. In this study, we did not investigate the case β0 = 0,
since there is no spread of infection. Still, interested in the season-
ality effects, for numerical simulations, we consider 0 < β1 ≤ 1 and
ω > 0. We extend the idea of seasonality to periodic oscillations not
necessarily corresponding to weather seasons, not even equivalent to
integer multiples or submultiples of 1 year. Here, we use this term in
a broader sense, referring to periodic oscillating transmission rates
with any frequency.
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B. Disease-free equilibrium

Disease-free equilibrium is so named to signify the disease
disappearance in the host population. Assuming the fixed-point
condition

ds

dt

∣

∣

∣

∣

PDFE

=
de

dt

∣

∣

∣

∣

PDFE

=
di

dt

∣

∣

∣

∣

PDFE

= 0, (9)

at the point PDFE(s∗, e∗, i∗) to system (7), we can obtain the DFE
solution17 directly solving the equations

0 = (δ + η)(1 − s∗) − βs∗i∗ − δ(e∗ + i∗), (10)

0 = βs∗i∗ − (α + η)e∗, (11)

0 = αe∗ − (γ + η)i∗. (12)

We have that s∗, e∗, and i∗ are coordinates of the fixed point,
therefore, constant, and β = β(t) = 0 if and only if β1 = 1 and
t = (2k + 1)π/ω, with k ∈ Z and β0, ω > 0. Combining these facts
with both Eqs. (10) and (11) implies s∗i∗ = 0 and results e∗ = i∗ = 0
in Eqs. (11) and (12), indicating the infection extinction. As for s∗,
there are two distinct cases: the first for δ + η > 0, which gives s∗
= 1 in Eq. (10); the second occurs if δ = η = 0, in this case s∗
∈ [0, 1] depends on the initial conditions. The second case is more
restrictive: if η = 0, the model does not consider births and the pop-
ulation in non-normalized system (1) decays exponentially with the
rate µ, according to Eq. (3); while δ = 0 represents that infected
individuals acquire permanent immunity after the infectious period,
reducing the system to a SEIR model. Note that for β as a function
of time, DFE is the only fixed-point solution.

The stability of this solution is related to the basic reproduction
ratio R0.17 For autonomous systems, this is a simple linear stabil-
ity analysis based on the eigenvalues of the system’s Jacobian matrix
calculated in the DFE point. However, in this non-autonomous case,
R0 is time-dependent and the eradication of infection may depend
on the maximum value maxt {R0(t)} or, specifically, related with
the basic reproduction ratio obtained for the long-term average
system.41

C. Basic reproduction ratio

The contagion rate is associated with the prevalence or decline,
and consequent future disappearance, of the infection in a host pop-
ulation. The system evolution to any of these scenarios is determined
by the basic reproduction ratio, which, for the normalized SEIRS
model according to Eq. (7), is given by

R0 = αβ(t)/ [(α + η)(γ + η)] , (13)

in the same way as the autonomous SEIRS,48,49 but including an
explicit time dependency in β(t). R0 oscillates periodically in the
range

R
−
0 ≤ R0 ≤ R

+
0 , (14)

being the edge values defined as

R
±
0 :=

αβ0(1 ± β1)

(α + η)(γ + η)
. (15)

We said that R0 is strictly greater than unity when R
+
0

≥ R
−
0 > 1 and, on the other hand, refer it to be strictly less than

FIG. 2. Trajectories evolving from IC to the attractors in the autonomous and
non-autonomous cases: pink spiral converging at PEE (red dot) in the autonomous
case; light blue curve converging to the periodic attractor (blue line) in the non-au-
tonomous case. We use the fourth-order Runge–Kutta numerical integration
method with a fixed step of 10−3. Transients smaller than 5 × 105 integration
steps being sufficient for the trajectories convergence to the attractors with great
accuracy.

unity if R−
0 ≤ R

+
0 < 1. For autonomous compartmental epidemio-

logical models, it is known that R0 < 1 leads to the eradication of
infection.15 However, since the system is non-autonomous, specif-
ically with the transmission rate given as a function of time, a
sufficient condition for convergence to the DFE solution is the long-

term basic reproduction ratio R0 < 1, which is calculated over the
long-term average of the system evolution.41 Also, the point PDFE

is asymptotically stable if R
+
0 < 1, i.e., verifying the parameters

relation β0(1 + β1) < (α + η)(γ + η)/α.

D. Around endemic equilibrium

The autonomous SEIRS model, with β ≡ β0 [equivalent to
β1 = 0 in Eq. (8)], presents a second equilibrium state, denoted
by endemic equilibrium point PEE(se, ee, ie), in which there is no
extinguishes the infection in the host population.48 In the non-
autonomous case addressed here, the trajectories can oscillate
around this point. We illustrate this behavior in Fig. 2. Arises from
the fixed point condition, we obtain

se =
1

Rc

; ee =
γ + η

αβ0

ε; ie =
ε

β0

, (16)

where Rc is the constant basic reproduction ratio, with β ≡ β0 in
Eq. (13), and

ε :=
(δ + η)(Rc − 1)

1 + Rcδ

β0

[

1 +
γ+η

α

] . (17)
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Note that, to recover a SEIR scheme from system (7), simply set
δ = 0, resulting in the PEE for a scenario with permanent immunity.6

Considering the autonomous model, it is necessary Rc > 0 for PEE

to be attractive.6,7 To exemplify the convergence toward endemic
equilibrium, we numerically integrate the autonomous system with
the following parameters: β0 = 280, α = γ = 100, δ = 2.5 × 10−1,
and η = 2 × 10−2. In this configuration, Rc ≈ 2.799, se ≈ 3.573
× 10−1, and ie ≈ 1.735 × 10−1. Figure 2 shows the projection of
the system’s trajectories onto the i × s plane, with PEE in red and
a periodic orbit (blue line), which results from the evolution of the
non-autonomous model with β1 = 0.1 and ω = 2π . Pink and light
blue curves are the transient trajectories spiraling from the initial
condition IC(0.3564, 0.0032, 0.0031) (highlighted point) to PEE and
the periodic attractor, respectively.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we numerically investigate the SEIRS model
dynamics emphasizing the influence of seasonality, included accord-
ing to Eq. (8). To evolve system (7), we employ the fourth-order
Runge–Kutta integration method with a fixed time step of 10−3

and consider 5 × 105 integration steps as transient. Our simula-
tions indicate that these settings are sufficient for the convergence
of the trajectory and tangent vectors.52,53 In particular, we check
the minimum transient required in parameter planes with grids of
200 × 200 points, at 8 transient values from 103 to 5 × 106 inte-
gration steps. We found that 5 × 105 steps are enough. We also
check this quantity for the other results. The time unit in the sim-
ulation is one year and the parameters have unit year−1, except β1

which is dimensionless and [ω] ≡ rad/year. We vary the parameters
over wide intervals, aiming to cover characteristic values of several
infections, for example, measles (α = 38.5 and γ = 100),54 influenza
(α = 228.12 and γ = 125),55 and others.56,57 We start by analyzing
the Lyapunov exponents on the parameter planes shown in Sub-
section III A. Next, in Subsection III B, we highlight and study the
system’s multistability.

A. Lyapunov exponents analysis

In the present study, the system dynamics characterization is
made mainly by the largest Lyapunov exponent. We verify that the
SEIRS model, under the influence of a seasonal transmission rate,
can evolve both to chaotic and periodic trajectories, depending on
the parameters and initial conditions (see Sec. III B). To investigate
the effects of seasonality frequency ω, with period T = 2π/ω, in the
system dynamics, we compute the Lyapunov spectrum along param-
eter planes [·] × ω, where [·] is a model parameter. Previously, we
rewrite the system (7) in autonomous form, thus, we perform the
transformation ωt 7→ τ ∈ [0, 2π) and include the respective differ-
ential equation dτ/dt = ω. The Lyapunov spectrum is obtained by
evolving the system and its respective linearized equations using the
algorithm described by Wolf et al.58 and the exponents sorted in
descending order: λ1 ≥ λ2 ≥ λ3 ≥ λ4. We adopt the initial condi-
tion (s0, e0, i0, τ0) = (0, 999, 0, 0, 001, 0) and consider 106 integration
steps, after discarding the transient. Without prejudice, throughout
the text τ0 = 0 will be omitted.

We analyze four parameter planes calculated on uniform grids
of 1000 × 1000 points, displayed in Figs. 3 and 4. Transmissivity
oscillation frequency is on the horizontal axis, which is evaluated
in the range 0 < ω ≤ 6π . The two largest Lyapunov exponents are
represented in color: chaotic regions with 0 < λ1 ≤ 1.2 (gradient
from yellow to red); in periodic ones (λ1 = 0) it shows −1 ≤ λ2 < 0,
starting from white (λ2 = −1), passing through shades of cyan to
black color (λ2 = 0).

Figure 3 illustrates two planes formed by combining ω with
typical epidemiological model parameters. In Fig. 3(a), we analyze
the interval 0 < α ≤ 400 on the vertical axis being fixed: γ = 100,
η = 0.02, δ = 0.25, β0 = 270, and β1 = 0.28. With this parameter
setting 0 < R0 ≤ 3.455, such that for α < 0.008 the basic repro-
duction ratio is strictly less than unity. In the interval 0.008 < α

< 0.021, we have 0.563 < R
−
0 < 1 and R

+
0 > 1. Complementarily,

we obtain 1 < R0 ∀ t with 0.021 < α and, given the α axis discretiza-
tion in steps of 1α = 0.4, in Fig. 3(a), we only observe results with
the basic reproduction ratio strictly greater than unity. The evolu-
tion of the system to chaotic dynamics is predominantly determined
by the seasonality frequency. Seasonal cycles of less than 6 months
lead predominantly to periodic behavior, see the wide dark cyan
band from ω = 4π , with small chaotic regions inserted there. For
ω < 4π approximately vertical bands occur, revealing that latency
intervals smaller than ≈ 1.3 days, corresponding to α > 280, are
of little relevance to the dynamics. Next to α = 100 and ω = 2π ,
there is a shrimp-like periodic structure, also seen around ω ≈ π .
Such parameter values correspond to the latency ≈ 3.6 days and sea-
sonality with periods T = 1 and T = 2 years, respectively. Shrimps
recurrently appear in parameter planes of paradigmatic non-linear
systems59–62 from a peculiar arrangement of two saddle-node bifur-
cation curves and routes to chaos via period doubling.63,64 The
presence of these structures is evidence of rich dynamics and this
vicinity is known to display shrimp cascades forming a repeating
pattern with self-similarity.63,65

In Fig. 3(b), we show the plane γ × ω, with 50 < γ ≤ 250,
α = 100 and the other parameters are kept equal to those used in
panel (a). For this system configuration, we calculate R0 > 1 ∀ t
with γ < 194.4. However, in the range 194.4 < γ ≤ 250, we have
0.777 < R

−
0 < 1 and R

+
0 > 1. Shrimp-like periodic structures are

observed in the vicinity of ω = π and ω = 2π , with γ ≈ 100. These
periodic regions embedded in the chaotic bands are related to those
in the α × ω plane. For the adopted parameters, it can be observed
that the dynamics is more influenced by the infectious period than
the latent one. For lower recovery rates, in the range 50 < γ ≤ 100
corresponding to infectious periods between ≈ 7.3 and 3.6 days,
chaotic bands extend to ω ≈ 3.5π . While for periods smaller than
≈ 1.5 days, referring to γ ≈ 250, the chaotic bands compress into
the interval 0 < ω ≤ π . Thus, for small infectious periods, chaotic
trajectories occur only for seasonality with T ≥ 2 years. Similar to
what is observed in panel (a), from ω ≈ 3.5π (T < 6.9 months) the
analyzed parameter planes present a wide range of periodic dynam-
ics. Cyan area taken in the intervals 50 < γ < 75 and 0 < ω ≤ 6π
corresponds to more stable periodic orbits, i.e. these are less sensi-
tive to small disturbances than those obtained for higher recovery
rates, notably the dark cyan region with γ → 250.

As seen, the frequency of seasonal cycles significantly affects
the SEIRS model dynamics, in addition to this factor, we highlight
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FIG. 3. Parameter planes discretized in uniform grids of 1000 × 1000 points. Lya-
punov exponents in color, according to legend. Where λ1 = 0, we display λ2.
Chaotic regions in the gradient from yellow to red, periodic ones in cyan shades.
The horizontal axis shows the seasonality frequency. (a) The inverse of the latent
period on the vertical axis. Intervals of chaotic regions in bands approximately
parallel to the α axis reveal the greater relevance ofω in the system evolution. (b)
Recovery rate on the vertical axis. The arrangement of the chaotic bands shows
γ as a determining factor for the dynamics. Shrimp-like periodic structures close
to α = γ = 100 for the frequencies ω ≈ π and ω ≈ 2π .

the effects of the mean transmission rate and the seasonality degree.
Figure 4 display two planes with these parameters on the vertical
axes, we set α = γ = 100 and the other values equal to those used in
Fig. 3, being in panel (a) β1 = 0.28 and in (b) β0 = 270. Figure 4(a)
comprises the interval 100 < β0 ≤ 600 on the vertical axis, in it we

FIG. 4. Parameter planes discretized in uniform grids of 1000 × 1000 points. Lya-
punov exponents in color, according to legend. Where λ1 = 0, we display λ2.
Chaotic regions in the gradient from yellow to red, periodic ones in cyan shades.
The horizontal axis shows the seasonality frequency. (a) Mean transmission rate
on vertical axis. Diagonal periodic bands reveal the joint relevance of β0 and ω

to the system evolution. Highlighted points P1(4π , 456) and P2(2π , 270) ana-
lyzed in Subsection III B Figs. 5 and 6. (b) Seasonality degree on the vertical axis.
Emphasized the segment b : β1 = 0.2, with 0 < ω ≤ 6π (dashed line) and the
point P3(4.25π , 0.2), for which we analyze bifurcation diagrams and attraction
basins, respectively (see Fig. 8).

see a periodic region around ω = 2π and β0 = 300 immersed in a
chaotic band. This shrimp-like structure corresponds to that shown
in Fig. 3(b). Mean transmission rate increasing (β0 → 600) is associ-
ated with the occurrence of very stable periodic orbits (λ2 < −0.5).
On the other hand, also for large transmissivities, with 300 < β0
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< 550 and around ω = 4π , the chaotic trajectories occur with the
highest values of λ1 (colors from orange to red). In the β0 × ω plane
evaluated section, the periodic bands are interspersed diagonally
with the chaotic ones, such that the system evolution depends both
on the mean transmission rate and on its frequency. In this range
of β0, the basic reproduction ratio varies between R

−
0 ≈ 0.720 and

R
+
0 ≈ 7.677. For values of β0 > 138.944 results R0 > 1 ∀ t. In the

interval 100 < β0 < 138.944, we get 0.720 < R
−
0 < 1 and R

+
0 > 1.

Points P1(4π , 456) and P2(2π , 270), highlighted in Fig. 4(a), are
targets of the multistability analysis shown in Subsection III B.

Figure 4(b) illustrates the influence of β1 in the SEIRS model
dynamics. We consider the interval 0 < β1 ≤ 1 on the vertical axis,
where the transmission rate oscillates from the minimum β0(1 − β1)

to the maximum β0(1 + β1) within one period T. Here, 0 < R0

< 5.398, where R0 is strictly greater than unity for 0 < β1 < 0.629.
In the seasonality degree range 0.629 < β1 ≤ 1, the edge values are
0 ≤ R

−
0 < 1 and R

+
0 > 1. We observe a pattern of chaotic bands

interspersed with periodic ones, similar to that displayed in Fig. 3(a).
However, β1 is more relevant to the dynamics than the parameter
α, increasing its influence to higher frequencies of seasonal cycles
from ω ≈ π . In Subsection III B, we evidence the system multista-
bility along the segment highlighted in β1 = 0.2 (magenta and white
dashed line) and for the point P3(4.25π , 0.2).

B. Multistability and coexistence of chaotic and

periodic attractors

System (7) with periodic β ≡ β(t) presents multistability,39

i.e., different orbits can occur for a given parametric configuration,
depending on the initial condition.45 Given this feature, in addition
to the unpredictability due to chaotic trajectories, the coexistence of
chaotic and periodic attractors is observed, as well as distinct peri-
odic orbits. Additionally to the varied dynamic behaviors, slightly
different starting conditions can lead to more pronounced peaks in
the infectious curve. In this subsection, we investigate multistability
in the model, especially for the parameter values highlighted in Sub-
section III A. All basins of attraction shown below employ a uniform
grid plane discretization of 1000 × 1000 points.

Figure 5 exhibits two attractors projected in the plane i
× s, one chaotic (magenta line) and other periodic (blue line),
both at the point P1(ω, β0) = P1(4π , 456) shown in Fig. 4(a).
The chaotic attractor is generated from the initial condition C1

= (0.990, 0.001, 0.009) and shows the maximum infectious popu-
lation proportion imax ≈ 0.02. For the periodic one, we adopt the
initial condition C2 = (0.998, 0.001, 0.001), resulting in the max-
imum value imax ≈ 0.032. The periodic case recurrently leads to
peaks of infections ≈ 50% greater than the maximum observed in
the chaotic situation. If, on the one hand, predictability facilitates
the planning of epidemic containment protocols, on the other hand,
a greater number of cases can cause harm to public health. How-
ever, both chaotic and periodic orbits present the same time average
of cases 〈i〉t ≈ 2.1 × 10−3.

For the point P2(ω, β0) = P2(2π , 270), also displayed in
Fig. 4(a), we perform a scan of initial conditions and distinguish
the obtained orbits between chaotic and periodic ones. To that end,
we uniformly vary the initial values of infectious (i0) and exposed
(e0). Figure 6 illustrates the plane e0 × i0 with 0 < e0, i0 ≤ 1 and

FIG. 5. Plane i × s projection of attractors obtained for the point P1(4π , 456),
highlighted in Fig. 4(a). Chaotic attractor (magenta line) obtained from the ini-
tial condition C1 = (0, 990, 0, 001, 0, 009) and periodic one (blue line) resulting
from the initial condition C2 = (0.998, 0.001, 0.001). For the chaotic case, the
maximum value of infectious agents is imax ≈ 0.02, in the periodic one it is
imax ≈ 0.032.

s0 = 1 − (e0 + i0). Basins are identified in colors, where pairs (i0, e0)

that lead to chaotic attractors are in black and those that lead to
periodic behavior are in blue. The gray region is outside the model
domain. We find ≈ 53.5% of valid initial conditions (outside the
gray region) leading to chaotic behavior. Pairs (e0, i0) that evolve
to periodic attractors have a sum 0.471 ≤ e0 + i0 ≤ 0.824 and, con-
sequently, 0.176 ≤ s0 ≤ 0.529. These proportions of infectious and
exposed individuals are very high for the initial phase of an epi-
demic, even so, when it comes to dynamic analysis, these data help
to understand the basins of each behavior and are especially valuable
for the development of epidemic control protocols.

Similar to what is verified for the point P1, for P2, we find a peri-
odic orbit with a higher peak of infectious agents than the chaotic
one, as shown in Fig. 7. The chaotic attractor (magenta) is obtained
from the same initial condition C2 adopted in Fig. 5, the periodic
one (blue) results from the condition C3 = (0.399, 0.001, 0.6). The
maximum infectious case in the chaotic scenario is imax ≈ 0.037,
although in the periodic trajectory, we have imax ≈ 0.048. Both sce-
narios present approximately the same time average of cases, being
〈i〉t ≈ 1.7 × 10−3.

Figure 8(a) concatenates 100 bifurcation diagrams along seg-
ment b : β1 = 0.2, in the frequency interval 0 < ω ≤ 6π uniformly
discretized in 1000 points, see dashed line in Fig. 4(b). For each
value of ω, 100 trajectories are generated from randomly assigned
initial conditions in the interval 0 < e0, i0 < 1, drawn in a uni-
form distribution and respecting the restriction e0 + i0 ≤ 1, being
s0 = 1 − (e0 + i0). Once the transient has been discarded, we con-
tinue to evolve the system for 106 integration steps and select the
local maxima ip (peak value) in the infectious time series over the
last 7.5 × 104 steps, equivalent to the last 75 years in simulation. In
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FIG. 6. Plane e0 × i0 of initial conditions discretized in uniform grid of 1000
× 1000 points. Parametric configuration of point P2(2π , 270). In gray, we iden-
tify the region outside the model domain. Of all evaluated valid initial conditions,
≈ 46.5% evolve to be periodic orbits (blue bands) and the remaining ≈ 53.5%
leads to chaotic ones (black color).

this way, we construct a set Ik(ω) of the local maxima in i(t) curves,
for given ω and the k-th initial condition. If there are periodic attrac-
tors, it can occur Ij(ω) = Ik 6=j(ω), reducing the total amount of sets.
Given the k-th initial condition Ck, we have

ip(ω; Ck) := i(tp, ω; Ck), (18)

being

di

dt

∣

∣

∣

∣

tp

= 0 and
d2i

dt2

∣

∣

∣

∣

tp

< 0. (19)

Then, we define these sets as

Ik(ω) :=
{

ip(ω; Ck) : tp ∈ T
}

, (20)

where T is the evaluation time interval. Complementarily, we iden-
tify each different set through its maximum value

imax(ω; Ck) := max{Ik(ω)}. (21)

In Fig. 8(a), we plot all the distinct Ik(ω) sets. By means of
imax it is possible to distinguish different orbits that occur for the
same parametric configuration, where we use the color code for such
identification. This distinction is effective between periodic orbits
and is also useful for highlighting points corresponding to smaller
chaotic attractors from larger ones. Figure 8(a) displays the coexis-
tence of distinct chaotic orbits in the band starting at ω ≈ 2.5π and
goes to ω ≈ 3π , where chaotic attractors occur with imax ≈ 0.030
(orange dots) and others with imax ≈ 0.020 (cyan and teal dots),
depending on the initial conditions. For higher frequencies, we
observe a vast coexistence interval of periodic attractors, for exam-
ple, in ω = 4.25π (vertical dashed line), there are 3 periodic orbits:
period 1, with imax ≈ 0.003 (black color); period 3, with imax ≈ 0.012

FIG. 7. Plane i × s projection of attractors obtained for the point P2.
Chaotic attractor (magenta line) results from the initial condition C2 = (0.998,
0.001, 0.001), periodic one (blue line) arising from C3 = (0.399, 0.001, 0.6). The
chaotic presents a maximum of infectious imax ≈ 0.037 and the periodic one has
imax ≈ 0.048.

(teal color); and period 2, with imax ≈ 0.030 (orange color). High
peaks of infectious are obtained for ω ≈ 1.5π and ω ≈ 0.7π , where
ip ≈ 0.04, i.e., the local maxima in the infectious time series reach,
periodically, nearly 4% of the host population.

The coexistence of orbits with such a discrepancy in the max-
imum value of infectious, as seen in Fig. 8(a), evidencing the initial
condition’s influence not only on the system dynamic regime but
also determining the system evolution to scenarios with a greater or
lesser number of infected individuals, arriving at the difference in
the order of magnitude. Figure 8(b) displays the attraction basins
of the three listed periodic attractors for ω = 4.25π , corresponding
to the point P3(ω, β1) = P3(4.25π , 0.2), shown in Fig. 4(b). Initial
conditions on plane e0 × i0 are in the same intervals and grid con-
figuration as in Fig. 6. The color code used to identify the 3 different
basins is similar to the one employed in the bifurcation diagram,
there is a slight difference in color tone to facilitate visualization.
Pairs (i0, e0) that lead to period 1 orbit (with imax ≈ 0.003) are in
black color; those leading to the period 3 orbit (with imax ≈ 0.012)
are in teal color; and those that evolve to period 2 orbit (with imax

≈ 0.030) are in orange color. The gray region contains the pairs out-
side the normalized system domain (prohibited region). Notable are
the alternating diagonal bands of the attraction basins. The high-
light region in the bottom left corner, bounded by the white and
magenta dashed box, is amplified in Fig. 9(a) followed by two mag-
nifications, in which the self-similarity and intricate nature of the
attraction basins obtained for P3 is evident.

The succession of magnifications shown in Fig. 9 starts in the
region marked in Fig. 8(b) and proceeds to scan intervals of ini-
tial conditions one order of magnitude smaller per panel, with the
area covered in each successor being 10−2 times that of the previ-
ous one. Color code is the same as Fig. 8(b), identifying the imax of
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FIG. 8. (a) Concatenated bifurcation diagrams of 100 initial conditions for eachω

value along segment b1, dashed line in Fig. 4(b). The horizontal axis is discretized
into 1000 equidistant points. Plotted all distinct Ik(ω). Color code for imax(ω;Ck)

distinguishing attractors, according Eq. (21). For ω = 4.25π (dashed line) there
are 3 periodic attractors, this point corresponds to P3(4.25π , 0.2) in Fig. 4(b).
(b) Basins of attraction in the initial conditions plane e0 × i0 discretized in the
uniform grid of 1000 × 1000 points, with s0 = 1 − (e0 + i0) and parametric con-
figuration for P3. The gray region is outside of the normalized system domain.
Dashed square in the bottom left corner is magnified in Fig. 9(a).

the attractor resulting from each pair (e0, i0). Table I presents the
area percentage occupied by each basin of attraction for all three
evaluated ranges of initial conditions.

First, in Fig. 9(a), we evaluate the initial conditions inter-
val 0 < e0, i0 ≤ 10−1, where 46.75% of the points lead to smallest

FIG. 9. Attraction basins in a succession of magnifications. Axes discretized in
uniform grid of 1000 × 1000 points. Color code identifies the maximum infectious
value imax of each attractor, as defined in Eq. (21). (a) Magnification of the delim-
ited region in Fig. 8(b), with 0 < e0, i0 ≤ 10−1. Box in bottom left corner enlarged
on panel (b) 0 < e0, i0 ≤ 10−2. In turn, the highlighted box is magnified in
(c) 0 < e0, i0 ≤ 10−3.
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TABLE I. Area percentage occupied by each basin of attraction for the three evalu-

ated regions. First column identifies the panel in Fig. 9, and the second column informs

the respective range of initial conditions.

imax

Panel e0, i0 ∈ 0.003 0.012 0.030

a (0, 10−1] 46.75% 47.78% 5.47%
b (0, 10−2] 40, 32% 44, 02% 15, 66%
c (0, 10−3] 32, 39% 65, 97% 1, 64%

imax orbit and 5.47% of them belong to the attraction basin of the
periodic attractor with highest infectious peak. The box at the bot-
tom left corner is enlarged in panel (b), where 0 < e0, i0 ≤ 0, 10−2.
In this region, the basin of attraction corresponding to imax ≈ 0.003
occupying 40, 32% of the total area, and the highest infectious peak
attractor results from 15, 66% of the initial conditions. Panel (c)
shows the last magnification, performed in the interval 0 < e0, i0
≤ 0, 10−3, being 65.97% of the area occupied by the basin of period
3 attractor, with the maximum of infectious ≈ 0.012. In this sam-
ple, only 1.64% of the total area leads to imax ≈ 0.030. Given the
discretization and intervals of both axes in Fig. 9(c), one-point vari-
ation, being the increment of 10−6 either vertically or horizontally,
represents a difference of 1 individual in 1 million of the host pop-
ulation for the initial condition of infectious or exposed. Resulting
in significantly different maximum infectious values for this small
change, with greater sensitivity for e0 and i0 of smaller orders of
magnitude.

Finally, in Fig. 10, we obtain a fraction of initial conditions
that result in periodic orbits for points along the parameter plane
β0 × ω. We use the same intervals and parametric configuration of
Fig. 4(a). For each pair (ω, β0), we draw 100 equiprobable initial
conditions in the interval 0 < e0, i0 < 1, respecting the constraint
e0 + i0 ≤ 1. Similar to what is made to obtain the bifurcation dia-
gram in Fig. 8(a), starting from the k-th initial condition Ck, we
evolve the system by 106 integration steps even after the transient
and evaluate only the last 7.5 × 104 trajectory points. In this section
of the time series, we select the local maxima in the s(t), e(t) and i(t)
curves and check the periodicity with an accuracy of 10−6. Period 12
is considered the maximum. We do not focus on determining the
period of each orbit, but just identify if it is periodic or not and, sub-
sequently, compute the fraction ρper(ω, β0) of initial conditions that
lead to periodic behavior.

In the sense explained above, Fig. 10 consolidates information
from 100 parameter planes, each associated with the k-th initial con-
dition for every pair (ω, β0). We represent ρper by the color code.
Pairs in this plane for which all evaluated initial conditions result in
periodic orbits (ρper = 1) are in black color. The ones that 100% led
to non-periodic attractors (ρper = 0) are in red color. Intermediate
cases are on the gradient from red to yellow (ρper = 0.25) and white
(ρper = 0.5) and, on the other side, from white to cyan (ρper = 0.75)
and black. In the small gray region (bottom left corner), the sam-
ple of time series is not enough to determine periodicity, or deny
it, due to the high period of oscillations. Regions with some frac-
tion of non-periodic behavior, where ρper < 1, resemble the bands of

FIG. 10. In colors, the fraction ρper(ω,β0) of the trajectories that evolve to peri-
odic dynamics, from 100 randomly assigned initial conditions. Parameter plane
discretized in uniform grid of 1000 × 1000 points, with 0 < ω ≤ 6π and 100
< β0 ≤ 600. The coexistence of periodic and non-periodic orbits (0 < ρ < 1) is
observed in 13.20% of the valid area. In the gray square region, the time series
sampling was not enough to verify periodicity.

λ1 > 0 shown in Fig. 4(a). Unlike the initial condition considered in
Subsection III A, here the exposed initial value is not null. Further-
more, accuracy, sampling, and the maximum period adopted result
in some differences between this and that parameter plane.

The cyan bands in Fig. 10, as well as the small yellow regions,
demonstrate the coexistence of periodic and non-periodic orbits,
related to seasonality parameters. Through this assessment, we
obtain only periodic orbits for 61.50% of the valid area (subtracting
the gray region), exclusively non-periodic along 25.30%, and both
behaviors coexist in 13.20% of the parameter plane.

IV. CONCLUSION

We numerically investigated the SEIRS model dynamics under
a time-dependent transmission rate. Such temporal dependence is
periodic and consists of expanding the concept of seasonality, con-
sidering different periods in addition to those that synchronize with
the climatic seasons. Through parameter planes combining the sea-
sonality frequency and typical epidemiological model parameters,
we evidenced the chaotic dynamics occurrence, referring to vari-
ous analyses of reported data suggesting that some epidemics have
chaotic behavior.9,11,66 Focusing on the transmission rate function,
we highlight the coexistence of chaotic and periodic orbits for cer-
tain parametric configurations, as well as a diversity of periodic
attractors. We found that chaotic orbits may present lower infectious
peaks than periodic ones, even so with the same temporal average of
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infectious cases. Assuming it is a disease that affects humans (which
is not a premiss of the model), the predictability of periodic orbits
facilitates the planning of public health campaigns. On the other
hand, the lowest maximum number of cases in the chaotic attrac-
tor may represent a benefit when it comes to reduce the infection
spread. In terms of modeling real-world infections based on the sys-
tem studied in this work, it is necessary to consider the precision,
which the parameters can be determined, since in the parameter
planes there are narrow periodic bands immersed in chaotic regions.
Also, in the vicinity of the shrimp-like structures, cascades of similar
periodic regions occur, entering in scales of very small parametric
variations, in such a way that small changes in the parameters can
lead to a drastic change in the dynamic behavior.

The system presents a multistability of periodic orbits with dif-
ferent periods showing marked differences in the maximum infected
values. By means of attraction basins, obtained for certain paramet-
ric configurations, we showed that small variations of the initial
conditions can lead to different orders of magnitude of the maxi-
mum infectious agents number. Furthermore, for a wide range of
frequency and average transmissivity settings, orbits of periods up
to 12 coexist with larger periods and even non-periodic ones. Those
two features of the system, present chaotic dynamics and multi-
stability, lead to challenges for proposals of epidemic control since
chaotic dynamics reduce predictability and the multistable charac-
ter can lead to significantly different periodic orbits through small
changes of the initial conditions. The oscillation frequency of the
transmission rate proved to be relevant to the system dynamics,
being one of the determining factors for the occurrence of chaos.
Seasonality parameters also influence oscillations in the infectious
curve in periodic scenarios, resulting in different counts of local
maxima within a period. An investigation of this relationship can be
carried out using isospike diagrams, however, is far from the focus
of the present study, so we consider it for future work.
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