Um novo atrator caótico em um modelo epidemiológico de vários sorotipos com imunidade temporária cruzada

Bruna Cassol dos Santos

IME-USP

4 de junho de 2018

Índice

Introdução

Modelo matemático com dois sorotipos

- 3 Análise do modelo com imunidade temporária cruzada
 - Série temporal para $\phi > 1$
 - Série temporal para $\phi < 1$
 - Espaço de fase
 - \bullet Bifurcações do ciclo limite devido a mudanças em ϕ
 - Mapa do máximo de I no espaço de fase
 - Diagramas de bifurcação
- Onclusões

Referência

Neste seminário eu apresentarei os resultados do artigo: *A new chaotic attractor in a basic multi-strain epidemiological model with temporary cross-immunity* escrito por Maíra Aguiar e Nico Stollenwerk em 2008.

Modelos epidêmicos com muitos sorotipos e imunidade cruzada apresentam caos mesmo em regiões de parâmetros previamente inesperados. Especialmente modelos de dengue que consideram o efeito *Antibody-dependet enhancement*, *ADE*.

O efeito *ADE* pode ser observado quando uma pessoa foi previamente infectada com algum dos 4 sorotipos de dengue e posteriormente adquire uma segunda infecção por outro sorotipo. Nesses casos, é observado um agravamento da doença e por sua vez estas pessoas teriam uma quantidade viremica mais alta se comparada as outras. Isso explica a observação de que, embora as infecções primárias sejam responsáveis pela maior parte dos casos de dengue, a infecção secundária (re-infecção em uma data posterior) é mais provável de estar associada à doença grave (dengue hemorrágica ou síndrome do choque da dengue).

A hipótese do efeito *ADE* inverso, ou seja, incluindo o fator imunidade cruzada, no caso de uma segunda infecção, caso mais severo, as pessoas em geral devem ser hospitalizadas e não contribuirão assim para um aumento na força de infecção se comparada aos casos de primeira infecção.

Considerando menos infectividade para a segunda infecção do que para a primeira e somente adicionando imunidade temporária cruzada ao modelo de dengue obteve-se deterministicamente o atrator caótico abaixo. Aqui caótico está definido no sentido da sensibilidade com relação as condições iniciais e por apresentar órbita periódica instável.

Introdução

Figure 1: Atrator caotico obtido a partir do modelo de dengue para 2 sorotipos.

Modelo matemático

O modelo baseia-se num modelo do tipo SIR: suscetível S, infectado I e recuperado R com 2 sorotipos. O modelo apesar de não compor a população de mosquitos captura o efeito da dinâmica efetiva da população humana mantendo os efeitos da dinâmica do mosquito.

Hipóteses consideradas

- O modelo contempla dois sorotipos em circulação;
- Admite-se um período de imunidade temporária cruzada;
- Considerou-se o efeito ADE inverso;
- Foi incluída demografia no modelo.

Equações do modelo

$\frac{dS}{dt} =$	$-\frac{\beta_{1}S}{N}(l_{1}+\phi_{1}l_{21})-\frac{\beta_{2}S}{N}(l_{2}+\phi_{2}l_{12})+\mu(N-S)$
$\frac{dI_1}{dt} =$	$\frac{\beta_1 S}{N}(l_1+\phi_1 l_{21})-(\gamma+\mu)l_1$
$\frac{dI_2}{dt} =$	$rac{eta_2S}{N}(l_2+\phi_2l_{12})-(\gamma+\mu)l_2$
$\frac{dR_1}{dt} =$	$\gamma l_1 - (lpha + \mu) R_1$
$\frac{dR_2}{dt} =$	$\gamma l_2 - (lpha + \mu) R_2$
$\frac{dS_1}{dt} =$	$-rac{eta_2 S_1}{N}(l_2+\phi_2 l_{12})+lpha R_1-\mu S_1$
$\frac{dS_2}{dt} =$	$-rac{eta_1 S_2}{N}(l_1+\phi_1 l_{21})+lpha R_2-\mu S_2$
$\frac{dI_{12}}{dt} =$	$rac{eta_2 S_1}{N} (l_2 + \phi_2 l_{12}) - (\gamma + lpha) l_{12}$
$\frac{dI_{21}}{dt} =$	$rac{eta_1 5_2}{N}(l_1+\phi_1 l_{21})-(\gamma+lpha)l_{21}$
$\frac{dR}{dt} =$	$\gamma(\mathit{I}_{12}+\mathit{I}_{21})-\mu R$

(1)

A dinâmica do modelo consiste: suscetíveis de ambos os sorotipos (S)adquirem infecção de (I_1) ou (I_2) com uma força de infecção β_1 ou β_2 , respectivamente. Eles recuperam-se da infecção pelo sorotipo 1 (tornando-se R_1), e do sorotipo 2 tornando-se R_2 a uma taxa γ .

Nesta classe os indíviduos adquirem imunidade permanente para o sorotipo ao qual foi infectado e imunidade temporária ao outro. DEpois, a taxa α eles tornam-se suscetíveis novamente ao tipo 1 ou tipo 2, S_1 , S_2 respectivamente.

12 / 34

Assim, S_1 pode ser reinfectado pelo sorotipo 2 tornando-se I_{12} e S_2 pode ser reinfectado pelo sorotipo 1 tornando-se I_{21} com taxas de infecção $\phi_1\beta_1$, $\phi_2\beta_2$. O parâmetro ϕ representa o efeito *ADE* inverso.

Por fim, I_{12} e I_{21} vão para a classe dos recuperados R, tornando-se imunes a todos os sorotipos. Inclui-se demografia para população de hospedeiros através da taxa de mortes e nascimentos, μ . A população total é constante, N. Não foi considerada assimetria entre os sorotipos, portanto, $\phi_1 = \phi_2 = \phi$ e $\beta_1 = \beta 2 = \beta$. Sendo assim, os valores dos parâmetros utilizados nas simulações, considerando-se informações biológicas foram tomados como: $\mu = \frac{1}{65y^{-1}}$, $\gamma = \frac{1}{52y^{-1}}$, $\beta = \frac{1}{26y^{-1}}$ e $\alpha = \frac{1}{2y^{-1}}$.

Para classificar o padrão da dinâmica do modelo para vários parâmetros descartaram-se longos transientes. Na série temporal das variáveis do modelo descartou-se os primeiros 2000 anos das simulações:

Figure 2: Para $\phi = 2.7$ e $\alpha = 2.$ a) Série temporal para os suscetíveis. b) Série temporal para os infectados do tipo 1, $l_1 + l_{21}$. c) Série temporal dos infectados pelo tipo 2, $l_2 + l_{12}$. O número absoluto no eixo y indica a porcentagem de indíviduos (N=100).

Figure 3: Para $\phi = 2.7$ e $\alpha = 2.$ a) Série temporal para o número total de infectados $I := I_1 + I_2 + I_{12} + I_{21}$. b) Série temporal do logaritmo de todos os infectados In(I) para o mesmo intervalo.

Investigando séries temporais para $\phi < 1$, como seria realista para dengue devido a doença mais grave após reinfecção, portanto maior chance de ser hospitalizado, também indica comportamento dinâmico mais complicado do que apenas um ponto fixo simples ou limitar os ciclos. Descartando-se um transiente de 2000 anos temos:

Figure 4: Para $\phi = 0.7$ e $\alpha = 2$. a) Série temporal para os suscetíveis *S*, b) Série temporal dos infectados pelo sorotipo 1 $(I_1 + I_{21})$ e c) Série temporal dos infectados pelo tipo 2 $(I_2 + I_{12})$.

Figure 5: Para $\phi = 0.7$ e $\alpha = 2$. a) Série temporal para o número total de infectados $I := I_1 + I_2 + I_{12} + I_{21}$. b) Série temporal do logaritmo de todos os infectados In(I) para o mesmo intervalo.

Na figura abaixo plotou-se 500 anos da dinâmica após descartar-se um transiente de 2000 anos.

Figure 6: Para $\phi = 0.7$ e $\alpha = 2$. a) Série temporal para os suscetíveis *S*, b) Série temporal do logaritmo de todos os infectados ln(I) para o mesmo intervalo e c) Plotou-se o espaço de fase do número de suscetíveis pelo ln(I).

Observe que o espaço de fase entre as séries temporais de *a*) e *b*) originou o atrator caótico apresentado em *c*, para $\phi = 0.7$ e $\alpha = 2$.

No próximo resultado plotou-se o logaritmo do número total de infectados do sorotipo 1 pelo logaritmo do número de infectados pelo sorotipo 2.

Figure 7: Para $\phi = 0.7$ e $\alpha = 2$. Espaço de fase do logaritmo do número de infectados pelo tipo 1 versus o logaritmo do número de infectados pelo tipo 2.

Neste caso de sincronidade esperaríamos que o sistema estivesse próximo da diagonal porém, observa-se alta sensibilidade com relação as condições iniciais. Isso é evidenciado pelo padrão mais próximo da anti-sincronicidade observada pela figura acima.

22 / 34

Figure 8: Atratores para diferentes valores de $\phi < 1$. a) ponto fixo para $\phi = 0.1$, b) ciclo limite para $\phi = 0.2$, c) bifurcação do ciclo limite para $\phi = 0.45$ e d) atrator caótico para $\phi = 0.6$.

24 / 34

Figure 9: Atratores para diferentes valores de ϕ em torno de 1 e maiores. a) atrator caótico para $\phi = 0.8$, b) ciclo limite para $\phi = 1.5$, c) ciclo limite para $\phi = 1.9$ e d) atrator caótico para $\phi = 2.7$.

Observe que para valores de ϕ maiores do que a primeira janela caótica o atrator caótico torna-se instável novamente, somente deixando um ciclo limite simples como atrator para uma larga região de parâmetros além de $\phi = 1$. Somente para valores $\phi >> 1$ outro atrator caótico aparece, o então chamado atrator ADE.

Figure 10: Para $\phi = 1.9$ e $\alpha = 2$. a) Ciclo limite para $\phi = 1.9$, b) os pontos indicam o máximo local relacionados ao ciclo limite a). Os três pontos caracterizam um triplo-ciclo limite.

Figure 11: Para $\phi = 0.7$ e $\alpha = 2$. a) Máximos locais são determinados para o atrator caótico, b) Scatter plot dos máximos locais é plotado para 500 anos de simulação, c) o mapa de máxima do total de infectados e respectivos valores de suscetíveis considerando 200000 anos de simulações.

Figure 12: Diagrama de bifurcação para o máximo do total de infectados variando o parâmetro ϕ e $\alpha = 2$.

Podemos observar na figura acima duas janelas caóticas. A janela caótica para $\phi < 1$, região do inverso *ADE*, cujo comportamento até então não tinha sido caracterizado e a janela caótica para $\phi > 1$, janela caótica *ADE*.

Figure 13: Diagrama de bifurcação para o máximo do total de infectados variando o parâmetro ϕ e $\alpha = 1$.

Figure 14: Diagrama de bifurcação para o máximo do total de infectados variando o parâmetro ϕ . a) consideramos $\alpha = 10$ e b) tomou-se $\alpha = 20$.

Figure 15: Diagrama de bifurcação para os extremos do total de infectados variando o parâmetro ϕ e $\alpha = 2$. A janela caótica para $\phi > 1$ os valores mínimos vão números bem baixos de infectados.

Bruna Cassol dos Santos (IME-USP) Um novo atrator caótico em um modelo

A análise apresentada indicou que para região de inverso efeito ADE, isto é, $\phi < 1$ o caos determinístico pode ser observado quando é levada em consideração a imunidade temporária cruzada.

33 / 34

- Aguiar, M., Kooi, B., Stollenwerk, N. A new chaotic attractor in a basic multi-strain epidemiological model with temporary cross-immunity. arXiv:0704.3174v1 [nlin.CD]. 2007.
- [2] Aguiar, M., Stollenwerk, N. Epidemiology of Dengue Fever: A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions. Math. Model. Nat. Phenom. Vol. 3, No. 4, 2008, pp. 48-70..