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1. Introduction

Normal mode analysis has been applied to many fluid dynamic stability problems with great
success. However, there are some notable cases where the predictions of normal mode analy-
sis fail to correspond to observed phenomena. In particular, norma mode analysis predicts a
transition to turbulence for some flows at a much higher Reynolds numbers than that seen in
experiment. Recent studies have shown that for some problems, normal mode analysis only
gives a partial description of the properties of the linear perturbation equation [1, 2]. When
the eigenmodes of the linear system are not orthogonal and compl ete, or equivalently when the
system is nonnormal, general solutions of the system may present behavior quite different from
that suggested by normal mode analysis[3]. Drift-waveturbulenceisconsidered to be apossible
cause of anomalous transport in the cool plasma edge region of tokamaks. Here, nonnormal
analysis methods are used to study the linear properties of the Hasegawa-Wakatani drift-wave
turbulence model [4].

2. Modd

Neglecting the nonlinear terms of the Hasegawa-Wakatani equations and expanding the potential
and density in a double Fourier series in the nondimensionalized dab variables x and y gives
the system

d
auk = Akuk, (1)

for the time evolution of the Fourier components of ¢ and n, wherek = (&, k,) and

_ (% _ (C/R = vkt C/R? _ 2 e
e = (nk) A= ( —iky, +C  —C—wv,k*) b=kt ks (2)
v is a small numerical diffusion coefficient as in [5]. The adiabaticity parameter C, which

determines the character of the system is defined as [5]

k2
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For C > 1, the system is amost normal and its behavior is modal. In the nondissipative
limit, C = 0, there is nonmodal algebraic growth of the density as was observed in nonlinear
simulations of the tri-dimensional Hasegawa-Wakatani system [6].

We use as diagnostics the energy growth ratio £(¢) = [ju(¢)]|/||u(0)||, and its growth rate
B(t) =t~ Ing&(t). The notation & (t) indicatesthat u(0) is chosen to excite the fastest growing
modal instablity. The notation &;(¢) indicates that u(0) is chosen such that £(¢) is maximized.
The quantity & () isrelated to A by & (t) = || exp At|| and is the largest factor by which the
initial fluctuation energy can be amplified. The ensemble-averaged energy growth and phase
shift of random initial conditions can also be calculated [7].

3. Reaults

Assuming exponential time-dependenceflucuations, e.g., ~ e, reducesEq. (1) totheeigenvalue
problem (zI — A)u = 0. InFigs. 1(a) and (b), we plot in the complex z-plane the spectra A(A)
(in black) of A, for C = 1075 and C = 1073. The modal growth rate is 3y = maxRe A(A).
Transient growth properties are related to the pseudospectrum of A obtained by the approximate
solution of the eigenvalue problem. The complex number z isin the e-pseudospectrum A (A) if
z € A(A+E)for||E|| < e. Monte Carlo estimates of the pseudospectrum (in gray) in Figs. 1(a)
and (b) show that for small values of C the eigenvalues of A are highly sensitive to perturbations.
The extension «/(¢) of the pseudospectrum into the right half-plane is defined by

ale) = zg\?();) Rez. (4)
The maximum growth ismodal, & (t) = e, if and only if for al € > 0, a(e) — a(0) < ¢, that
isto say, if a perturbation of size e to A moves its eigenvalues by at most a distance e further
into the real half-plane. A lower bound on nonmodal growthis

—a(0
max & (1) = max [|e?]| > maXM
>0 >0 >0 €

efot (5)

A Monte Carlo estimate of (a(e) — «(0))/e in Fig. 1(c) showsthat for C = 1073 andC = 10~°
transient nonmodal growthisenhanced by at |east afactor of 6.8 and 45 respectively compared to
modal growth. For C = 1, (a(e) — a(0))/e ~ 1; the pseudospectrum does not predict enhanced
nonmocal energy growth. The dependence on ¢ indicates that the enhanced nonmodal growth
occurs at different wavenumbersthan those of the fastest growing modal instability.

Calculations of the finite-time growth rate 3;(¢) and the modal growth rate 3, in Fig. 2
indicate that the finite-time growth rates for small C and ¢ = 10 are dightly larger than those
for C = 0.1. This dependence on C is the opposite of that seen in the modal growth rate
which peaks for C ~ 0.1 and decreases both sides. Examination of (3;(¢) as a function of &,
indicates that the nonmodal growth for small C isabroad-spectrum phenomena[7]. Asthetime
t increases, the limit 3,(t) — (o must hold. Figure 2(a) shows that for large values of C
and (3; coincide for al values of ¢. For small enough C, 3, (¢) does not depend on C and the
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C = 0 result of pure algebraic growth ~ k¢ is recovered. Denoting by k{** and k***(t) the
perpendicular wave number corresponding to the growth rates /3, and 31 (¢), Fig. 2(b) indicates
that at a particular timet, the maximum growth wavenumber isthe same as the maximum modal
growthwavenumber, k7" (t) ~ ki*** for values of the adiabatic parameter C above some cut-off
Cerit(t) and for C < Ceit(t), the maximum growth wavenumber is the same as the short-time
maximum energy growth wavenumber; the cut-off valueC,,.(t) isadecreasing function of time.

A stochastic forcing plus a damping term are added to the linear equation following [8].
The energy spectrum of the statistically steady-state obtained is compared with that of an equiv-
alent normal system, i.e., one with the same eigenvalues. Fig. 3 indicates that nonmodal effects
lead to anisotropy in the energy spectrum and saturation levels quite different from those pre-
dicted by the modal properties of the system.

4. Conclusions

The main points of this work are: The pseudospectrum of the Hasegawa-Wakatani system
showsthat for small C, nonmodal growthislarger than the modal growth and occurs at different
wavenumbers. For C < 1, drift-waveswith (3, ~ 0 have nonmodal growth rates comparable to
the modal growth rates of the most unstable drift-waves (C = 0.1). The nonmodal behavior is
generally a broad-spectrum phenomena.

Nonlinear smulations of the Hasegawa-Wakatani system found that the saturation time
decreased and the saturation level increased for small C in contrast to modal growth rate [5].
This behavior is consistent with the nonmodal linear mechanisms seen here. Further studies of
the stochastically forced system with different types of forcing are being developed in order to
model better the nonlinear simulations.

Acknowledgement

This work was supported by CNPq (Grant 381737/97-73) and by FAPESP (Grant 96/5388-0).

References

[1] L.N. Trefethen, A.E. Trefethen, and S.C. Reddy: Science 261, 578 (1993).

[2] B.F. Farrell and P. loannou: J. Atmos. Sci. 53, 2025 (1996).

[3] K.M. Butler and B.F. Farrell: Phys. Fluids A 4, 1637 (1992).

[4] A.Hasegawaand M. Wakatani: Phys. Rev. Lett. 50, 682 (1985).

[5] S.J. Camargo, D. Biskamp, and B.D. Scott: Phys. Plasmas 2, 48 (1995).

[6] D.Biskamp and A. Zeiler: Phys. Rev. Lett. 74, 706 (1995).

[7] S.J. Camargo, M.K. Tippett, and |. Caldas: Technical Report P-1296, Instituto de Fisica
da Universidade de Sao Paulo, to appear in Phys. Rev. E, August (1998).

[8] B.F. Farrell and PJ. lannou: Phys. Fluids A 5, 2600 (1993).

2079



1998 ICPP & 25th EPS CCFPP ----- Transient Growth Mechanisms of Resistive Drift-Waves

() (b) ()

0.010 : ‘ 0.10

0.005¢ 1 0.051

N \ N '\
¢ 0.0001 \ 1 0.00

Im

AN

(a(e) — «(0)) /<

-0.0051 1 -0.051
-0.010 . . -0.10 . . .
-0.012  -0.004  0.004 0.012 -0.10 -0.05 0.00 0.05 0.10
Re z Re z €

Figure 1. The spectrum A(A) (black) and e-pseudospectrum A.(A) (gray) plotted in the complex
z-plane for (@) C = 107" and e = 10~* (b) C = 1073 and € = 3.2 x 10~3. Panel (c) The quantity
(a(e) — a(0)) /e plotted as a function of e for C = 10~° (solid-line), C = 102 (dotted-line) and C = 1
(dashed line).

Figure 2. (a) The growth rates 3, (dot-dot-dot-dash) and 3;(t) for ¢ = 10 (solid), ¢ = 20 (dotted),
t = 50 (dashed) and ¢ = 100 (dot-dash) plotted as functions of C. (b) Values of k{*** and k7***(t) for
the same values of ¢ (and line styles) plotted as a function of C.
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Figure 3. Bidimensional energy spectrum obtained from the stochastically forced linear system (a) and
the equivalent normal system (b) obtained for C = 10™° and v = 107°.
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