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Abstract
Shearless transport barriers appear in confined plasmas due to non-monotonic radial profiles
and cause localized reduction of transport even after they have been broken. In this paper we
summarize our recent theoretical and experimental research on shearless transport barriers in
plasmas confined in toroidal devices. In particular, we discuss shearless barriers in Lagrangian
magnetic field line transport caused by non-monotonic safety factor profiles. We also discuss
evidence of particle transport barriers found in the TCABR Tokamak (University of São Paulo)
and the Texas Helimak (University of Texas at Austin) in biased discharges with
non-monotonic plasma flows.

(Some figures may appear in colour only in the online journal)

1. Introduction

Internal transport barriers cause a localized reduction of
particle and energy transport in fluids and plasmas [1, 2].
Among the key factors responsible for the formation of internal
transport barriers is the existence of a non-monotonic flow
profile, which gives rise to reversed shear flows and the
formation of shearless curves. These curves act as dikes
preventing chaotic particle transport across them, and so are
identified as shearless transport barriers. The essentials of a
system exhibiting shearless transport barriers are exhibited by
a simple two-dimensional mapping called standard nontwist
map [3].

Shearless transport barriers also have been found in
magnetically confined plasmas with reversed shear [4]. For
example, non-monotonic radial profiles of the electric current
in tokamaks lead to a reversal of the magnetic shear and thus

a shearless curve [5]. In the presence of chaotic transport
of particles and energy these shearless curves act as internal
transport barriers. Even after these barriers have been broken
the remaining islands may present a large stickness that
decreases transport [6]. Magnetic field line Hamiltonian
models of reversed shear plasmas present a violation of the
twist condition and hence are also classified as nontwist
systems [4]. Another example of shearless barriers in confined
plasmas is a non-monotonic electric field profile causing a
reversed shear flow described by the E ×B radial drift motion
of particles [7].

In this paper we review some of the aspects of shearless
transport barriers in plasmas, focusing on the abovementioned
examples. Section 2 begins with a more general discussion
of transport barriers in the standard nontwist map, which
is a paradigmatic model for sheared flows in fluids and
plasmas. Section 3 presents results on the formation of
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Figure 1. (a) Phase portraits for the SNTM with a = 0.358 and b = 0.354; (b) winding number profile corresponding to the dashed vertical
line in (a).

Figure 2. Phase portraits for the SNTM with (a) a = 0.40, b = 0.85 and (b) a = 0.42, b = 0.88. (c) Transmissivity of the shearless
transport barrier as a function of the parameters of the SNTM.

shearless transport barriers in plasma models with non-
monotonic profiles. Section 4 considers chaotic particle
transport in a plasma model due to electrostatic drift waves
and a non-monotonic electric field profile. Section 5 discusses
experimental evidence of internal transport barriers in the
TCABR. Section 6 presents evidence of transport barriers in the
Texas Helimak after changing the radial electric field profile.
The last section is devoted to our conclusions.

2. Transport barriers in nontwist maps

The fundamental concepts underlying the formation of
shearless transport are displayed by the so-called standard
nontwist map (SNTM) [3, 4, 8] (xn+1, yn+1) = (xn + a(1 −
y2

n+1), yn − b sin(2πxn)), where 0 � x � 1, a > 0 and b > 0
are parameters. The variables (xn, yn) can be regarded as the
normalized angle and action, respectively, of a phase space
trajectory of a Hamiltonian system at its nth piercing with a
Poincaré surface of section. It follows that the SNTM is area-
preserving.

The function g(y) = a(1 − y2) appearing in the SNTM
is the winding number of the unperturbed trajectories lying on
nested tori, and g′(y) stands for the shear. Since g presents a
non-monotonic behavior the corresponding shear changes sign
at those points (xs, ys = 0) for which g′(ys) = 0, defining the
so-called shearless curve. The existence of such a shearless
curve violates locally the twist condition, and hence not all
features of twist systems (such as KAM theorem and Aubry–
Mather theory) apply.

If b �= 0 two main island chains show up on each side of
a shearless invariant curve roughly around ys = 0 (depicted in
red in figure 1(a)). The exact location of this shearless curve
depends on x and it turns out to be the local maximum of
the perturbed winding number for a fixed x (figure 1(b)). In
addition to these two main island chains there are other chains,
with considerably large chaotic layers due to the homoclinic
tangle therein. These chaotic layers are not connected, since
there are invariant curves near the shearless invariant curves
preventing global transport.

As the perturbation strength increases further (figure 2(a))
the island chains on each side of the shearless curve are
practically destroyed, leaving two regions of chiefly chaotic
motion therein, separated by a number of invariant curves
surrounding the shearless curve. Even after these invariant
curves are destroyed, for higher perturbation intensity, there is
an effective transport barrier in the place of the former shearless
curve due to the strong stickness effect (figure 2(b)) [6].

In order to quantify the transmissivity of the shearless
transport barrier formed after the shearless curve has been
destroyed we have computed the fraction of phase points
crossing the former shearless curve. We randomly chose a
large number of initial conditions on the line (−0.5 < xB <

0.5, y = 1.0) and iterated the resulting orbits for a long time
N = 50 000 (if the N value is chosen large enough to evidence
the stickness effect of the broken barrier, the parameter space
shown in figure 2(c) does not depend on N ). Then we counted
the number of orbits that crossed the broken shearless curve
reaching the y = −1 line. The transmissivity as a function of
a and b is depicted in figure 2(c). The two black dots represent
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Figure 3. Phase portrait of the Poincaré map for a tokamak with a
non-monotonic current profile and an ergodic magnetic limiter.

the phase portraits shown in figures 2(a) and (b). White pixels
denote zero transmissivity, i.e. the shearless curve has not been
destroyed yet, which is the case of figure 2(a). The boundary
of the zero transmissivity region is highly complex and has
been determined using renormalization techniques [3].

3. Transport barrier in nontwist magnetic field

As illustrated in the previous discussion of the SNTM, the
key factor in the formation of an internal transport barrier
is the appearance of a shearless curve due to some non-
monotonic profile characterizing the system. This shearless
curve, whenever it exists, is a perfect barrier. However, even
though this curve may be broken, there remains a barrier effect
due to the stickness of trajectories in its vicinity. In this section
we shall describe some models for magnetic field lines in
tokamaks with nontwist properties (non-monotonic profiles)
that exhibit shearless transport barriers.

Magnetic field lines in toroidal systems such as tokamaks
lie on constant pressure surfaces characterized by a poloidal
flux function � which satisfies the equilibrium Grad–
Shafranov equation. Using non-orthogonal coordinates (rt , θt )

equilibrium flux surfaces depend on rt only, at lowest order
approximation. The intersections of flux surfaces with a
toroidal plane ϕ = const are non-concentric circles with a shift
toward the exterior equatorial region [9]. We have considered
an equilibrium solution for the Grad–Shafranov equation using
a non-monotonic toroidal current density profile.

In terms of a Hamiltonian formulation of magnetic field
lines, the coordinates (rt , θt ) are related to the action and
angle variables, respectively, of the equilibrium configuration,
the toroidal coordinate ϕ playing the role of time, and
the flux function �(rt ) is, up to a constant factor, an
integrable Hamiltonian [4, 11]. The addition of magnetic
perturbing fields introduces non-integrable contributions to
this Hamiltonian and, in this specific case, we have used fields
created by an ergodic magnetic limiter [12]. The limiter current
can be taken as the perturbation strength. The magnetic field

line equations can be written as canonical equations from the
Hamiltonian, and we can make a Poincaré plot by tracing the
intersections of the field lines with a poloidal plane ϕ = 0
(see [10] for details of the equations and parameter values).

In figure 3 we plot the phase portrait of the resulting
Hamiltonian system for parameters of the TCABR. Due to
the non-monotonic safety factor radial profile there is, in the
equilibrium configuration, a shearless torus (corresponding
to a shearless curve, depicted in red in figure 3) at the local
minimum of the safety factor profile. The ergodic limiter field
excites modes on both sides of this shearless curve and, as
the perturbation is strong enough, a large chaotic region exists
in the outward side of the shearless curve (the ergodic limiter
causes a stronger perturbation near the plasma edge). However,
even with strong perturbation the shearless curve meanders
along the torus and is an internal transport barrier [13, 14].

The previous model takes into account a number of details
for both equilibrium and perturbing magnetic fields. The
complexity of the resulting field line equations demands the
use of numerical methods to obtain the Poincaré map [10].
However, it is possible to derive an analytical map for simpler
models, yet preserving the essential physical features present
in more sophisticated models [15]. One such example is the
area-preserving Ullmann map, whose analytical expressions
can be found in [16].

Just like the numerical map shown in figure 3, the
perturbation caused by the limiter provokes the creation of
a large chaotic region near the tokamak wall (figure 4(a)).
Moreover, the non-monotonicity of the safety factor produces
a shearless transport barrier, indicated as a green curve in
figure 4(a) (see also a magnification in figure 4(b), showing
the chaotic region above the barrier), that remains active even
after the shearless curve has been destroyed after increasing
further the perturbation strength.

In a lowest order approximation plasma particles follow
the magnetic field lines with no collisions. The latter
make the gyroradii of particles suffer randomly oriented
displacements and so too corresponding guiding centers. Thus
we can phenomenologically describe particle collisions in the
Ullmann map by adding a random noise term (to both variables)
after each map iteration [17, 18]. Figure 4(c) illustrates the
addition of such noise term in the chaotic region above the
barrier of figure 4(b) (computed without noise).

It is worth noting that the presence of shearless barrier
is a consequence of extrema of winding number profiles. In
non-monotonic plasma profiles there is a global minimum of
safety factor profile related to a robust shearless barrier near the
plasma edge, this global minimum being a global extremum
of the winding number. However, even for twist maps local
extrema may exist allowing a secondary formation of shearless
barriers of limited extent. An example is provided by the
Ullmann map, where the safety factor profile has been replaced
by a monotonic function. A phase portrait of this twist map
shows a large chaotic region near the plasma edge, as expected
from an ergodic limiter (figure 5(a)). If we analyze the island
remnants buried inside the chaotic region, shearless barriers
of limited extent appear inside the islands (the green curve in
figure 5(b)) as a result of local extrema of the corresponding
winding number profile (figure 5(c)).
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Figure 4. (a) Phase portrait of the Ullmann map; (b) magnification of a region of (a); (c) the same region with noise and the barrier of (b)
copied here to guide the eye.

Figure 5. (a) Phase portrait of the Ullmann map; (b) magnification of a portion of (a); (c) local winding number profile of the island in (b),
indicating local extrema.

4. Particle transport in plasmas

A substantial improvement in the plasma confinement has been
observed in many Tokamaks when the radial electric field
profile is modified by the introduction of a bias electrode [19].
In tokamaks with edge biasing polarization a strong decrease
in the low-frequency component of the fluctuating floating
potential and turbulent-driven particle flux [20] has been
observed. These results motivate the use a drift Hamiltonian
model to investigate particle transport reduction due to a
shearless internal transport barrier caused by a non-monotonic
electric field profile. Although the description of turbulent
systems would require the use of many degrees of freedom, it
turns out that some essential features of turbulent systems, such
as the coexistence of many asymptotic states, can be described
by low dimensional systems [21].

Let us consider, in the slab approximation (large aspect
ratio tokamak near the plasma edge region), a uniform
magnetic field along the toroidal (z) direction and the particle
guiding center E × B drift in the poloidal (y) direction.
Due to the radial (x) particle density gradient in the plasma
edge, a perturbed electric field gives rise to electrostatic

waves responsible for the radial particle drifts. We thus
assume an electrostatic potential of the form φ(x, y, t) =
φ0(x) + A sin(kxx) cos(kyy − ωt), where φ0 is a background
equilibrium potential for the non-monotonic radial electric
field and A, k and ω are, respectively, the amplitude, wave
number and frequency of a drift wave propagating in the
poloidal direction [22]. The particle equations of drift motion
can be regarded as canonical equations from a Hamiltonian
function and have been numerically solved [7, 23].

The intersections of particle trajectories with a Poincaré
surface of section are depicted in figure 6(a). Since φ0(x) has
a non-monotonic profile the drift-wave Hamiltonian does not
fulfill the twist condition for all points in the radial direction and
thus a shearless curve appears as an internal transport barrier
(the black curve in figure 6(a)). The regions with large radial
transport can be described by the so-called trapping function
U(x), with a non-monotonic radial profile, with a maximum
corresponding to a shearless barrier roughly around x = 2
(figure 6(b)) [7]. On both sides of the shearless barrier the
profiles are monotonic and twin island chains are formed. The
zeroes of the trapping function represent resonances, for which
the phase velocity of one wave matches the E×B drift velocity.
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Figure 6. (a) Phase portrait for a one-wave drift Hamiltonian;
(b) radial profile of the trapping function.

Figure 7. Spectral contribution of the turbulent-driven radial
particle flux in TCABR tokamak with and without electrode biasing.

5. Particle transport in TCABR tokamak

If the shearless barrier is located in the scrape-off layer near the
tokamak wall then the transport reduction is not so effective.
However, if a bias electrode is activated it turns out that the
electric field profile changes and the trapping profile is radially
displaced, such that the shearless transport barrier can be
placed at a desired position inside the plasma. Moreover, a
biased electrode causes an enhancement of the maximum value
of the trapping function, extending the region with transport
barriers and, consequently, increasing the transport reduction.
The improvement of the transport barrier after the use of a
biased electrode has been observed in the TCABR through a
decrease in the turbulent-induced particle flux measured in the
scrape-off layer [7].

Figure 7 shows the spectral contribution of the turbulent-
driven radial particle flux in the scrape-off layer of TCABR
with different electrode bias voltages. Without biasing
the particle flux is chiefly observed at low-frequencies of
∼5 kHz, with an exponential-type decay for high frequencies.
This spectral content is decreased with bias voltages of 100
and 300 V. These results are compatible with the inward
displacement of a shearless barrier toward the tokamak edge,
as the introduction of a bias electrode displaces the trapping
function such that its maximum can be located inside the

plasma, where a shearless barrier prevents turbulence-driven
radial transport.

6. Evidence of transport barrier in Texas Helimak

The Texas Helimak is a toroidal device where the magnetic
field is a composition of a main toroidal field and a small
vertical field, such that the magnetic field lines are helices
winding around the vessel and the plasma has a MHD
equilibrium independent from plasma current [24]. Moreover,
the plasma has a vertical velocity vz whose radial profile is non-
monotonic, such that its maximum is related to a shearless
transport barrier. The magnetic shear can be computed
as (1/vz)(dvz/dR), where R stands for the radial position
measured from the Helimak vertical axis.

Biased electrodes have been used in Helimak to perturb the
plasma equilibrium through a modification of the radial electric
field profile. In figure 8(a) we plot two examples of radial
profiles of the vertical velocity shear obtained for different
values of the bias voltage. Such profiles were drawn from
the velocity profile measured by a Doppler spectrometer [25].
In the two examples there is a non-monotonic radial profile,
with the transport barrier being formed at the radius where the
velocity shear vanishes. Complementarily, figure 8(b) shows
the turbulence-driven radial particle fluxes, obtained from the
two shear profiles shown in figure 8(a), computed as indicated
in [26]. In the two examples of figure 8 it is remarkable
that the largest reduction of particle fluxes occurs around the
shearless radial positions, where a transport barrier is predicted
by the model presented in section 4. As in the results from the
TCABR presented in the previous section, the displacement of
the barrier position observed in Helimak also depends on the
bias value (but the strength of the barrier does not increase with
the biasing). It is in fact a strong support for the claim that the
sheer existence of shearless barriers comes from rather general
properties of the Hamiltonian structure of nontwist systems.

Another distinctive feature observed in the Helimak is the
existence of waves propagating along the vertical direction.
When the phase velocity of these waves matches the vertical
plasma velocity there are resonant effects similar to those
observed when the trapping function vanishes in the drift
motion in a tokamak [27, 28]. In fact, as the resonance
condition is not fulfilled, with different phase and plasma
velocities, like in the results presented in sections 5 and 6,
transport barriers are created in the plasma. In addition,
the shearless barrier appears because the nontwist condition
happens in the plasma.

While in the Texas Helimak the main cause of the
transport reduction is a shearless barrier, in TCABR other
barriers, created by almost resonant waves, also contribute
to the transport reduction in addition to the shearless barrier.
Moreover, in TCABR, increasing the bias voltage makes the
reduction stronger because the barriers are displaced inward,
reaching a plasma region with higher density. Furthermore,
the transport could also be reduced by high flow shear as it
has been predicted for monotonic zonal flows [20]. However,
this last possibility is disregarded here because the peculiar
nontwist condition in the zonal flow turns this effect into a
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Figure 8. (a) Shear radial profile in Helimak discharges for two bias voltages. (b) Radial profile of turbulence-driven particle flux in
Helimak for two bias voltages

secondary one. As in the results from the TCABR presented
in the previous section, the displacement of the barrier position
observed in Helimak also depends on the bias value (but the
strength of the barrier does not increase with the biasing).

7. Conclusions

In this work we have summarized our recent theoretical
and experimental work related to the formation of shearless
transport barriers in toroidal plasmas. The underlying
mechanism of such barriers is the non-monotonicity of
radial profiles generating global and/or local maxima of the
corresponding winding number profiles. In tokamaks, for
example, non-monotonic plasma current profiles generate a
shearless torus that, even after it has been broken, continues
to act as an effective transport barrier due to the stickiness of
trajectories. As we have shown in a twist map, even local
maxima of winding numbers can be assigned to localized
barriers inside magnetic islands, with a limited extent. These
observations are also valid for drift motion of particle guiding
centers due to electrostatic drift waves and a non-monotonic
electric field profile.

The existence of shearless barriers has a direct impact on
the transport in toroidal devices. In TCABR a biased electrode
is able to create a non-monotonic electric field profile that
reduces the radial particle flux driven by electrostatic turbulent
fluctuations. Essentially the same observations were made
in the Texas Helimak, where the non-monotonic profile of
interest is related to the vertical velocity of the plasma. In
both experiments the shearless regions are responsible for a
decrease in the radial particle transport, hence improving the
quality of confinement.
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