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The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear
model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvec-
tors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth
rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and
the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal
growth rates, wave number, and phase slilfetween the density and potential fluctuatioase time depen-
dent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic
parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of
the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The
critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal
linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously
attributed to nonlinearity.S1063-651X98)13308-1

PACS numbegp): 52.35.Kt, 52.25.Gj, 52.35.Ra

[. INTRODUCTION tion [2,3]. When the eigenmodes of the linear system are not
orthogonal and complete, or equivalently when the system is

A fundamental issue in fluid dynamics is the question ofnonnormaj the general solution of the system may present a
how laminar flows become unstable and eventually turbubehavior quite different from that suggested by normal mode
lent. A method of studying instabilities is to consider the analysis. For example, perturbations in some nonnormal sys-
time evolution of a perturbation of the laminar flgjd], p.  tems can be amplified by factors of thousands even when all
13). In general, the evolution of the perturbation is describedhe normal modes of the system are stdddle The possibil-
by a nonlinear system. However, for small perturbations, théty of amplification of perturbations in nonnormal flows has
nonlinear system can be approximated by a linear systenbheen known for a long time, but only recently have compu-
When the background flow is time independent, an eigentational resources made it possible to calculate the magni-
mode (“normal mode™) analysis of the linear system iden- tudes involvedsee[2] and[5], and references thergirRe-
tifies exponentially growing and decaying perturbations. Thecent applications of nonmodal analysis to physical problems
dependence of these exponential growth rates on the georimclude nonmodal growth in atmospheric flo], atmo-
etry, the Reynolds number, and other parameters allows thepheric turbulence mode]g], the Orr-Sommerfeld equation
theory to make predictions regarding the stability of labora{8], models for the transition to turbulenf®|, and methods
tory flows. of controlling turbulencé10].

Normal mode analysis has been applied to many fluid The study of instabilities in plasmas is heavily based on
dynamic stability problems with great success. Howevernormal mode analysi§11], p. 309 and variational methods
there are some notable cases where the results of norm@ll2], p. 251. Nonlinear stability bounds have been obtained
mode analysis fail to correspond to observed temporal varigor magnetohydrodynamic flow.g.,[13]), though the sta-
tion and spatial structure of real flows. In particular, normalbility bounds are in general very low. The role of nonnor-
mode analysis predicts a transition to turbulence for somenality in plasma stability has been studied in a few cases
flows at a much higher Reynolds numbers than that seen ite.g.,[14,15)).
experiment. Attributing this failure to the linearization of a  Drift-wave turbulence is considered to be a possible cause
nonlinear problem has led to the development of theorie®f anomalous transport in the cool plasma edge region of
which modify or just eliminate the need for linearization tokamaks[16,17. In this work we use nonnormal analysis
such as thenergy method1], p. 432. methods to study the linear properties of a drift-wave turbu-

Recent studies have shown that for many physically reHdence model. The Hasegawa-Wakatani model considered
evant problems, normal mode analysis only gives a partiahere[18,19 has been extensively studied in bidimensional
description of the properties of the linear perturbation equaf20—22 and tridimensional numerical simulatiofig3,24].
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The linearized Hasegawa-Wakatani equations have been eand the normalized potential and density fluctuations are
amined using normal mode analysisg.,[20]). However, an

analysis of the linear system including time-dependent, non- ep L, n Ly

modal behavior has not been made previously. The role of d’_’Tp_s’ ”_’n_o P_s' )
nonlinearity in drift-wave models is typically examined by

comparing the linear behavior given by normal mode analy,,  is the drift-wave dispersion scafg?2=c?M;T/(e?B?)];
sis with the nonlinear numerical simulation. Therefore ac_is the sound speed:izT/Mi).

complete understanding of the linear behavior is fundamental The adiabaticity parameté; which couples the equations

to identifying truly nonlinear effects. _ . linearly and determines the character of the system, is de-
In Sec. Il the nonlinear Hasegawa-Wakatani model is de,oq as[20,21]

scribed. The linear bidimensional Hasegawa-Wakatani sys-
tem is presented in Sec. Ill along with the quantities that will 2

: . T k
be used to measure its nonmodal behavior. The results are c=—— 1L (5)
presented and discussed in Sec. IV. The finite-time behavior noean Cs/Ly
of solutions with optimally chosen initial conditions and with
random initial conditions are calculated and compared withwhere 7 is the resistivity of the plasma in the direction of
that of the normal modes. The importance of nonmodathe magnetic field. In the limif>1, the electron response is
growth mechanisms is demonstrated to depend strongly oalmost adiabatic, meaning that the fluctuations of the density
the adiabatic parametér The system presents strong non- follow very nearly the fluctuations of the potential. In this
modal growth for small values @f. For large values of, the  limit, Egs. (1) and(2) reduce to the Hasegawa-Mima equa-
nonmodal behavior of the system differs little from thattion [25]. In the opposite limitC<1, Eq.(1) reduces to the
given by normal mode analysis. For small valuesCothe  Navier-Stokes equation, where density fluctuations are pas-
nonnormal growth rates and phase shifistween the den- sively advected.
sity and potential fluctuationsre time dependent and differ ~ The viscous and diffusive dissipation ter®$ and D",
greatly from previously obtained normal mode results. Like-respectively, are chosen to have the form
wise, the wave number at which maximum growth occurs is
time dependent and differs from those predicted by the nor- D%=— vad), D"=— van, (6)
mal mode analysis. We hypothesize that some properties of
the drift-wave turbulence previously attributed to nonlinearin order to confine the dissipation to the smallest scales re-
terms could also be strongly influenced by the nonnormasolved in the system. The Hasegawa-Wakatani system is a
character of the linear system. Finally, a summary and consimple model for drift-wave turbulence in a collisional
clusions are given in Sec. V. In the Appendix, details of theplasma with a magnetic field without shear. It is an autono-

nonmodal analysis calculation are shown. mous system describing the excitation and damping of
modes in terms of a few collisional parameters, leading to a
II. NONLINEAR MODEL stationary level of turbulence without need of external forc-

ing [20].

The model of our studies is the Hasegawa-Wakatani sys- “\ye ysually choose time scales in our study of the order
tem[18,19. We consider two-dimensional density and PO-t—10-100, as we want to compare our work with previous
tential fluctuations, perpendicular to the static equilibriumg, merical simulations of the bidimensional nonlinear
magnetic field8= Bz, magnetic fluctuations are neglected. A Hasegawa-Wakatani systg0]. In those nonlinear numeri-
nonuniform equilibrium densityn, with density gradient cal simulations, there are two phases, a linear phase followed
dng/dx in the negativex direction is considered, such that by a nonlinear phase with a stationary turbulent regime.
the equilibrium density scale,=nq/|dny/dx| is constant.  Since usuallyk; is not measured; should be estimated from
The ions are cold and the electrons are isotherfiakT.  scaling laws conjectured for drift-wave dispersion. We con-
=T. Therefore temperature gradients and fluctuations are n&ider a large interval of possible values trin most cases,
glected, as well as finite Larmor effects. We assume that thee choose’=10"°, 10°2, 0.1, and 1. When we consider the
fluctuation length scales satisfy the usual drift orderkgg  growth rates and their corresponding modes as functions of
<k, . The equations for the time evolution of the density ¢, C varies in the interval 10°—10.
and potential fluctuations are two coupled nonlinear equa-
tions given by[18,19 lll. LINEAR MODEL
1) To study the linear properties of the system of EdS.

and(2), we neglect the nonlinear terms and expahdndn
in a double Fourier series ixandy. For any wave number
pair k=(k,,k,) the time evolution of the Fourier compo-

I o2 - 2, _ é
EVL¢+(ZXVL¢)~VLVL¢>—C(¢—n)+D ,

Jd ” o
—n+(zxXV,¢)-V,n+ —=C(¢p—n)+D", (2

at ay nents of¢ andn has the form
where the usual dimensionless variables are d
U= Ay, (7)
X y c dt
X——, Yo —, tot— 3

Ps Ps Ly where
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=0, gives ¢ =const andn,= —ikt¢,+const, nonmodal
: (8)  algebraic growth. For intermediate values(oive expect to
see a mixture of modal and nonmodal behavior. Algebraic
(—C/kz—v¢k4 CIK2 ) growth was also observed in nonlinear simulations of the
Ak_ ’

(90  tridimensional Hasegawa-Wakatani systg?8,24.
The basic quantities used in our investigation of the linear
Hasegawa-Wakatani system are the energy growth £étjo
= 212 ; ; . )
k= VK +k§. (10) defined as the ratio of the fluctuation energy at time the

There is no coupling between distinct pairs of wave num—Inltlal fluctuation energy:

—ikytC  —C—wpk?

bers. This property greatly reduces the numerical cost of ana- lu(t)]

lyzing the problem. E)=—=, (14
Assuming that the time dependence of the perturbations is luCo)]

exponential, e.g.~e", reduces Eq(7) to the eigenvalue

and its growth rate3(t) defined byB(t)=t In &t). The

ratio £(t) depends on the choice of initial fluctuation€0)
(y1—A)u=0, (12) and time. We shall examine the energy growth r&t{ip for

several choices of initial conditions using subscripts to dis-

whereu is the vector containing all the Fourier componentstinguish these choices. We use the notatig(t) to indicate

u, andA is the block-diagonal matrix with entriés, ; if the  thatu(0) is taken to be the eigenvector Afwhose real part

number of modes ik, and ink, is N thenu is a vector of is B,. Then

length 2N? and A is a 2N?X N2 matrix. Equation(11) has

problem

a nonzero solution if and only i is an eigenvalue oA. The &o(t)=ePo, (15
normal mode growth rat@,=Rey is calculated by finding ) _
the eigenvalue of with the largest real part. Note thatBy=t""In &(t) is the normal mode growth rate and

Previous studies have given a normal mode analysis df constant in time. We use the notatigi(t) for the case
the linear Hasegawa-Wakatani equations by solving(Et). ~ whereu(0) is chosen such thatis maximized, i.e.,
(e.g.,[20]). An analysis of theapproximatesolutions of Eq.

(1) or equivalently a nonnormal analysis of E@) has not . luct)]|

been presented previously. The non-normal analysis allows fl(t)_rﬂg)}ﬂu(o)”' (16)
time-dependent, nonmodal behavior rather than imposing an

exponential time dependence. The quantityé, (t) is related toA by &,(t)=|e*!| and is the

The fundamental reason that H@) can present different |argest factor by which the initial fluctuation energy can be
behavior from that suggested by its normal mode analysis igmplified at timet. The exponential of a matrix can be de-
that the matrixA is non-normal That is to say, it does not fined, for instance, by a power seri¢g6], Sec. 11.8 If A is
have a complete set of orthogonal eigenvectors or eqUiV%ormal,gl(t)zgo(t) at all timest and the maximum growth
lently it does not commute with its adjoilf26], p. 313.  js modal. More generally;(t)= &y(t) and there are initial
Since both the notion of orthogonality and adjoint depend ofjyctuations that grow more than do normal modes. How-
the choice of inner product, it is necessary to use an innegyer, enhanced nonmodal growth cannot be maintained in-

product coming from a physically relevant norm. The mostgefinitely and in the limit of large time the lim{f27], Prob-
obvious choice of norn-| is that coming from the total |em 74

energy of the fluctuationg given by
1 1 lim B1(t) = Bo 17
e=3 ] ax(vigRend =S (eafend. (12 o

must be satisfied.
an invariant of the purely nonlinear Hasegawa-Wakatani sys- It is important to note that when the dominant behavior is
tem[20]. It is a direct calculation to verify that the dynami- genuinely nonmodal, the fluctuation initial value that pro-
cal operatorA, which describes the linear evolution of the duces maximum growth at a particular time will not neces-
Hasegawa-Wakatani system is a nonnormal operator with resarily be the fluctuation initial value that produces maximum
spect to the energy norm. In this norfi,|| corresponds to growth at any other time. Therefore, to see the behavior of a
the energy density of the mode singlechoice for the initial value of the fluctuationg0), we

The range of behavior possible in this model and the needefine the following energy growth ratiog;(t)—the initial
to account for both modal and nonmodal behavior can be&ondition is chosen to produce maximum growth in the limit
seen by considering two extreme limiting valuesCofFirst,  of large time,&;(t)—the initial condition is chosen to pro-

for C>1, neglecting all terms that do not contdirgives duce maximum growth at a specified finite time and
&4(t)—the initial condition is chosen to produce maximum
d (k| [—CIK* —CIK)| ke growth in the limit of small time. Recall again that for nor-
dt| ny | ok —c /\n /) 13 mal systems all these growth ratios coincide. The final mea-

sure of the energy growtbs(t) is obtained by considering
This system is normal with respect to the energy inner prodthe time evolution of suitably normalized random initial con-
uct and its behavior is modal. The nondissipative lindit, ditions. Note that by constructioé,(t) is the upper bound
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FIG. 1. () The quantity] a(€)— a(0)]/€ plotted as a function o€ for C=10"° (solid line), C=10"2 (dotted lind, andC=1 (dashed
line). The spectrum\ (A) (black and e pseudospectrum (A) (gray) plotted in the complex plane for(b) C=10"° and =104, (¢)
C=10"3, ande=3.2x10 3, and(d) C=1 ande=10"1. (d) shows only the most unstable branch of the spectrum.

for all these quantities; (t)=&,,344t). Details of the cal- A obtained by the approximate solution of the eigenvalue
culation of these ratios are given in the Appendix. problem(11). The set of eigenvalues spectrunof a matrix

In Sec. IV we investigate numerically the various energyAa is the setA (A) of complex numberg such that ¢l—A) is
growth ratios, emphasizing their dependenc&€@md on the singular. In Figs. (b)—1(d), we plot in the complex plane
time scale. The absence of mode coupling reduces the nunthe spectrain black of A, for C=10"5, ¢=10"3, andC
ber of modes that must be considered in the numerical cal=1. The values of the modal growth rgBg=maxRe\ can
culations. Our calculations show that for the time scales conpe simply read from these figures. The modal growth rate has
sidered both the modal and nonmodal behavior of the system strong dependence @h as already noted if20]; the val-
is determined by relatively low wave numbers. Once thesgies of the spectra and the form of the spectra changeGuith
dominant wave numbers are included in the model, addinghe pseudospectrum of a non-normal matrix may provide
more modes has no effect on the calculation of the quantitiemore information than its spectruf8,28]. The pseudospec-
&(0-4y- In most of our calculations, the number of modes istrum is defined as follows. The complex numlzés in thee
N=32. The quantity¢s(t) depends on all the wave numbers pseudospectrumi [(A) if ze A(A+E) for |E|<e. Note
in the system, as it is calculated assuming that the energy dhat Ao(A)=A(A). If ze A (A) then it is in some sense an
the random initial conditions is homogeneous in Fourierapproximate eigenvalue, in that there is some vegteuch
space with unit total energgsee the Appendjx TakingN  that||Au—zu||<e.
=32 is therefore an assumption on the spectrum of the ran- Analysis of the pseudospectrum gives a stronger condi-
dom initial condition. The value taken for the dissipation is,tion on energy growth than does analysis of the spectrum.
in most casesy=10"° which is the order of magnitude Just as the normal mode growth rate depends on how far the
considered previously in nonlinear numerical simulationsspectrum extends into the real half-plane, analogously, the
[20]. nonmodal energy growth depends on how far the pseu-

dospectrum ofA extends into the right half plane. This idea
IV. RESULTS is made explicit by defining the extensiaife) of the pseu-

A. Spectra and pseudospectra dospectrum into the right half plane by

In this section the transient growth properties of the dy- a(e)= max Rez. (18
namics are shown to be connected to piseudospectrurof ze A (A)
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Note thata(0)= B, is the growth rate given by normal mode B:(t)= 8, must hold, i.e., the curveg(t) and &;(t) must
analysis. The first result using(e) is that¢,(t)=efot ifand  be parallel. The time required fg8,(t) to approximates,

only if for all €>0, a(e)—a(0)=<e, that is to say, if a depends on the adiabaticity parametgfor largeC (0.1 and
perturbation of size to A moves its eigenvalues by at most 1.0), &,(t) and &(t) are virtually indistinguishable for all

a distancee further into the real half plang8]. Secondly, it
can be shown thdi8]

—a(0
max¢,(t) =max|e’|= maxweﬁot.

t=0 t=0 >0

(19

Hence, if [a(€)—a(0)]/e>1 there are fluctuations that
grow more than predicted by normal mode analysis.

The calculation of the pseudospectra is computationally
expensive. An estimate df ,(A) can be obtained relatively
inexpensively using the following Monte Carlo approach.
The eigenvalues off+ E) are calculated whetE|| = € and
E is a complex matrix whose entries are independently dis
tributed Gaussian random variables with mean zero and un
variance. Repeating this calculation for many realizations o
E gives an estimate of\ (A). Figures 1b)-1(d) show
Monte Carlo estimates of the pseudospecttimgray) using
ten realizations for particular values ef In Fig. 1(a) the
quantity [a(€)— «(0)]/e estimated by the Monte Carlo
method using 50 realizations is plotted. Figur@) lshows
that the caseC=10° and C=102 produce transient
growth that is at least a factor of, respectively,
greater than the normal mode exponential grojghe Eq.
(19)]. ForC=1,[a(e)— a(0)]/e~1, the same as for a nor-

mal matrix. This result combined with the previous remarks

shows that for the casé=1, the pseudospectrum does not
predict energy growth greater than that given by normal
mode analysis.

For the case€=10"° andC=10"3, the quantity] a(e)
—a(0)]/e is found to be a function ot, [ a(e)— a(0)]/e
~0(eP), for values ofe that are not too small (I¢<e
=<1) with p=0.35 andp=0.40, respectively. Such nonana-
lytic (fractional powey dependence of the eigenvalues on
perturbation size is typical of non-normal matrices
([29], p. 77. For very small values ot, the behavior is
more complex. A reason for there being two types of behav
ior is that the most sensitive eigenvalyes., ones that make
[a(€) — a(0)]/e large are not the most unstable eigenvalues
[i.e., ones close ta(0)= B¢]. For relatively large values of
€, perturbations to the most sensitive eigenvalue& dbmi-

enough values ok, [a(e)— a(0)]/e will reflect only the
properties of the most unstable eigenvalues. Numerical cal
culations(not shown heresupport this explanation. The rel-
evant consequence of this point is that enhanced nonmod
growth is due to a different part of the spectridifferent
wave numbernsthan that which produces maximum modal
growth.

values oft. Figures Za) and Zb) show that fort<50 and
small C, B41(t) and By(t) are different. For the case of
=105, &(t) and &,(t) are still not parallel at=100; for
C=10"3, the energy ratio growth rate relaxes to the modal
one at about=50. Increased nonmodal small-time growth
causes the difference between the curggs) and &y(t) at
t=100 to beO(100) andO(10) for C=10"° and C=0.1,
respectively. We note that the lower bounds obtained from
the pseudospectra and Eq9) are satisfied.

The energy growth ratio curvé,(t) shows the time evo-
lution of the energy of fluctuations whose initial values are
chosen so that coincides with&,(t) for large time. As
shown in the Appendix, the wave numbienf these fluctua-
Eons is the same as that of the dominant modal instability.

owever, the partitioning op, andn, is such that enhanced
(compared to modagrowth is achieved30]. In general, the
limit &,(t)— &41(t) is satisfied only in the limit of large time.
However, for this system, only for the cage-10 2 is there
visible difference between thé,(t) and &,(t) curves. An
explanation for this behavior is that fat=10"2 the wave

45 and 6.gumber of the modal instability presents relatively weak

nonmodal instability while in the other cases, the wave num-
ber of the modal instability also presents a strong nonmodal
instability. In the next section we examine in more detail the
wave number dependence and confirm this explandtea
|Fig. 3(b)]. The energy growth ratid;(t) shows the time
evolution of fluctuations whose initial values are chosen so
that &;(7)=¢&,(7) for 7=100/3. For the casé=10 2 and

for t>50, &5(t) grows with a rate less than the maximum
modal growth rate, indicating in this case that the wave num-
ber leading to maximal finite-time growth is different from
the wave number at which the maximal modal growth oc-
curs. Only for the cas€=10"2 is there visible difference
between the¢;(t) and &5(t) curves for the same reasons
mentioned above.

The curveé,(t) shows the evolution of fluctuations with
maximum initial growth, i.e., the curvé,(t) is tangent to
&41(1) att=0. Maximum initial growth does not lead to long-
time maximum growth. In all the caseg§,(t) eventually
grows at a rate less than the modal growth rgte This

fHfahavior implies that foall the values o’ considered, the

normal modal analysis does not identify the wave numbers
y_vhich present maximum short-time nonmodal growth. For
the caseC=10"° the growth of&,(t) is not too much less
g'an &,(1). Later we show that this is due to the relatively
weak dependence of the nonmodal growth rate on the wave
number.

A curve of special interest is that @&(t), which corre-

sponds to the time evolution of the energy averaged over
homogeneous, uncorrelated random initial conditions. Intu-
itively, this scenario would seem to be a reasonable model of
We now examine in detail the various energy growth ra-what happens in experiments; all modes are excited, rather
tios. Figure 2 shows the time evolution of the energy growththan one particular mode. Looking at Fig. 2, we note that for
ratios §;o_s5)(t) for C= 1075, 1073, 0.1, and1.0. First, we small values ofC and small time,&5 follows well the ¢,
discuss some general features of the modal gra@ith) and  curve. This behavior suggests that for these valugs afd
maximum growthé&;(t) curves. For large time the relation time scales, nonmodal growth is not isolated to a few wave

B. Energy growth ratios
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FIG. 2. Time evolution of the normg;,_s(t) (dotted, solid, dash, dash-dot, dash-dot-dot-dot, and long) daslta) C= 1075 (b) C
=103, (c) €=0.1, and(d) C=1.

numbers but is a broad-spectrum phenomena, as will be coffor largeC the presence of damped modes lengthens the time
firmed later. Eventually&s(t) must be parallel tof, as it takes for the initially unorganized system to produce modal
modal behavior dominates. In generg@,will be less tharf,  growth.

since the average is over all wave numbers and modal insta- An important point is that fo€=10"%, the modal growth

bility is found only at a few wave numbers. Figuréb?  rate is small, suggesting a long time scale, but the nonmodal
shows quite clearly the transition @ from nonmodally  growih is in reality much faster, as can be seen by the length
dominant to mo_da_lly dominant behavigrot _shown here but ¢ the nonmodal phaskcompareé, and £, in Fig. 2a)].
eventuallyés(t) is indeed parallel t.%(t)]‘ Figures Zc) ‘fmd Similar dependence ofiwas observed when we studied the
2(d) for C=0.1 andC=1, respectively, show that without nqniinear turbulent system, for smalla saturated turbulent
broad-spectrum initial nonmodal growth, the expected engiate \yas reached rather fast, while it took a long time to
ergy of the random initial condition requires some time be'reach a saturated state for large valueg $20]. Therefore

fore the effects of the modal instability bgg_in to be seen. Thigpe non-normality might explain some features of the linear
phenomenon of uncorrelated random initial conditions re'phase of a turbulent system

quiring time to “organize” before growing is well known in
the meteorological literature and has generated several tech-
niques for calculating “optimal” random initial conditions
for use in ensemble forecastifgl,32. Again in this case as A number of the features seen in the energy growth ratio
the modal instabilities are confined to a few wave numbersurves of the preceding section can only be explained by a
and the average is over all wave numbeisis less tharg¢;.  more detailed examination of the wave number dependence
In summary, the general features are that for small valuesf the growth ratess. In Fig. 3 we showg,(t) (t=10,t
of C the normal mode growth rate and associated time scale 50, andt=100) andg, as functions ok, for k,=0 and
does not give a complete picture of the linear system; non€=10"°, =103, C=0.1, andC=1. The magnitude of the
modal growth is larger than modal growth. Second, in allfinite-time growth rates for smalf andt=10 are slightly
cases the normal mode analysis does not identify the wavarger than those fof=0.1 (approximately the that gives
number at which maximum initial growth occurs. Third, ex- the maximum modal growth rateThis dependence ofi is
amining the response to random initial conditions shows thaéxactly the opposite of that seen in the modal growth rate
the nonmodal behavior is robust for the smiatlase and that which peaks for C~0.1 and decreases on both

C. Growth rates
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FIG. 3. The growth rateg,(t) [t=10 (dotted; t=20 (dashegt t=50 (dashed-dgt t=100 (dash-dot-dot-dot and B, (solid) as
functions ofk, for (a) C= 105, (b) =102, (c) C=0.1, and(d) C=1.

sides. Also as was suggested by the behaviog¢f), the  even as larger times are considefsde Fig. 83)] may be
nonmodal growth for small is a broad-spectrum phenom- significant in nonlinear numerical simulations of drift-wave
enon. As the timet increases, the limiiB(t)— By must turbulence where there is coupling between modes. If these
hold. The rate of convergence gf(7) to 8, depends ort. modes were damped, a certain spatial resolution and dissipa-
For smallC the convergence is slow; faf=10"> andC  tion would be sufficient to study that case. However, if these
=103 the B(t=100) andp, curves are quite distinct. A5 modes are in reality growing, the spatial resolution and dis-
increases, the time scale for convergence becomes smallgjpation will not be adequate and could adversely influence
Also asC increases this convergence is nonuniformkin the numerical simulations.
B1(t)— By first for small values ok, . In Fig. 4 we compargd, and 3, as functions of time for
The fact that the modes corresponding to lakgeare in - o values ofC, C=10"5 andC=0.1. The influence of the
reality growing(i.e., are not dampedor small values ofC parameterC on the modal growth rate, is very strong.
However, for small time (< 20) the nonmodal growth rates
0.50¢ ' ' ' ' E for the two cases are comparable; in both cases there is en-
3 hanced nonmodal growth. To compare the effect of the hy-
0.40¢ perviscous dissipation on the growth rateg@, and 8,, we

_0.30¢ _ repeat this calculation in Fig. 5. We notice that f6r
R =10"° [Fig. 5a)] the difference of the growth rate, and
0.20¢F E B, for v=10"°andr=0.1 is very small. By comparison, for

i il C=0.1 the difference of the growth rates for these two dif-
0.10 A ferent values ofv is bigger, especially for smaller times.
0.00E . . ‘ . E Therefore we can conclude that the influence of dissipation is
more important in the adiabatic reginfieigger values of)
and for smaller times. This role of viscosity is to be expected
since for smallC both the modally and nonmodally unstable
FIG. 4. The growth rateg,(t) and B, for C=10"° (dotted; = wavelengths are long and while for largethey are small
solid) andC=0.1 (dot-dash; dashed (see Fig. 3.
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FIG. 5. The growth rateg;(t) and B, plotted as functions of time for=10"° (dotted; solid andv=10"! (dot-dashed; dashgekith
(@ ¢=10"5 and(b) C=0.1.

In Fig. 6@ we show the growth ratey and B4(t) (t D. Phase shifts

=10, t=20, t=>50, andt=100) as functions of. For large A quantity of interest for transport studies is the the phase
values ofC (C>1) By and B, coincide for all values of.  ghjft 5, betweenn, and ¢, defined by[20,33
For small values ofC, B, differs greatly frompg,(t). For

small enougihC, B4(t) does not depend o@ and theC=0 S=ImIn nlcbk. (20
result of pure algebraic growtk kt is recovered, as already
observed in[23,24. Figure &b) shows the wave numbers
corresponding to the growth rates in Figapas a function
of C. We denote bk andk(®{t) the perpendicular wave
number corresponding to the growth rajs and B4(t) (t

In nonlinear numerical simulations, the phase shift has been
calculated by averaging E¢RO) over realizations or in time.

A normal mode linear phase shiff is calculated by taking

> ) n, and ¢, to be the components of the modal instability with
=10,1=20,t=50, andt=100). The behavior we see is the \yaye numberk. In analogy, a nonmodal finite-time phase
following. At a particular timet, the maximum growth wave  gpigy 51ty can be calculated by using the components of the

number i.?nathe same as the maximum modal growth wavgyominant nonmodal instability with wave numberin Fig.
number k'®{(t) ~kg'® for values of the adiabatic parameter 7 we compare the linear phase Shiﬁ% and 5&(0 for k,

C above some cutoffc;(t). However, if the adiabatic pa- =0 for various values of andt. For all values ofC consid-
rameter is less than the critical on€<<Ceit(t), then the ered[Figs. 7a)—7(d)] the nonmodal phase shift is initially
maximum growth wave number is the same as the short-timgyrger than the modal one and for larger times they tend to
maximum energy growth wave numbéd;®{t) ~ki"{10).  have the same values. The larger the valué thfe faster this
For values ofC near the cutoff there is a transition region agreement is reached; f@=1 [Fig. 7(d)] both phase shifts
connecting the modal and nonmodal behavior. The cutofalready coincide for all values ¢f, att=10. In contrast, for
valueC.;(t) is a decreasing function of time. C=10"° [Fig. 7(a)] the phase shifts still differ at a time
=100. The nonmodal phase shift first agrees with the

(a) (b)

0,1

107° 1073 107" 10

FIG. 6. (a) The growth rateg3, (dot-dot-dot-dashand B4(t) for t=10 (solid), t=20 (dotted, t=50 (dashed, andt= 100 (dot-dash
plotted as functions of. (b) Values ofk{™ andk{'®{t) for the same values df (and line stylesplotted as a function of.
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FIG. 7. Normal mode linear phase shﬂﬁ and nonmodal linear phase shﬂi(t) (t=10,t=20,t="50, andt=100) as a function ok,
for (8 =105, (b) =103, (c) C=0.1, and(d) C=1. Herep,=0.005,N=2000, andk,=0.

modal phase shift for small values kf and this agreement averaged phase shif& are initially smaller than the normal

reaches larger values &j for longer times. mode linear phase shii for small values ofk,, which
The linear phase shité(t) found by calculating the ex- confirms this tendency that randomization diminishes the

pected value of Im Imﬁqﬁk is shown in Fig. 8;bﬁ(t) is cal-  phase shifts.

culated in the same fashion &sg(t). In the limit of large

time af(t) also goes to the normal mode linear phase shift as

doessi(t) (see Fig. 7. The finite-time values;(t) are quite

different from those calculated in Fig. 7 for small value€of We have examined the modal and nonmodal behavior of
and small wave numbets, . 5i(t) and 5;(t) only differ for  the Jinear Hasegawa-Wakatani drift-wave model. Nonmodal
C=10"° andC=10"2 and for wave numberk,<0.1. In  pehavior plays a role in this system because it is non-normal,
these casesy(t) is smaller than the normal mode linear i.e., it does not have a complete set of orthogonal eigenvec-
phase shift, whilesi(t) is larger than the latter. Fa#=0.1  tors. The key parameter in the system is the adiabatic param-
time dependence is seen only for short times and large waveterC. ForC>1, the eigenvectors are complete and orthogo-
numbers. Fo€= 1 the phase shift is time independent for the nal with respect to the energy inner product; normal mode
time scales shown. analysis gives a complete description of the system.dor
The phase shifts obtained here can be compared to the0, the system does not have a complete set of eigenvectors
nonlinear phase shifts calculated in nonlinear numericahnd the growth is nonmodal. For intermediate values ok
simulations forC=0.1 andC=1 [20]. The linear and nonlin- have shown that relative importance of the modal and non-
ear phase shifts are very different o= 0.1; in this case, the modal behavior is time scale dependent. Our main conclu-
nonlinear phase shift is strongest at l&vand drops towards sion is that for a given time scale, there i§&; such that for
zero elsewhere, a tendency that is thought to be due to the<C,;; the behavior is nonmodal and f6pC,,;; the behav-
turbulent advection, which tends to randomize the relationior is modal. Detailed results supporting this conclusion are
ship betweem and ¢ [20]. ForC=1 the nonlinear and linear the following.
phase shifts have the same dependende tiough the non- (1) The pseudospectrum of the Hasegawa-Wakatani sys-
linear phase shift is still lower than the linear ones. For initialtem shows that for small, nonmodal growth is larger than
random conditiongwith a chosen covariante¢he ensemble the modal growth predicted by the spectrum; this nonmodal

V. CONCLUSIONS
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FIG. 8. Ensemble averaged linear phase shjftt) (t=10, t=20, t=50, andt=100) as a function ok, for (a) C= 1075, (b) C
=103, (¢) =0.1, and(d) C=1. Hereps=0.005,N=2000, andk,=0.

growth occurs at different wave numbers than the maximunThese mechanisms could have been factors in the numerical
modal growth. stability considerations that limited the nonlinear simulations
(2) For C<1, drift waves with 8p~0 have nonmodal to values ofC that were not too small20]. The other prop-
growth rates comparable to the modal growth rates of therty attributed to nonlinear effects was the saturation level,
most unstable drift waves3=0.1). which was found to increase for smalland to be due pri-
(3) The nonmodal behavior is generally a broad-spectrunmarily to density fluctuation$20]. This feature can be ex-
phenomenon. A consequence of this point is that energplained by the algebraic growth of density fluctuations that is
growth averaged over random initial conditions is greater fopresent for smalC. Another possible consequence of non-
drift waves withC<1 than for drift waves wittC~1 where  modal analysis is that the nonmodal finite-time phase shifts
narrow-spectrum modal behavior is dominant. could help explain the enhancement of transport for certain
(3) Fluctuations that grow fastest initially maintain strong wave numbers at given adiabaticity parame{8d.
growth only in the cas€=10"°. A consequence of this is

that even forCz 1, where the bghavior is mostly normal, the ACKNOWLEDGMENTS
linear behavior on very short time scalés<(l) differs from
the normal mode analysis. This work was supported by the CNR’QonseIho Nacio-

These conclusions suggest that two properties of the norpal de Desenvolvimento Ciéfito e Tecnolgico) under
linear simulations of the Hasegawa-Wakatani, which wereGrant No. 381737/97-73, and by FAPESPunda@o de
not explained by the normal mode analysis, should be exanmAmparo aPesquisa do Estado décSRaulg under Grant No.
ined again in the light of the nonmodal analysis. The first is96/5388-0.
the effect of the adiabatic parametéion the time required
for a saturated turbulent state to be reached. The saturation APPENDIX
time was found to decrease for smél[20]. As the modal
growth rate decreases for sméllthe decrease in saturation ~ We introduce new variableg, defined by
time was previously attributed to nonlinear effects. However,
we have seen two mechanisms that might account for this =My 0y, (A1)
behavior for smallC, (i) the nonmodal growth rates are not
small and(ii) the nonmodal instability is broad spectrum. where
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The advantage of these variables is thaf=| ||, where

|- |l is the energy norm anfd ||, is the usual root mean square
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wherew is the leading eigenvector oB(+B) [2].

The growth rate rati@s(t) is computed by considering an
ensemble of initial conditiong/(0). In particular, suppose
that the mean of the ensemble is zero,

norm, allowing the use of standard methods to compute the

various energy growth ratios. Equatiéf) becomes

d
a‘l/k:Bk‘/’k! (A3)

where
Bx=M¥AM 12 (A4)

Note that since Eq(A4) is a similarity transformA and B

(¥(0))=0, (A10)
and that the covariance is given by
(#(0)¥(0))=Q, (A11)

whereQ is the covariance matrix; ) denotes ensemble av-
erage. Then, the ensemble averaged initial energy is

(0|13 =(tr $(0) y(0) "y =tr Q, (A12)

and the expected energy at timés

have the same eigenvalues and hence the same modal growth ([[y(t)]|2) = (tr (t) () ") = (tr eBLyy(0) (0) Bty

properties.
The energy growth ratio§ and growth rateg are com-
puted as follows. First,

Bo= max Rez, (AB)
ze A(B)
and &(t) =efot. Then,
&1(t) =€ ,=max|e®;. (AB)
k

=treB'tQeB!. (A13)

The simplest choice of) and the one we use here @
=I/trl, i.e., uncorrelated random initial conditions with ex-
pected unit initial energy and therefore

1
E(t) = W; tr eBiteBK!, (A14)

Unlike the other energy growth ratiogs;(t) depends orall

Note that since there is no mode coupling only the matrixhe wave numbers of the system. The quantiEgP{PeBt con-

exponential of 22 matrices must be calculated. Then,

&(t) =lePyll2,

wherey is the left eigenvector ofB whose eigenvalue has
real partB, [3]. Then,

£3(t) =[],

wherev is the leading right singular vector eP” ([26], Sec.
2.5.3. Then,

(A7)

(A8)

£a(0)=e®'w2, (A9)

verges as more modes are includéd—+¢«) for any t>0.
Thereforeés(t) depends oM in two ways:(i) the truncation
involved in the calculation of &2 'teBt and (ii) the normal-
izing factor N~2/2. While the number of modes used here,
N=32, gives reasonable approximations to the quantity
treBT‘eBt, we do not claim convergence in all cases. For
instance, foC=1 andC=10"° the percentage error between
treB'eB (t=100) usingN=32 andN=64 is (3.9< 10" %)%
and 7.8% respectively. Therefore the choicéNef 32 in the
calculation ofé5 is an assumption on the energy spectrum of
the random initial conditions.
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