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Nonmodal energetics of resistive drift waves

Suzana J. Camargo
Universidade Estadual Paulista, Campus de Guaratingueta´, Avenida Dr. Ariberto Pereira da Cunha, 333,

12500-000 Guaratingueta´, São Paulo, Brazil

Michael K. Tippett
Centro de Previsa˜o do Tempo e Estudos Clima´ticos, Instituto Nacional de Pesquisas Espaciais,

Rodovia Presidente Dutra Km 40, 12630-000 Cachoeira Paulista, Sa˜o Paulo, Brazil
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The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear
model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvec-
tors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth
rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and
the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal
growth rates, wave number, and phase shifts~between the density and potential fluctuations! are time depen-
dent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic
parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of
the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The
critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal
linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously
attributed to nonlinearity.@S1063-651X~98!13308-1#

PACS number~s!: 52.35.Kt, 52.25.Gj, 52.35.Ra
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I. INTRODUCTION

A fundamental issue in fluid dynamics is the question
how laminar flows become unstable and eventually tur
lent. A method of studying instabilities is to consider t
time evolution of a perturbation of the laminar flow~@1#, p.
13!. In general, the evolution of the perturbation is describ
by a nonlinear system. However, for small perturbations,
nonlinear system can be approximated by a linear syst
When the background flow is time independent, an eig
mode~‘‘normal mode’’! analysis of the linear system iden
tifies exponentially growing and decaying perturbations. T
dependence of these exponential growth rates on the ge
etry, the Reynolds number, and other parameters allows
theory to make predictions regarding the stability of labo
tory flows.

Normal mode analysis has been applied to many fl
dynamic stability problems with great success. Howev
there are some notable cases where the results of no
mode analysis fail to correspond to observed temporal va
tion and spatial structure of real flows. In particular, norm
mode analysis predicts a transition to turbulence for so
flows at a much higher Reynolds numbers than that see
experiment. Attributing this failure to the linearization of
nonlinear problem has led to the development of theo
which modify or just eliminate the need for linearizatio
such as theenergy method~@1#, p. 431!.

Recent studies have shown that for many physically
evant problems, normal mode analysis only gives a pa
description of the properties of the linear perturbation eq
PRE 581063-651X/98/58~3!/3693~12!/$15.00
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tion @2,3#. When the eigenmodes of the linear system are
orthogonal and complete, or equivalently when the system
nonnormal, the general solution of the system may presen
behavior quite different from that suggested by normal mo
analysis. For example, perturbations in some nonnormal
tems can be amplified by factors of thousands even when
the normal modes of the system are stable@4#. The possibil-
ity of amplification of perturbations in nonnormal flows ha
been known for a long time, but only recently have comp
tational resources made it possible to calculate the ma
tudes involved~see@2# and @5#, and references therein!. Re-
cent applications of nonmodal analysis to physical proble
include nonmodal growth in atmospheric flows@6#, atmo-
spheric turbulence models@7#, the Orr-Sommerfeld equation
@8#, models for the transition to turbulence@9#, and methods
of controlling turbulence@10#.

The study of instabilities in plasmas is heavily based
normal mode analysis~@11#, p. 309! and variational methods
~@12#, p. 251!. Nonlinear stability bounds have been obtain
for magnetohydrodynamic flows~e.g.,@13#!, though the sta-
bility bounds are in general very low. The role of nonno
mality in plasma stability has been studied in a few ca
~e.g.,@14,15#!.

Drift-wave turbulence is considered to be a possible ca
of anomalous transport in the cool plasma edge region
tokamaks@16,17#. In this work we use nonnormal analys
methods to study the linear properties of a drift-wave turb
lence model. The Hasegawa-Wakatani model conside
here @18,19# has been extensively studied in bidimension
@20–22# and tridimensional numerical simulations@23,24#.
3693 © 1998 The American Physical Society



o

y
ly
a

nt

de
y
i
a

vi
th
it

da

n-

at

-
r
e
i

o
s
a

o
h

y
o
m
A

t

n
th

ity
u

s
de-

f
s
sity
is
a-

as-

re-
is a

al
o-
of

o a
rc-

der
us
ar
-
wed
e.

n-

e
s of

-

3694 PRE 58CAMARGO, TIPPETT, AND CALDAS
The linearized Hasegawa-Wakatani equations have been
amined using normal mode analysis~e.g.,@20#!. However, an
analysis of the linear system including time-dependent, n
modal behavior has not been made previously. The role
nonlinearity in drift-wave models is typically examined b
comparing the linear behavior given by normal mode ana
sis with the nonlinear numerical simulation. Therefore
complete understanding of the linear behavior is fundame
to identifying truly nonlinear effects.

In Sec. II the nonlinear Hasegawa-Wakatani model is
scribed. The linear bidimensional Hasegawa-Wakatani s
tem is presented in Sec. III along with the quantities that w
be used to measure its nonmodal behavior. The results
presented and discussed in Sec. IV. The finite-time beha
of solutions with optimally chosen initial conditions and wi
random initial conditions are calculated and compared w
that of the normal modes. The importance of nonmo
growth mechanisms is demonstrated to depend strongly
the adiabatic parameterC. The system presents strong no
modal growth for small values ofC. For large values ofC, the
nonmodal behavior of the system differs little from th
given by normal mode analysis. For small values ofC the
nonnormal growth rates and phase shifts~between the den
sity and potential fluctuations! are time dependent and diffe
greatly from previously obtained normal mode results. Lik
wise, the wave number at which maximum growth occurs
time dependent and differs from those predicted by the n
mal mode analysis. We hypothesize that some propertie
the drift-wave turbulence previously attributed to nonline
terms could also be strongly influenced by the nonnorm
character of the linear system. Finally, a summary and c
clusions are given in Sec. V. In the Appendix, details of t
nonmodal analysis calculation are shown.

II. NONLINEAR MODEL

The model of our studies is the Hasegawa-Wakatani s
tem @18,19#. We consider two-dimensional density and p
tential fluctuations, perpendicular to the static equilibriu
magnetic fieldB5Bẑ; magnetic fluctuations are neglected.
nonuniform equilibrium densityn0 with density gradient
dn0 /dx in the negativex direction is considered, such tha
the equilibrium density scaleLn5n0 /udn0 /dxu is constant.
The ions are cold and the electrons are isothermal,Ti!Te
[T. Therefore temperature gradients and fluctuations are
glected, as well as finite Larmor effects. We assume that
fluctuation length scales satisfy the usual drift orderingki
!k' . The equations for the time evolution of the dens
and potential fluctuations are two coupled nonlinear eq
tions given by@18,19#

]

]t
¹'

2 f1~ ẑ3“'f!•“'¹'
2 f5C~f2n!1Df, ~1!

]

]t
n1~ ẑ3“'f!•“'n1

]f

]y
5C~f2n!1Dn, ~2!

where the usual dimensionless variables are

x→
x

rs
, y→

y

rs
, t→t

cs

Ln
~3!
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and the normalized potential and density fluctuations are

f→
ef

T

Ln

rs
, n→

n

n0

Ln

rs
, ~4!

rs is the drift-wave dispersion scale@rs
25c2MiT/(e2B2)#;

cs is the sound speed (cs
25T/Mi).

The adiabaticity parameterC, which couples the equation
linearly and determines the character of the system, is
fined as@20,21#

C5
T

n0e2h i

ki
2

cs /Ln
, ~5!

whereh i is the resistivity of the plasma in the direction o
the magnetic field. In the limitC@1, the electron response i
almost adiabatic, meaning that the fluctuations of the den
follow very nearly the fluctuations of the potential. In th
limit, Eqs. ~1! and ~2! reduce to the Hasegawa-Mima equ
tion @25#. In the opposite limit,C!1, Eq. ~1! reduces to the
Navier-Stokes equation, where density fluctuations are p
sively advected.

The viscous and diffusive dissipation termsDf and Dn,
respectively, are chosen to have the form

Df52n¹'
6 f, Dn52n¹'

4 n, ~6!

in order to confine the dissipation to the smallest scales
solved in the system. The Hasegawa-Wakatani system
simple model for drift-wave turbulence in a collision
plasma with a magnetic field without shear. It is an auton
mous system describing the excitation and damping
modes in terms of a few collisional parameters, leading t
stationary level of turbulence without need of external fo
ing @20#.

We usually choose time scales in our study of the or
t510–100, as we want to compare our work with previo
numerical simulations of the bidimensional nonline
Hasegawa-Wakatani system@20#. In those nonlinear numeri
cal simulations, there are two phases, a linear phase follo
by a nonlinear phase with a stationary turbulent regim
Since usuallyki is not measured,C should be estimated from
scaling laws conjectured for drift-wave dispersion. We co
sider a large interval of possible values forC. In most cases,
we chooseC51025, 1023, 0.1, and 1. When we consider th
growth rates and their corresponding modes as function
C, C varies in the interval 1025–10.

III. LINEAR MODEL

To study the linear properties of the system of Eqs.~1!
and~2!, we neglect the nonlinear terms and expandf andn
in a double Fourier series inx andy. For any wave number
pair k5(kx ,ky) the time evolution of the Fourier compo
nents off andn has the form

d

dt
uk5Akuk , ~7!

where
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uk5S fk

nk
D , ~8!

Ak5S 2C/k22nfk4 C/k2

2 iky1C 2C2nnk4D , ~9!

k5Akx
21ky

2. ~10!

There is no coupling between distinct pairs of wave nu
bers. This property greatly reduces the numerical cost of a
lyzing the problem.

Assuming that the time dependence of the perturbation
exponential, e.g.,;egt, reduces Eq.~7! to the eigenvalue
problem

~gI2A!u50, ~11!

whereu is the vector containing all the Fourier componen
uk andA is the block-diagonal matrix with entriesAk ; if the
number of modes inkx and inky is N thenu is a vector of
length 2N2 andA is a 2N232N2 matrix. Equation~11! has
a nonzero solution if and only ifg is an eigenvalue ofA. The
normal mode growth rateb05Reg is calculated by finding
the eigenvalue ofA with the largest real part.

Previous studies have given a normal mode analysis
the linear Hasegawa-Wakatani equations by solving Eq.~11!
~e.g.,@20#!. An analysis of theapproximatesolutions of Eq.
~11! or equivalently a nonnormal analysis of Eq.~7! has not
been presented previously. The non-normal analysis all
time-dependent, nonmodal behavior rather than imposing
exponential time dependence.

The fundamental reason that Eq.~7! can present differen
behavior from that suggested by its normal mode analys
that the matrixA is non-normal. That is to say, it does no
have a complete set of orthogonal eigenvectors or equ
lently it does not commute with its adjoint~@26#, p. 313!.
Since both the notion of orthogonality and adjoint depend
the choice of inner product, it is necessary to use an in
product coming from a physically relevant norm. The mo
obvious choice of normi•i is that coming from the tota
energy of the fluctuationsE given by

E5
1

2E d2x~ u¹'
2 fu21n2!5

1

2(k
~k2fk

21nk
2!, ~12!

an invariant of the purely nonlinear Hasegawa-Wakatani s
tem @20#. It is a direct calculation to verify that the dynam
cal operatorA, which describes the linear evolution of th
Hasegawa-Wakatani system is a nonnormal operator with
spect to the energy norm. In this norm,iuki corresponds to
the energy density of the modek.

The range of behavior possible in this model and the n
to account for both modal and nonmodal behavior can
seen by considering two extreme limiting values ofC. First,
for C@1, neglecting all terms that do not containC gives

d

dtS kfk

nk
D 5S 2C/k2 2C/k

C/k 2C D S kfk

nk
D . ~13!

This system is normal with respect to the energy inner pr
uct and its behavior is modal. The nondissipative limit,C
-
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50, gives fk5const andnk52 ikytfk1const, nonmodal
algebraic growth. For intermediate values ofC we expect to
see a mixture of modal and nonmodal behavior. Algebr
growth was also observed in nonlinear simulations of
tridimensional Hasegawa-Wakatani system@23,24#.

The basic quantities used in our investigation of the lin
Hasegawa-Wakatani system are the energy growth ratioj(t)
defined as the ratio of the fluctuation energy at timet to the
initial fluctuation energy:

j~ t !5
iu~ t !i
iu~0!i , ~14!

and its growth rateb(t) defined byb(t)5t21ln j(t). The
ratio j(t) depends on the choice of initial fluctuationsu(0)
and time. We shall examine the energy growth ratioj(t) for
several choices of initial conditions using subscripts to d
tinguish these choices. We use the notationj0(t) to indicate
thatu(0) is taken to be the eigenvector ofA whose real part
is b0. Then

j0~ t !5eb0t. ~15!

Note thatb05t21ln j0(t) is the normal mode growth rate an
is constant in time. We use the notationj1(t) for the case
whereu(0) is chosen such thatj is maximized, i.e.,

j1~ t !5max
u~0!

iu~ t !i
iu~0!i . ~16!

The quantityj1(t) is related toA by j1(t)5ieAti and is the
largest factor by which the initial fluctuation energy can
amplified at timet. The exponential of a matrix can be de
fined, for instance, by a power series~@26#, Sec. 11.3!. If A is
normal,j1(t)5j0(t) at all timest and the maximum growth
is modal. More generally,j1(t)>j0(t) and there are initial
fluctuations that grow more than do normal modes. Ho
ever, enhanced nonmodal growth cannot be maintained
definitely and in the limit of large time the limit~@27#, Prob-
lem 74!

lim
t→`

b1~ t !5b0 ~17!

must be satisfied.
It is important to note that when the dominant behavior

genuinely nonmodal, the fluctuation initial value that pr
duces maximum growth at a particular time will not nece
sarily be the fluctuation initial value that produces maximu
growth at any other time. Therefore, to see the behavior o
singlechoice for the initial value of the fluctuationsu(0), we
define the following energy growth ratios:j2(t)—the initial
condition is chosen to produce maximum growth in the lim
of large time,j3(t)—the initial condition is chosen to pro
duce maximum growth at a specified finite timet, and
j4(t)—the initial condition is chosen to produce maximu
growth in the limit of small time. Recall again that for no
mal systems all these growth ratios coincide. The final m
sure of the energy growthj5(t) is obtained by considering
the time evolution of suitably normalized random initial co
ditions. Note that by constructionj1(t) is the upper bound
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FIG. 1. ~a! The quantity@a(e)2a(0)#/e plotted as a function ofe for C51025 ~solid line!, C51023 ~dotted line!, andC51 ~dashed
line!. The spectrumL(A) ~black! and e pseudospectrumLe(A) ~gray! plotted in the complexz plane for~b! C51025 and e51024, ~c!
C51023, ande53.231023, and~d! C51 ande51021. ~d! shows only the most unstable branch of the spectrum.
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for all these quantities,j1(t)>j0,2,3,4,5(t). Details of the cal-
culation of these ratios are given in the Appendix.

In Sec. IV we investigate numerically the various ener
growth ratios, emphasizing their dependence onC and on the
time scale. The absence of mode coupling reduces the n
ber of modes that must be considered in the numerical
culations. Our calculations show that for the time scales c
sidered both the modal and nonmodal behavior of the sys
is determined by relatively low wave numbers. Once the
dominant wave numbers are included in the model, add
more modes has no effect on the calculation of the quanti
j$024% . In most of our calculations, the number of modes
N532. The quantityj5(t) depends on all the wave numbe
in the system, as it is calculated assuming that the energ
the random initial conditions is homogeneous in Four
space with unit total energy~see the Appendix!. Taking N
532 is therefore an assumption on the spectrum of the r
dom initial condition. The value taken for the dissipation
in most cases,n51025 which is the order of magnitude
considered previously in nonlinear numerical simulatio
@20#.

IV. RESULTS

A. Spectra and pseudospectra

In this section the transient growth properties of the d
namics are shown to be connected to thepseudospectrumof
y

m-
l-

n-
m
e
g
s

of
r

n-
,

s

-

A obtained by the approximate solution of the eigenva
problem~11!. The set of eigenvalues orspectrumof a matrix
A is the setL(A) of complex numbersz such that (zI2A) is
singular. In Figs. 1~b!–1~d!, we plot in the complexz plane
the spectra~in black! of A, for C51025, C51023, and C
51. The values of the modal growth rateb05max ReL can
be simply read from these figures. The modal growth rate
a strong dependence onC, as already noted in@20#; the val-
ues of the spectra and the form of the spectra change witC.
The pseudospectrum of a non-normal matrix may prov
more information than its spectrum@8,28#. The pseudospec
trum is defined as follows. The complex numberz is in thee
pseudospectrumLe(A) if zPL(A1E) for iEi<e. Note
that L0(A)5L(A). If zPLe(A) then it is in some sense a
approximate eigenvalue, in that there is some vectoru such
that iAu2zui<e.

Analysis of the pseudospectrum gives a stronger con
tion on energy growth than does analysis of the spectr
Just as the normal mode growth rate depends on how far
spectrum extends into the real half-plane, analogously,
nonmodal energy growth depends on how far the ps
dospectrum ofA extends into the right half plane. This ide
is made explicit by defining the extensiona(e) of the pseu-
dospectrum into the right half plane by

a~e!5 max
zPLe~A!

Rez. ~18!
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Note thata(0)5b0 is the growth rate given by normal mod
analysis. The first result usinga(e) is thatj1(t)5eb0t if and
only if for all e.0, a(e)2a(0)<e, that is to say, if a
perturbation of sizee to A moves its eigenvalues by at mo
a distancee further into the real half plane@8#. Secondly, it
can be shown that@8#

max
t>0

j1~ t !5max
t>0

ieAti>max
e.0

a~e!2a~0!

e
eb0t. ~19!

Hence, if @a(e)2a(0)#/e.1 there are fluctuations tha
grow more than predicted by normal mode analysis.

The calculation of thee pseudospectra is computational
expensive. An estimate ofLe(A) can be obtained relatively
inexpensively using the following Monte Carlo approac
The eigenvalues of (A1E) are calculated whereiEi5e and
E is a complex matrix whose entries are independently
tributed Gaussian random variables with mean zero and
variance. Repeating this calculation for many realizations
E gives an estimate ofLe(A). Figures 1~b!–1~d! show
Monte Carlo estimates of the pseudospectrum~in gray! using
ten realizations for particular values ofe. In Fig. 1~a! the
quantity @a(e)2a(0)#/e estimated by the Monte Carl
method using 50 realizations is plotted. Figure 1~a! shows
that the casesC51025 and C51023 produce transien
growth that is at least a factor of, respectively, 45 and
greater than the normal mode exponential growth@see Eq.
~19!#. For C51, @a(e)2a(0)#/e'1, the same as for a nor
mal matrix. This result combined with the previous rema
shows that for the caseC51, the pseudospectrum does n
predict energy growth greater than that given by norm
mode analysis.

For the casesC51025 and C51023, the quantity@a(e)
2a(0)#/e is found to be a function ofe, @a(e)2a(0)#/e
'O(e2p), for values ofe that are not too small (1024<e
<1) with p50.35 andp50.40, respectively. Such nonan
lytic ~fractional power! dependence of the eigenvalues
perturbation size is typical of non-normal matric
~ @29#, p. 77!. For very small values ofe, the behavior is
more complex. A reason for there being two types of beh
ior is that the most sensitive eigenvalues„i.e., ones that make
@a(e)2a(0)#/e large… are not the most unstable eigenvalu
@i.e., ones close toa(0)5b0#. For relatively large values o
e, perturbations to the most sensitive eigenvalues ofA domi-
nate the calculation ofa(e). However, if the most sensitive
eigenvalues are not the most unstable ones, then for s
enough values ofe, @a(e)2a(0)#/e will reflect only the
properties of the most unstable eigenvalues. Numerical
culations~not shown here! support this explanation. The re
evant consequence of this point is that enhanced nonm
growth is due to a different part of the spectrum~different
wave numbers! than that which produces maximum mod
growth.

B. Energy growth ratios

We now examine in detail the various energy growth
tios. Figure 2 shows the time evolution of the energy grow
ratios j$025%(t) for C51025, 1023, 0.1, and1.0. First, we
discuss some general features of the modal growthj0(t) and
maximum growthj1(t) curves. For large time the relatio
.
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b1(t)5b0 must hold, i.e., the curvesj0(t) and j1(t) must
be parallel. The time required forb1(t) to approximateb0

depends on the adiabaticity parameterC; for largeC ~0.1 and
1.0!, j0(t) and j1(t) are virtually indistinguishable for al
values oft. Figures 2~a! and 2~b! show that fort,50 and
small C, b1(t) and b0(t) are different. For the case ofC
51025, j0(t) and j1(t) are still not parallel att5100; for
C51023, the energy ratio growth rate relaxes to the mod
one at aboutt550. Increased nonmodal small-time grow
causes the difference between the curvesj1(t) andj0(t) at
t5100 to beO(100) andO(10) for C51025 and C50.1,
respectively. We note that the lower bounds obtained fr
the pseudospectra and Eq.~19! are satisfied.

The energy growth ratio curvej2(t) shows the time evo-
lution of the energy of fluctuations whose initial values a
chosen so thatj coincides withj1(t) for large time. As
shown in the Appendix, the wave numberk of these fluctua-
tions is the same as that of the dominant modal instabil
However, the partitioning offk andnk is such that enhance
~compared to modal! growth is achieved@30#. In general, the
limit j2(t)→j1(t) is satisfied only in the limit of large time
However, for this system, only for the caseC51023 is there
visible difference between thej2(t) and j1(t) curves. An
explanation for this behavior is that forC51023 the wave
number of the modal instability presents relatively we
nonmodal instability while in the other cases, the wave nu
ber of the modal instability also presents a strong nonmo
instability. In the next section we examine in more detail t
wave number dependence and confirm this explanation@see
Fig. 3~b!#. The energy growth ratioj3(t) shows the time
evolution of fluctuations whose initial values are chosen
that j3(t)5j1(t) for t5100/3. For the caseC51023 and
for t.50, j3(t) grows with a rate less than the maximu
modal growth rate, indicating in this case that the wave nu
ber leading to maximal finite-time growth is different from
the wave number at which the maximal modal growth o
curs. Only for the caseC51023 is there visible difference
between thej1(t) and j3(t) curves for the same reason
mentioned above.

The curvej4(t) shows the evolution of fluctuations wit
maximum initial growth, i.e., the curvej4(t) is tangent to
j1(t) at t50. Maximum initial growth does not lead to long
time maximum growth. In all the cases,j4(t) eventually
grows at a rate less than the modal growth rateb0. This
behavior implies that forall the values ofC considered, the
normal modal analysis does not identify the wave numb
which present maximum short-time nonmodal growth. F
the caseC51025 the growth ofj4(t) is not too much less
than j1(t). Later we show that this is due to the relative
weak dependence of the nonmodal growth rate on the w
number.

A curve of special interest is that ofj5(t), which corre-
sponds to the time evolution of the energy averaged o
homogeneous, uncorrelated random initial conditions. In
itively, this scenario would seem to be a reasonable mode
what happens in experiments; all modes are excited, ra
than one particular mode. Looking at Fig. 2, we note that
small values ofC and small time,j5 follows well the j1
curve. This behavior suggests that for these values ofC and
time scales, nonmodal growth is not isolated to a few wa
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FIG. 2. Time evolution of the normsj$025%(t) ~dotted, solid, dash, dash-dot, dash-dot-dot-dot, and long dash! for ~a! C51025, ~b! C
51023, ~c! C50.1, and~d! C51.
co

s

t

t
en
e
h
re

e
s

er

ue
ca
on
a
a
x-
th
t

ime
dal

dal
gth

e
t
to

ar

tio
y a
nce

ate
th
numbers but is a broad-spectrum phenomena, as will be
firmed later. Eventually,j5(t) must be parallel toj0 as
modal behavior dominates. In general,j5 will be less thanj0
since the average is over all wave numbers and modal in
bility is found only at a few wave numbers. Figure 2~b!
shows quite clearly the transition ofj5 from nonmodally
dominant to modally dominant behavior@not shown here bu
eventuallyj5(t) is indeed parallel toj0(t)#. Figures 2~c! and
2~d! for C50.1 andC51, respectively, show that withou
broad-spectrum initial nonmodal growth, the expected
ergy of the random initial condition requires some time b
fore the effects of the modal instability begin to be seen. T
phenomenon of uncorrelated random initial conditions
quiring time to ‘‘organize’’ before growing is well known in
the meteorological literature and has generated several t
niques for calculating ‘‘optimal’’ random initial condition
for use in ensemble forecasting@31,32#. Again in this case as
the modal instabilities are confined to a few wave numb
and the average is over all wave numbers,j5 is less thanj1.

In summary, the general features are that for small val
of C the normal mode growth rate and associated time s
does not give a complete picture of the linear system; n
modal growth is larger than modal growth. Second, in
cases the normal mode analysis does not identify the w
number at which maximum initial growth occurs. Third, e
amining the response to random initial conditions shows
the nonmodal behavior is robust for the smallC case and tha
n-
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for largeC the presence of damped modes lengthens the t
it takes for the initially unorganized system to produce mo
growth.

An important point is that forC51025, the modal growth
rate is small, suggesting a long time scale, but the nonmo
growth is in reality much faster, as can be seen by the len
of the nonmodal phase@comparej0 and j1 in Fig. 2~a!#.
Similar dependence onC was observed when we studied th
nonlinear turbulent system, for smallC a saturated turbulen
state was reached rather fast, while it took a long time
reach a saturated state for large values ofC @20#. Therefore
the non-normality might explain some features of the line
phase of a turbulent system.

C. Growth rates

A number of the features seen in the energy growth ra
curves of the preceding section can only be explained b
more detailed examination of the wave number depende
of the growth ratesb. In Fig. 3 we showb1(t) (t510, t
550, andt5100) andb0 as functions ofky for kx[0 and
C51025, C51023, C50.1, andC51. The magnitude of the
finite-time growth rates for smallC and t510 are slightly
larger than those forC50.1 ~approximately theC that gives
the maximum modal growth rate!. This dependence onC is
exactly the opposite of that seen in the modal growth r
which peaks for C;0.1 and decreases on bo
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FIG. 3. The growth ratesb1(t) @t510 ~dotted!; t520 ~dashed!; t550 ~dashed-dot!; t5100 ~dash-dot-dot-dot!# and b0 ~solid! as
functions ofky for ~a! C51025, ~b! C51023, ~c! C50.1, and~d! C51.
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sides. Also as was suggested by the behavior ofj5(t), the
nonmodal growth for smallC is a broad-spectrum phenom
enon. As the timet increases, the limitb1(t)→b0 must
hold. The rate of convergence ofb1(t) to b0 depends onC.
For small C the convergence is slow; forC51025 and C
51023 theb(t5100) andb0 curves are quite distinct. AsC
increases, the time scale for convergence becomes sm
Also asC increases this convergence is nonuniform inky ;
b1(t)→b0 first for small values ofky .

The fact that the modes corresponding to largeky are in
reality growing~i.e., are not damped! for small values ofC

FIG. 4. The growth ratesb1(t) and b0, for C51025 ~dotted;
solid! andC50.1 ~dot-dash; dashed!.
ler.

even as larger times are considered@see Fig. 3~a!# may be
significant in nonlinear numerical simulations of drift-wav
turbulence where there is coupling between modes. If th
modes were damped, a certain spatial resolution and diss
tion would be sufficient to study that case. However, if the
modes are in reality growing, the spatial resolution and d
sipation will not be adequate and could adversely influe
the numerical simulations.

In Fig. 4 we compareb0 andb1 as functions of time for
two values ofC, C51025 andC50.1. The influence of the
parameterC on the modal growth rateb0 is very strong.
However, for small time (t,20) the nonmodal growth rate
for the two cases are comparable; in both cases there is
hanced nonmodal growth. To compare the effect of the
perviscous dissipationn on the growth ratesb0 andb1, we
repeat this calculation in Fig. 5. We notice that forC
51025 @Fig. 5~a!# the difference of the growth ratesb0 and
b1 for n51025 andn50.1 is very small. By comparison, fo
C50.1 the difference of the growth rates for these two d
ferent values ofn is bigger, especially for smaller times
Therefore we can conclude that the influence of dissipatio
more important in the adiabatic regime~bigger values ofC)
and for smaller times. This role of viscosity is to be expec
since for smallC both the modally and nonmodally unstab
wavelengths are long and while for largeC they are small
~see Fig. 3!.
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FIG. 5. The growth ratesb1(t) andb0 plotted as functions of time forn51025 ~dotted; solid! andn51021 ~dot-dashed; dashed! with
~a! C51025 and ~b! C50.1.
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In Fig. 6~a! we show the growth ratesb0 and b1(t) (t
510, t520, t550, andt5100) as functions ofC. For large
values ofC (C.1) b0 andb1 coincide for all values oft.
For small values ofC, b0 differs greatly fromb1(t). For
small enoughC, b1(t) does not depend onC and theC50
result of pure algebraic growth;kyt is recovered, as alread
observed in@23,24#. Figure 6~b! shows the wave number
corresponding to the growth rates in Fig. 6~a! as a function
of C. We denote byk0

max andk1
max(t) the perpendicular wave

number corresponding to the growth ratesb0 and b1(t) (t
510, t520, t550, andt5100). The behavior we see is th
following. At a particular timet, the maximum growth wave
number is the same as the maximum modal growth w
number,k1

max(t)'k0
max for values of the adiabatic paramet

C above some cutoffCcrit(t). However, if the adiabatic pa
rameter is less than the critical one,C,Ccrit(t), then the
maximum growth wave number is the same as the short-t
maximum energy growth wave number,k1

max(t)'k1
max(10).

For values ofC near the cutoff there is a transition regio
connecting the modal and nonmodal behavior. The cu
valueCcrit(t) is a decreasing function of time.
the
e

e

ff

D. Phase shifts

A quantity of interest for transport studies is the the pha
shift dk betweennk andfk defined by@20,33#

dk5Im ln nk
†fk . ~20!

In nonlinear numerical simulations, the phase shift has b
calculated by averaging Eq.~20! over realizations or in time.
A normal mode linear phase shiftdk

0 is calculated by taking
nk andfk to be the components of the modal instability wi
wave numberk. In analogy, a nonmodal finite-time phas
shift dk

1(t) can be calculated by using the components of
dominant nonmodal instability with wave numberk. In Fig.
7 we compare the linear phase shiftsdk

0 and dk
1(t) for kx

[0 for various values ofC andt. For all values ofC consid-
ered @Figs. 7~a!–7~d!# the nonmodal phase shift is initially
larger than the modal one and for larger times they tend
have the same values. The larger the value ofC the faster this
agreement is reached; forC51 @Fig. 7~d!# both phase shifts
already coincide for all values ofky at t510. In contrast, for
C51025 @Fig. 7~a!# the phase shifts still differ at a timet
5100. The nonmodal phase shift first agrees with
FIG. 6. ~a! The growth ratesb0 ~dot-dot-dot-dash! andb1(t) for t510 ~solid!, t520 ~dotted!, t550 ~dashed!, and t5100 ~dot-dash!
plotted as functions ofC. ~b! Values ofk0

max andk1
max(t) for the same values oft ~and line styles! plotted as a function ofC.
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FIG. 7. Normal mode linear phase shiftdk
0 and nonmodal linear phase shiftdk

1(t) (t510, t520, t550, andt5100) as a function ofky

for ~a! C51025, ~b! C51023, ~c! C50.1, and~d! C51. Herers50.005,N52000, andkx[0.
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modal phase shift for small values ofky and this agreemen
reaches larger values ofky for longer times.

The linear phase shiftdk
5(t) found by calculating the ex

pected value of Im lnnk
†fk is shown in Fig. 8;dk

5(t) is cal-
culated in the same fashion asj5(t). In the limit of large
time dk

5(t) also goes to the normal mode linear phase shif
doesdk

1(t) ~see Fig. 7!. The finite-time valuesdk
5(t) are quite

different from those calculated in Fig. 7 for small values oC
and small wave numbersky . dk

1(t) anddk
5(t) only differ for

C51025 and C51023 and for wave numbersky,0.1. In
these casesdk

5(t) is smaller than the normal mode line
phase shift, whiledk

1(t) is larger than the latter. ForC50.1
time dependence is seen only for short times and large w
numbers. ForC51 the phase shift is time independent for t
time scales shown.

The phase shifts obtained here can be compared to
nonlinear phase shifts calculated in nonlinear numer
simulations forC50.1 andC51 @20#. The linear and nonlin-
ear phase shifts are very different forC50.1; in this case, the
nonlinear phase shift is strongest at lowk and drops towards
zero elsewhere, a tendency that is thought to be due to
turbulent advection, which tends to randomize the relati
ship betweenn andf @20#. ForC51 the nonlinear and linea
phase shifts have the same dependence onk, though the non-
linear phase shift is still lower than the linear ones. For init
random conditions~with a chosen covariance! the ensemble
s

ve

he
l

he
-

l

averaged phase shiftsd5
k are initially smaller than the norma

mode linear phase shiftd0
k for small values ofky , which

confirms this tendency that randomization diminishes
phase shifts.

V. CONCLUSIONS

We have examined the modal and nonmodal behavio
the linear Hasegawa-Wakatani drift-wave model. Nonmo
behavior plays a role in this system because it is non-norm
i.e., it does not have a complete set of orthogonal eigenv
tors. The key parameter in the system is the adiabatic par
eterC. ForC@1, the eigenvectors are complete and orthog
nal with respect to the energy inner product; normal mo
analysis gives a complete description of the system. FoC
50, the system does not have a complete set of eigenvec
and the growth is nonmodal. For intermediate values ofC we
have shown that relative importance of the modal and n
modal behavior is time scale dependent. Our main con
sion is that for a given time scale, there is aCcrit such that for
C,Ccrit the behavior is nonmodal and forC.Ccrit the behav-
ior is modal. Detailed results supporting this conclusion
the following.

~1! The pseudospectrum of the Hasegawa-Wakatani
tem shows that for smallC, nonmodal growth is larger than
the modal growth predicted by the spectrum; this nonmo
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FIG. 8. Ensemble averaged linear phase shiftdk
5(t) (t510, t520, t550, andt5100) as a function ofky for ~a! C51025, ~b! C

51023, ~c! C50.1, and~d! C51. Herers50.005,N52000, andkx[0.
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growth occurs at different wave numbers than the maxim
modal growth.

~2! For C!1, drift waves with b0'0 have nonmodal
growth rates comparable to the modal growth rates of
most unstable drift waves (C50.1).

~3! The nonmodal behavior is generally a broad-spectr
phenomenon. A consequence of this point is that ene
growth averaged over random initial conditions is greater
drift waves withC!1 than for drift waves withC;1 where
narrow-spectrum modal behavior is dominant.

~3! Fluctuations that grow fastest initially maintain stron
growth only in the caseC51025. A consequence of this is
that even forC51, where the behavior is mostly normal, th
linear behavior on very short time scales (t!1) differs from
the normal mode analysis.

These conclusions suggest that two properties of the n
linear simulations of the Hasegawa-Wakatani, which w
not explained by the normal mode analysis, should be ex
ined again in the light of the nonmodal analysis. The first
the effect of the adiabatic parameterC on the time required
for a saturated turbulent state to be reached. The satura
time was found to decrease for smallC @20#. As the modal
growth rate decreases for smallC, the decrease in saturatio
time was previously attributed to nonlinear effects. Howev
we have seen two mechanisms that might account for
behavior for smallC, ~i! the nonmodal growth rates are no
small and~ii ! the nonmodal instability is broad spectrum
e

y
r

n-
e
-

s

ion

r,
is

These mechanisms could have been factors in the nume
stability considerations that limited the nonlinear simulatio
to values ofC that were not too small@20#. The other prop-
erty attributed to nonlinear effects was the saturation lev
which was found to increase for smallC and to be due pri-
marily to density fluctuations@20#. This feature can be ex
plained by the algebraic growth of density fluctuations tha
present for smallC. Another possible consequence of no
modal analysis is that the nonmodal finite-time phase sh
could help explain the enhancement of transport for cer
wave numbers at given adiabaticity parameters@33#.
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APPENDIX

We introduce new variablesck defined by

ck5Mk
1/2uk , ~A1!

where
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Mk5
1

2Fk2 0

0 1G . ~A2!

The advantage of these variables is thatiui5ici2 where
i•i is the energy norm andi•i2 is the usual root mean squa
norm, allowing the use of standard methods to compute
various energy growth ratios. Equation~7! becomes

d

dt
ck5Bkck , ~A3!

where

Bk5M1/2AkM
21/2. ~A4!

Note that since Eq.~A4! is a similarity transformA and B
have the same eigenvalues and hence the same modal g
properties.

The energy growth ratiosj and growth ratesb are com-
puted as follows. First,

b05 max
zPL~B!

Rez, ~A5!

andj0(t)5eb0t. Then,

j1~ t !5ieBti25max
k

ieBkti2 . ~A6!

Note that since there is no mode coupling only the ma
exponential of 232 matrices must be calculated. Then,

j2~ t !5ieBtyi2 , ~A7!

wherey is the left eigenvector ofB whose eigenvalue ha
real partb0 @3#. Then,

j3~ t !5ieBtvi2 , ~A8!

wherev is the leading right singular vector ofeBt ~@26#, Sec.
2.5.3!. Then,

j4~ t !5ieBtwi2 , ~A9!
c

ids
e

wth

x

wherew is the leading eigenvector of (B†1B) @2#.
The growth rate ratioj5(t) is computed by considering a

ensemble of initial conditionsc(0). In particular, suppose
that the mean of the ensemble is zero,

^c~0!&50, ~A10!

and that the covariance is given by

^c~0!c~0!†&5Q, ~A11!

whereQ is the covariance matrix;̂ & denotes ensemble av
erage. Then, the ensemble averaged initial energy is

^ic~0!i2
2&5^tr c~0!c~0!†&5tr Q, ~A12!

and the expected energy at timet is

^ic~ t !i2&5^tr c~ t !c~ t !†&5^tr eBtc~0!c~0!†eB†t&

5tr eB†tQeBt. ~A13!

The simplest choice ofQ and the one we use here isQ
5I/tr I, i.e., uncorrelated random initial conditions with e
pected unit initial energy and therefore

j5
2~ t !5

1

2N2(k
tr eBk

†teBkt. ~A14!

Unlike the other energy growth ratios,j5(t) depends onall

the wave numbers of the system. The quantity treB†teBt con-
verges as more modes are included (N→`) for any t.0.
Thereforej5(t) depends onN in two ways:~i! the truncation
involved in the calculation of treB†teBt and ~ii ! the normal-
izing factor N22/2. While the number of modes used her
N532, gives reasonable approximations to the quan
tr eB†teBt, we do not claim convergence in all cases. F
instance, forC51 andC51025 the percentage error betwee
tr eB†

eB (t5100) usingN532 andN564 is (3.931025)%
and 7.8% respectively. Therefore the choice ofN532 in the
calculation ofj5 is an assumption on the energy spectrum
the random initial conditions.
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