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1. Introduction

Normal mode analysis has been applied to many fluid dynamic stability problems with great

success. However, there are some notable cases where the predictions of normal mode analy-

sis fail to correspond to observed phenomena. In particular, normal mode analysis predicts a

transition to turbulence for some flows at a much higher Reynolds numbers than that seen in

experiment. Recent studies have shown that for some problems, normal mode analysis only

gives a partial description of the properties of the linear perturbation equation [1, 2]. When

the eigenmodes of the linear system are not orthogonal and complete, or equivalently when the

system is nonnormal, general solutions of the system may present behavior quite different from

that suggested by normal mode analysis [3]. Drift-wave turbulence is considered to be a possible

cause of anomalous transport in the cool plasma edge region of tokamaks. Here, nonnormal

analysis methods are used to study the linear properties of the Hasegawa-Wakatani drift-wave

turbulence model [4].

2. Model

Neglecting the nonlinear terms of the Hasegawa-Wakatani equations and expanding the potential

and density in a double Fourier series in the nondimensionalized slab variables x and y gives

the system

d

dt
uk = Akuk , (1)

for the time evolution of the Fourier components of φ and n, where k = (kx, ky) and

uk =

(
φk

nk

)
, Ak =

(
−C/k2 − νφk4 C/k2

−iky + C −C − νnk4

)
, k =

√
k2
x + k2

y ; (2)

ν is a small numerical diffusion coefficient as in [5]. The adiabaticity parameter C, which

determines the character of the system is defined as [5]

C =
T

n0e2η‖

k2
‖

cs/Ln
. (3)



For C � 1, the system is almost normal and its behavior is modal. In the nondissipative

limit, C = 0, there is nonmodal algebraic growth of the density as was observed in nonlinear

simulations of the tri-dimensional Hasegawa-Wakatani system [6].

We use as diagnostics the energy growth ratio ξ(t) = ‖u(t)‖/‖u(0)‖, and its growth rate

β(t) = t−1 ln ξ(t). The notation ξ0(t) indicates that u(0) is chosen to excite the fastest growing

modal instablity. The notation ξ1(t) indicates that u(0) is chosen such that ξ(t) is maximized.

The quantity ξ1(t) is related to A by ξ1(t) = ‖ exp At‖ and is the largest factor by which the

initial fluctuation energy can be amplified. The ensemble-averaged energy growth and phase

shift of random initial conditions can also be calculated [7].

3. Results

Assuming exponential time-dependence flucuations, e.g.,∼ ezt, reduces Eq. (1) to the eigenvalue

problem (zI− A)u = 0. In Figs. 1(a) and (b), we plot in the complex z-plane the spectra Λ(A)

(in black) of A, for C = 10−5 and C = 10−3. The modal growth rate is β0 = max Re Λ(A).

Transient growth properties are related to the pseudospectrum of A obtained by the approximate

solution of the eigenvalue problem. The complex number z is in the ε-pseudospectrum Λε(A) if

z ∈ Λ(A + E) for ‖E‖ ≤ ε. Monte Carlo estimates of the pseudospectrum (in gray) in Figs. 1(a)

and (b) show that for small values of C the eigenvalues of A are highly sensitive to perturbations.

The extension α(ε) of the pseudospectrum into the right half-plane is defined by

α(ε) = max
z∈Λε(A)

Re z . (4)

The maximum growth is modal, ξ1(t) = eβ0t, if and only if for all ε > 0, α(ε)− α(0) ≤ ε, that

is to say, if a perturbation of size ε to A moves its eigenvalues by at most a distance ε further

into the real half-plane. A lower bound on nonmodal growth is

max
t≥0

ξ1(t) = max
t≥0
‖eAt‖ ≥ max

ε>0

α(ε)− α(0)

ε
eβ0t . (5)

A Monte Carlo estimate of (α(ε)− α(0))/ε in Fig. 1(c) shows that for C = 10−3 and C = 10−5

transient nonmodal growth is enhanced by at least a factor of 6.8 and 45 respectively compared to

modal growth. For C = 1, (α(ε)−α(0))/ε ≈ 1; the pseudospectrum does not predict enhanced

nonmocal energy growth. The dependence on ε indicates that the enhanced nonmodal growth

occurs at different wavenumbers than those of the fastest growing modal instability.

Calculations of the finite-time growth rate β1(t) and the modal growth rate β0 in Fig. 2

indicate that the finite-time growth rates for small C and t = 10 are slightly larger than those

for C = 0.1. This dependence on C is the opposite of that seen in the modal growth rate

which peaks for C ∼ 0.1 and decreases both sides. Examination of β1(t) as a function of ky
indicates that the nonmodal growth for small C is a broad-spectrum phenomena [7]. As the time

t increases, the limit β1(t) → β0 must hold. Figure 2(a) shows that for large values of C β0

and β1 coincide for all values of t. For small enough C, β1(t) does not depend on C and the



C = 0 result of pure algebraic growth ∼ kyt is recovered. Denoting by kmax0 and kmax1 (t) the

perpendicular wave number corresponding to the growth rates β0 and β1(t), Fig. 2(b) indicates

that at a particular time t, the maximum growth wavenumber is the same as the maximum modal

growth wavenumber, kmax1 (t) ≈ kmax0 for values of the adiabatic parameter C above some cut-off

Ccrit(t) and for C < Ccrit(t), the maximum growth wavenumber is the same as the short-time

maximum energy growth wavenumber; the cut-off value Ccrit(t) is a decreasing function of time.

A stochastic forcing plus a damping term are added to the linear equation following [8].

The energy spectrum of the statistically steady-state obtained is compared with that of an equiv-

alent normal system, i.e., one with the same eigenvalues. Fig. 3 indicates that nonmodal effects

lead to anisotropy in the energy spectrum and saturation levels quite different from those pre-

dicted by the modal properties of the system.

4. Conclusions

The main points of this work are: The pseudospectrum of the Hasegawa-Wakatani system

shows that for small C, nonmodal growth is larger than the modal growth and occurs at different

wavenumbers. For C � 1, drift-waves with β0 ≈ 0 have nonmodal growth rates comparable to

the modal growth rates of the most unstable drift-waves (C = 0.1). The nonmodal behavior is

generally a broad-spectrum phenomena.

Nonlinear simulations of the Hasegawa-Wakatani system found that the saturation time

decreased and the saturation level increased for small C in contrast to modal growth rate [5].

This behavior is consistent with the nonmodal linear mechanisms seen here. Further studies of

the stochastically forced system with different types of forcing are being developed in order to

model better the nonlinear simulations.
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Figure 1. The spectrum Λ(A) (black) and ε-pseudospectrum Λε(A) (gray) plotted in the complex
z-plane for (a) C = 10−5 and ε = 10−4 (b) C = 10−3 and ε = 3.2× 10−3. Panel (c) The quantity

(α(ε)− α(0))/ε plotted as a function of ε for C = 10−5 (solid-line), C = 10−3 (dotted-line) and C = 1
(dashed line).
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Figure 2. (a) The growth rates β0 (dot-dot-dot-dash) and β1(t) for t = 10 (solid), t = 20 (dotted),
t = 50 (dashed) and t = 100 (dot-dash) plotted as functions of C. (b) Values of kmax0 and kmax1 (t) for

the same values of t (and line styles) plotted as a function of C.
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Figure 3. Bidimensional energy spectrum obtained from the stochastically forced linear system (a) and
the equivalent normal system (b) obtained for C = 10−5 and ν = 10−5.


