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Abstract Plasma turbulence at the edge of tokamaks is an
issue of major importance in the study of the anomalous
transport of particles and energy. Although the behavior of
a turbulent plasma seems intractable, it turns out that many
of its aspects can be described by low-dimensional non-
integrable dynamical models. In this paper, we consider a
number of dynamical effects occurring in tokamak plasma
edge—in particular the role of internal transport barriers.
Furthermore, we present experimental results on turbulent-
driven transport for two machines—the Brazilian TCABR
tokamak and University of Texas’ Helimak—that can be
explained by those theoretical models.
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1 Introduction

One of the key theoretical problems in the physics of mag-
netically confined fusion plasmas is the causes and associ-
ated rates of anomalous cross-field transport [1, 2]. There
exists a widespread consensus that turbulence plays a major
role on the mechanisms leading to anomalous transport [3–
5]. Turbulent processes display a broad fluctuation spectra
with maxima corresponding to small wave vectors and high
frequencies [6, 7]. A candidate for explaining the observed
anomalous transport rates in tokamaks is drift wave turbu-
lence, thanks to the presence of steep density gradients in
the plasma edge [8].

One of the characteristic features of a turbulent plasma
is the presence of a very large number of degrees of free-
dom. However, we assume that, at least in some types of
turbulence, it is possible to capture the essential features
of turbulent system using low-dimensional dynamical sys-
tems. This approach was introduced in the seminal paper
from Ruelle and Takens [10] and has led to a deeper under-
standing of the dynamical mechanisms underlying the onset
of turbulence. If the system is sufficiently dissipative, its
dynamics is governed by a low-dimensional chaotic attrac-
tor embedded in a phase space with a large number of
dimensions. The dynamics in this attractor can thus be
described by simpler systems; the Lorenz equations being
one of the well-known examples of how this dimensional
reduction procedure can provide useful information about
the turbulence of a fluid system [11].

In this paper, we report basic ideas that we have applied
to identify low-dimensional dynamical effects in turbulence,
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particularly related to drift waves and particle transport at
plasma edge [8, 9]. Furthermore, we describe how these
dynamical effects have been applied for the plasma tur-
bulence observed in TCABR Tokamak (University of São
Paulo, Brazil) and Texas Helimak (University of Texas at
Austin) to understand the reduction of turbulence-induced
transport by the formation of internal transport barriers. All
these described evidences of non-linear effects in plasma
physics have been obtained by applying models and proce-
dures introduced by Horton [2]. We have already described
these evidences separately in previous publications; how-
ever, the present article puts them in a common perspective
and illustrates some Hortons contributions to the plasma
turbulence theory.

The rest of the paper is organized as follows: In Section
2, we consider a simplified model for drift-wave turbulence
involving non-linear wave coupling in which we emphasize
both the onset of turbulence as well as the energy transfer
processes. We also consider the control of chaotic behav-
ior through the addition of a fourth resonant wave. Section
3 considers the formation of internal transport barriers and
their dependence on non-monotonic profiles, as in reversed
shear plasma flows. We first consider a simplified dynam-
ical model, the standard non-twist map, which exhibits the
formation of a shearless curve which acts as an internal
transport barrier.

A physical model for the E × B drift motion of parti-
cles in a magnetized plasma also presents the formation of
such a barrier due to a non-monotonic electric field radial
profile. We then consider experimental evidences of the
internal transport barrier formation in the TCABR tokamak
and Helimak. Finally, we consider a theoretical model for
the influence of magnetic shear on the internal transport
barriers. The last section is devoted to our conclusions.

2 Non-linear Wave Coupling

2.1 Prediction of Three-Wave Coupling

Hasegawa and Mima obtained in 1977 a non-linear par-
tial differential equation which describes the propagation of
drift waves in magnetized plasmas and the emergence of
stationary, non-uniform turbulence [12]:

∂

∂t

(
∇2φ − φ

)
− [(∇φ × ẑ

) · ∇] [
∇2φ − ln

(
n0

ωci

)]
= 0,

(1)

where φ(x, t) is the electrostatic potential of a wave with
frequencyω propagating through an inhomogeneous plasma
where there is a uniform magnetic field B = B0êz. The wave
frequency must be less than the ion cyclotron frequency

ωci = eB0/mi , where e and mi are, respectively, the charge
and mass of the ions, and n0 is the background plasma den-
sity. The operator ∇ in Eq. (1) denotes the gradient in the
directions transverse to the magnetic field.

Although neglecting effects expected in plasma edge
tokamaks, as those due to the toroidal curvature or the
dynamics along the field line, the Hasegawa-Mima equation
is still considered a good model to investigate the relevance
of the non-linear mode coupling considered in our work.

A linear wave exists in this situation if the phase velocity
along the magnetic field is such that vTi < (ω/kz) < vTe ,
where vTs is the thermal velocity for ions (s = i) and elec-
trons (s = e). For long wavelengths, this is a drift wave in
which the dispersion relation is ω = k · vd , where vd is the
diamagnetic drift velocity. Moreover, drift waves possess a
characteristic dispersion scale length ρs = √

Te/mi/ωci [9].
We seek solutions for the Hasegawa-Mima (1) by

Fourier-expanding the electrostatic potential

φ(x, t) = 1

2

∞∑
k=1

[
φk(t) exp(ik · x)+ c.c.

]
, (2)

where the φk(t) are the electrostatic modes in Fourier space.
The substitution of (2) into (1) yields an infinite system of
coupled differential equations for the Fourier modes [9, 13].
In fact, however, it suffices to analyze a few modes when
the turbulence is not yet fully developed [14, 15].

Accordingly, we consider a three-wave truncation of (2),
whose wave vectors satisfy the triplet condition k1 + k2 +
k3 = 0. Moreover, we introduce phenomenological dissipa-
tive terms γi that describe mode growth or decay, yielding
the system

dφ1

dt
+ iω1φ1 = �1

2,3φ
∗
2φ

∗
3 + γ1φ1, (3)

dφ2

dt
+ iω2φ2 = �2

3,1φ
∗
3φ

∗
1 + γ2φ2, (4)

dφ3

dt
+ iω3φ3 = �3

1,2φ
∗
1φ

∗
2 + γ3φ3, (5)

where we denoted φj (t) = φkj (t) and ωj = ωkj and the
coupling coefficients are given by [16]

�1
2,3 = (k3

2 − k2
2)

2(1 + k2
1)

(k2 × k3) · ẑ (6)

�2
3,1 = (k1

2 − k3
2)

2(1 + k2
2)

(k3 × k1) · ẑ (7)

�3
1,2 = (k2

2 − k1
2)

2(1 + k2
3)

(k1 × k2) · ẑ (8)

In the following, we adopt parameters from the
TCABR tokamak of University of São Paulo: major radius
R = 61 cm, minor radius a = 18 cm, maximum plasma
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Fig. 1 Time series of the wave
amplitudes |φi | [i = 1 (green),
i = 2 (red), and i = 3 (black)]
for γ2 equal to a −0.002 and c
−0.003. b and d are the phase
space projections corresponding
to a and c, respectively

a b

c d

current 100 kA, plasma duration 100 ms, hydrogen filling
pressure 3 × 104 Pa, and toroidal magnetic field B0 =
1.1 T. At the plasma edge, the electron plasma density is
ne = 3 × 1018 m−3 and the electron temperature is
Te = 10 eV. The ratio between the density gradient and
the density in this region has been estimated as 1 cm−1.
Fluctuations of the floating potential at plasma edge have a
poloidal wave number kθ in the range of 1 − 5 × 103 m−1,
with broad spectral content pronounced in the 1 − 100 kHz
range. We thus have chosen the mode frequencies as ω1 =

ω2 = ω3 = 50 kHz. As for the wave numbers, we choose
kx1 = 4.5 cm−1, ky1 = 6.5 cm−1 and the others are
expressed in terms of them as follows: kx2 = 0.1kx1, kx3 =
−1.1kx1, ky2 = 2.0ky1, and ky3 = −3.0ky1.

The numerical values of the growth/decay rates have
been adjusted to get wave mode amplitudes in the range
observed in experiments of plasma edge fluctuations,
namely −50V − +50V , namely γ1 = 0.0001, γ2 = γ3 ∈
[−0.0015,−0.003], the latter being our control parameter.
With this set of parameters, the three-wave equations are

Fig. 2 Time series of the
potential in the real domain for
the same parameters as those of
Fig. 1c, d
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numerically integrated. Figure 1a displays the time series
of the wave amplitudes |φi | for γ2 = −0.002, showing a
period-2 orbit in the corresponding phase space projection
(Fig. 1b). This attractor becomes chaotic at γ2 = −0.003
(Fig. 1c, d).

On fixing the point x = y = 0, we obtain the time
series corresponding to the “real” electrostatic signal given
by the sum of the three Fourier modes for the chaotic case,
resulting in Fig. 2. The dependence of the wave dynamics
on the control parameter γ2 is illustrated by the bifurcation
diagram shown in Fig. 3a, where we depict the asymp-
totic values of the discrete variable zn := max |φ1|. The
corresponding maximum Lyapunov exponent is represented
in Fig. 3b. Chaotic behavior occurs for γ2 � −0.0023
interspersed with windows of periodic behavior.

2.2 Resonant Control of Oscillations

One of the key points of the present analysis is that chaotic
behavior in the drift-wave dynamics is directly related to
the appearance of turbulent fluxes and anomalous trans-
port in the tokamak plasma edge. Hence, once we have a
low-dimensional model of this situation, as explained in the
previous subsection, a relevant question is how to control
these chaotic oscillations so as to reduce or utterly eliminate
turbulence in this region.

One possible control strategy is the addition of a resonant
fourth mode with small amplitude. In this case, a resonant
four-wave coupling involves the interaction of two-wave

a

b

Fig. 3 a Bifurcation diagram for the discrete variable max |φ1| for
γ1 = 0.0001 and varying γ2. b Maximum Lyapunov exponent

triplets. The presence of the second triplet having two waves
in common with the first can increase or stabilize the insta-
bility of the first triplet [17, 18]. Accordingly, we introduce
a fourth wave φ4, which adds a second wave triplet obeying
the resonant conditions: k4 = k1 + k2 and ω4 ≈ ω1 + ω2.
The amplitude of the control wave is kept small so that
|φ4| ≡ ε 	 |φ1,2,3| and constant so that dε/dt = 0. Insert-
ing the control wave in the three-wave system amounts to
add a term |ε|φ∗

2 to (3) and a term |ε|φ∗
1 to (4) [19].

The addition of a fourth resonant wave, with an ampli-
tude as small as ε = 10−10, is already enough to steer the
phase-space trajectory to a period-8 orbit. Other orbits with
periods equal to 4 and 2 can be obtained using different val-
ues of ε. The dependence of the dynamics on ε is illustrated
by the bifurcation diagram depicted in Fig. 4 in which we
plot the asymptotic values of max |φ2| versus the strength
of the resonant perturbation ε, the remaining parameters
being held constant. On increasing the values of ε, we have
a less complex dynamics, starting from a one-band chaotic
attractor followed by various windows of periodic behavior,
two-band chaotic attractors, towards low-period orbits.

3 Particle Transport Barriers

Internal transport barriers have been observed in many sys-
tems of interest for plasma physics. One of them is radial
particle transport in toroidal plasma devices with reversed
magnetic shear [20] and the E × B-drift motion of charged
particles in a magnetized plasma under the action of a time-
periodic electric field from an electrostatic wave [21, 22].
In both cases, the internal transport barriers cause an overall
reduction of radial particle and energy transfer, which has
direct consequences on the duration and quality of plasma
confinement.

Here, we describe internal transport barriers created by
applying a perturbing electric field in the tokamak edge
region comprising the plasma edge and the scrape-off
layer, where the plasma exhibits high level of electrostatic
turbulence-induced particle transport [36]. Besides that, we
also show how such transport barriers can be created in the
perturbed helimak discharges.

3.1 Shearless Transport Barriers in Non-twist Maps

In order to study the mechanisms whereby particle transport
barriers occur in tokamak plasmas, we first consider sim-
ple models for magnetic field line behavior. It turns out that
these internal barriers exist in plasmas with non-monotonic
equilibrium zonal flows, giving rise to orbit topologies that
can only exist with reversed shear [21], i.e., with a non-
monotonic rotation number profile. The barriers appear in
the shearless region of non-twist Hamiltonian systems and
display their own typical characteristics with a proper route
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Fig. 4 Bifurcation diagram for
the asymptotic values of
max |φ2| vs the amplitude of the
controlling wave for
γ1 = 0.0001 and γ2 = −0.0025

of transition to chaos [23]. These barriers are robust in the
sense that they persist even for high amplitude perturbations
and have an effective capacity to reduce the transport even
after invariant tori are broken [24]. The mechanism underly-
ing the capacity to reduce transport is the stickiness around
magnetic islands that remain in the shearless region after the
tori disappear [25].

A simple system which exhibits this phenomenology is
the standard non-twist map [23]

xn+1 = xn + a(1 − y2
n+1), (9)

yn+1 = yn − b sin(2πxn) , (10)

where x ∈ [−1/2,+1/2), y ∈ R, a ∈ (0, 1), and b > 0.
In terms of a tokamak, the discrete variables (xn, yn) can
be thought of the coordinates of the nth piercing of an
equilibrium magnetic field line with a toroidal surface of
section.

The winding number of this symplectic map, namely
g(y) = −a(1−y2

n+1), corresponds to the safety factor of the
corresponding magnetic surfaces and it is non-monotonic
since its derivative (magnetic shear) changes sign, violating
the so-called twist condition. This is why the map Eqs. (9)–
(10) is called non-twist. The loci where g′(yS) = 0, i.e.,
where the shear changes sign, define shearless curves in
phase space: {(x, y)| − 1/2 ≤ x < 1/2, y = yS = 0}.
Hence, the parameter a stands for the non-twist character of
the map.

The parameter b in Eq. (10) plays the role of the per-
turbation strength. When it is non-zero, two periodic island
chains appear at the two invariant curve locations, and the
former shearless curve becomes a shearless invariant torus
separating these two island chains with three islands each,

with winding number 1/3 (Fig. 5a). The local maxima of the
perturbed winding number profile define a shearless invari-
ant curve, whose existence can be inferred between the two
island chains. There are also chaotic layers in the neighbor-
hoods of both island chains, although these layers are not
connected, thanks to the existence of invariant curves near
the shearless invariant tori [26].

If the parameters a and b are slightly modified, the
two island chains with the same winding number approach
each other and their unstable and stable invariant mani-
folds suffer reconnection (Fig. 5b). In the region between
the chains, there appears new invariant tori called mean-
dering curves. The periodic orbits remaining coalesce, as
the parameters are further modified, and eventually leave
only meanders and the shearless torus (Fig. 6a). The set
of meanders and the shearless torus is an internal trans-
port barrier for the chaotic orbits on the different sides
of the barrier are kept segregated. Further alterations of
the parameters cause the breakup of the shearless torus
and meanders, destroying the internal transport barriers and
allowing the mixing of the formerly segregated chaotic
orbits (Fig. 6b).

3.2 Internal Transport Barriers in Plasmas

The scenario for the creation of internal transport barriers
we described in the previous subsection is simple enough
to allow for a detailed treatment, but in order to apply it
to the tokamak context, we need a more detailed physical
model. We already pointed out that the internal transport
barriers occur in the plasma edge region of tokamaks, where
turbulence prevails. Such turbulence is associated with drift
waves that propagate in the poloidal direction and are driven
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Fig. 5 Phase portraits of the
standard non-twist map
Eqs. (9)–(10) for b = 0.4 and a
a = 0.70; b a = 0.69

a b

by radial density gradients [9]. As a matter of fact, experi-
ments suggest that particle transport in the tokamak plasma
edge is chiefly caused by E × B particle drifts [8].

Hence, a simple but physically sound model consists on
the particle dynamics in a toroidal equilibrium magnetic
field B = B0êz subjected to electrostatic drift waves prop-
agating along the poloidal direction êy . The radial direction
points to êx . The drift velocity of the guiding centers is
v = E × B/B2, where E = −∇φ(x, y, t) and [27]

φ(x, y, t) = φ0(x)+
N∑
i=1

Ai sin(kxi x) cos(kyi y−ωit), (11)

representing a background static potential plus the superpo-
sition of N drift waves with amplitudes Ai , wave numbers
ki , and frequenciesωi . Assuming that particles are passively
advected by the E × B drift velocity, we can write their
equations of motion in a canonical form

dx

dt
= −∂H

∂y
,

dy

dt
= ∂H

∂x
, (12)

where H(x, y, t) = φ/B0 is the Hamiltonian function. The
case of only one drift wave (N = 1) turns out to be inte-

grable, with Hamiltonian (in a reference frame moving with
the phase velocity of the wave u1 = ω1/ky1 ):

H(x, y) = φ0(x)

B0
− u1x + A1

B0
sin(kx1x) cos(ky1y). (13)

The static contribution for the poloidal flow drift velocity
is vE(x) = (1/B0)(dφ0/dx), such that ẏ ∼ vE − u1 = U ,
where U is called trapping parameter. It vanishes when
there is a resonance between the phase velocity of the wave
and the static drift velocity. The dynamical (12) were inte-
grated numerically. There results a tiling of the phase space
in islands representing particles trapped in the wave field
(Fig. 7a).

If the trapping parameter is non-zero but uniform, there
exist both periodic islands and invariant curves in the phase
space (Fig. 7b). Now, we consider the existence of a non-
monotonic electric field radial profile, as the field produced
by a bias electrode inserted radially into the plasma col-
umn. As we shall see in the following subsections, this
procedure has been able to reduce particle transport in the
tokamak plasma edge. We will show that, already in this
simple model, this reduction comes from the formation of

Fig. 6 Phase portraits of the
standard non-twist map
Eqs. (9)–(10) for b = 0.5 and a
a = 0.68; b a = 0.70

a b
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a b

Fig. 7 Phase portrait of the dynamical system obtained from the integrable one-wave Hamiltonian (13) with a U = 0 and b U = 0.6

an internal transport barrier. The radial profile we choose
for the trapping parameter is [28]

U(x) = 1

Akx
[a2x

2 + a1x + (a0 − u)], (14)

where a2 = −0.84, a1 = 3.34, a0 − u = −2.1334,
A = 0.16, and kx = 3.9267.

In this case, the trapping parameter is no longer uniform
but rather presents a non-monotonic radial profile (see the
right panel in Fig. 8): it has a global maximum inside the
plasma column, where a shearless curve is produced. Just
like in the standard non-twist map, the shearless curve is
an internal transport barrier. Since the one-wave Hamilto-
nian represents an integrable system, there are no chaotic
(area-filling) orbits in this case. However, if we consider
the presence of two or more drift waves, there will appear
chaotic regions on both sides of the shearless curve.

3.3 Transport Barriers in TCABR Tokamak

Transport barriers were experimentally observed in plasma
discharges of the TCABR machine (Tokamak Chauffage
Alfvén Brésilien), which operates in the Institute of Physics
of the University of São Paulo [29]. In this subsection, we
will show recent results showing the reduction of radial par-
ticle transport driven by turbulent flux in the plasma edge
region. A non-monotonic electric field profile is created
by introducing a biased electrode in the tokamak [30]. We
interpret the experimental results by the creation of internal
transport barriers due to the non-monotonic radial electric
field, according to the theoretical framework described in
the previous subsection.

Figure 9 shows the time evolution of the spectral contri-
bution of the radial transport driven by turbulent flux in the
scrape-off layer of TCABR tokamak. In Fig. 9a, b, we con-
sider the application of an external bias potential of +100 V

Fig. 8 Phase portrait of the
dynamical system obtained from
the integrable one-wave
Hamiltonian (13) with a
non-monotonic radial profile for
the trapping parameter
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Fig. 9 Spectral contribution of the radial transport driven by turbulent
flux (in color scale) in the SOL of TCABR for bias voltages of a 100 V
and b 300 V

and +300 V, respectively, at the time instant indicated by a
dashed line in the middle of both figures. Before the applica-
tion of the bias potential, the radial transport is concentrated
at low frequencies (in the frequency range of 1 − 10 kHz).
We also see that the spectral contribution of turbulent trans-
port is considerably reduced after the application of low bias
(Fig. 9a) and practically disappears for high bias (Fig. 9b)
[31–33].

The reduction of turbulent transport due to bias can be
also appreciated by computing the time-averaged turbulent
flux before (�0) and after (�B ) the application of an external
bias. Figure 10 shows the ratio �B/�0 as a function of the
bias potential. If no bias is applied at all, this ratio is (within
the considered uncertainty) equal to the unity, as expected.
As the bias voltage is increased up to +300 V, the turbulent
flux decreases and practically disappears.

This scenario is explained by the formation of a transport
barrier due to a non-monotonic radial electric field profile,

as explained in the previous subsection. If no bias is applied,
this transport barrier is located outside the plasma column
(in the scrape-off layer) and hardly affects particle trans-
port in the plasma. As a bias voltage is applied, though, this
transport barrier migrates into the plasma and reduces dra-
matically turbulent fluxes in this region, as suggested by
experimental data [31–33].

3.4 Transport Barriers in Texas Helimak

Another machine in which we have investigated experi-
mentally the formation of internal transport barriers is the
Texas Helimak, which is a toroidal device with a plasma
colder and less dense than a tokamak plasma, in such a
way that a Helimak reproduces the conditions prevailing
in the scrape-off layer of a tokamak [34, 35]. In partic-
ular, the Helimak is suitable for experimental studies of
plasma edge turbulence and transport of interest in advanced
tokamak scenarios.

In the Texas Helimak, there is a basic toroidal mag-
netic field (0.1 T) and a small vertical field, whose com-
bination leads to helical magnetic field lines, most of
them starting and terminating into sets of collector plates
located at the top and bottom parts of the vessel. Its
dimensions are 1.6 m (external radius), 0.6 m (internal
radius), and 2.0 m (height). Thanks to the low density
of the plasma, there are many Langmuir probes mounted
at the collector plates, enabling us to measure radial
profiles of the ion saturation current and mean floating
potential [36].

The collector plates can also be used to introduce a bias
electric field, just as we have considered before for the
TCABR machine. Combined with the toroidal magnetic
field, there is a E×B drift along the vertical direction, whose
(non-monotonic) radial profile is depicted in Fig. 11a, pre-
senting a maximum at 1.13 m wherein a shearless barrier
appears, such that there is a sheared flow around this
position.

Fig. 10 Ratio between the
time-averaged turbulent fluxes
with and without external bias
as a function of the bias voltage
for TCABR discharges
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Fig. 11 a Radial profile of the
vertical plasma velocity
measured though a Doppler shift
spectrometer for bias +10 V. b
Radial profile of the turbulence
induced radial particle transport
for bias +10 V

a b

We considered the density and drift velocity fluctuations
to calculate the particle transport induced by the electro-
static turbulence. Within this procedure, the time-averaged
transport flux is given by � =< ñ · ṼE >, where ñ and
ṼE are, respectively, the density and the E × B electric drift
velocity fluctuations [37]. In Fig. 11b, we show a radial pro-
file of the transport flux, showing that at the vicinity of the
shearless barrier, the transport flux is nearly 0, i.e., a strong
reduction of transport due to the internal barrier.

3.5 Influence of Magnetic Shear on the Tansport Barriers

In this subsection, we will consider the drift-kinetic model
to investigate the role of the electric and magnetic shears
in the particle transport driven by drift wave electrostatic
fluctuations in the plasma edge. In this case, the guiding
center motion x(t) is described by the equation [22]

dx
dt

= v‖
B
B

+ E × B
B2 , (15)

where we have used local (pseudo-toroidal) coordinates
r : (r, θ, ϕ), v‖ is the guiding center velocity parallel to B,
which is the equilibrium magnetic field, and E = −∇φ,
where φ = φ0 + φ̃, with a background electric potential φ0

(with a given radial profile) and the fluctuating potential is
given by

φ̃(x, t) =
∑
m,,n

φmn cos(mθ − ϕ − nω0t − ψ0), (16)

where φmn are the mode amplitudes, ω0 is the lowest angu-
lar frequency with substantial amplitude in the drift wave
spectrum, and ψ0 is a random phase. For a single spatial
M/L mode, we have considered a drift wave spectrum given
by a maximum amplitude, namely φMLn, at the plasma edge
resonance and a minimum amplitude inside the plasma core.

For convenience, we also consider action and angle vari-
ables for the equations of guiding center motion as I =
(r/a)2 and ψ = Mθ − Lϕ respectively, where a is the
plasma radius and (M,L) are the poloidal and toroidal
mode numbers of the dominant modes. Note here that ψ

a b

Fig. 12 Phase portraits for the system described by Eqs. (17)–(18) for a non-monotonic background electric field profile and safety factor profiles
with a q(a) = 6 and b q(a) = 4 at the plasma edge. The shearless curves are depicted in red
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plays the role of a helical angle for these modes (coher-
ent oscillations). Taking these assumptions into (15), it is
written in a canonical form:

dI

dt
= 2M

Ba2

N∑
M,L,n

φMLn sin(ψ − nω0t − ψ0), (17)

dψ

dt
= v‖

Rq(I )
[M − q(I )L] − MEr

Ba
√
I
, (18)

where R is the Tokamak major radius and q(I ) is the safety
factor profile in local coordinates. We also used a non-
monotonic radial profile for the background electric field
due to drift waves Er = −∂φ0/∂r .

The above set of equation were numerically integrated
for a dominant mode with M/L = 4/16, n = 3, and an
amplitude φ4,16,n = 4eV for an equilibrium with safety
factor at the plasma edge q(a) equal to 6 (Fig. 12a) and 4
(Fig. 12b). The non-monotonic profile we adopted for E(r)

is such that there are two twin islands for n = 3 separated by
a shearless curve. As the value of q(a) is decreased, though,
there are reconnection processes and there results an inter-
nal transport barriers. Hence, the latter is modified by the
magnetic shear and persist under variations of q(a).

4 Conclusions

The unifying element in this paper is the possibility
of describing plasma edge turbulence in terms of low-
dimensional dynamical systems that enables us to explain
(at least qualitatively) results of experiments on transport
performed in two machines: the Brazilian TCABR tokamak
and the Texas Helimak. We have also obtained, with the help
of these low-dimensional models, a number of theoretical
results concerning the onset and evolution of wave turbu-
lence at the plasma edge of both TCABR and Helimak. This
low-dimensional description is based in a drift wave three-
mode coupling, such that turbulent behavior stems from a
modulational instability. The transition between laminar and
chaotic behavior can be controlled by an external resonant
wave.

The observed turbulent-driven transport in plasma edge
can be explained by the formation of internal transport bar-
riers in this region. Such barriers come ultimately from the
existence of non-monotonic profiles for both electric and
magnetic fields. We used a simple theoretical description
of the latter, that is, the standard non-twist map. The non-
monotonicity leads to shearless curves that provide internal
transport barriers for the chaotic magnetic field lines.

Another physical model in which internal transport bar-
riers appear is the motion of particles passively advected by
the E×B drift flow. The non-monotonic profile in this case
is for the electric field due to a biased electrode inserted

into the plasma. As this barrier moves inside the plasma,
the observed turbulent-driven particle flux is reduced, as
observed in both TCABR and Helimak. We also investi-
gated the behavior of the magnetic shear in internal transport
barriers related to shearless curves and found that the lat-
ter persist under magnetic shear but are modified due to
reconnection processes.
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Horton, Yu. Kuznetsov, I.C. Nascimento, Phys. Plasmas 15,
112304 (2008)

29. I.C. Nascimento, I.L. Caldas, R.M.O. Galvão, J. Fusion Energy
12, 529 (1993)

30. R.L. Viana, S.R. Lopes, I.L. Caldas, Szezech Jr. J.D., Z.
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