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Abstract We present a general formulation for magneto-
hydrostatic equilibria with external gravitational fields in
symmetric systems with one ignorable coordinate, using
non-orthogonal coordinate systems. We consider the cases
of isothermal as well as adiabatic processes. Analytical
exact solutions for the ideal magnetohydrodynamical equi-
librium equation are presented for rectangular, cylindrical,
and spherical coordinates.

Keywords Magnetohydrodynamics · MHD equilibrium ·
Magnetohydrostatics

1 Introduction

There are various application of ideal magnetohydrodynam-
ics (MHD) to astrophysical phenomena, in particular to the
description of many structures of the solar/stellar atmo-
sphere, where the electric conductivity of the plasma is
very large and the viscosity is low enough [1, 2]. In such
cases, beside the usual hydrodynamical and Maxwell equa-
tions, one has to add an equation for the gravitational field
[3]. The general problem of coupling hydromagnetic and
gravitational equations, however, is difficult to solve, even
numerically.
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A useful simplification arises, however, when the grav-
itational field is external, i.e., does not depend on the
plasma itself. This is an acceptable approximation if the
plasma density is very small, and the influence of its own
gravitational field is negligible when compared with the
external field. The hydromagnetic equilibrium of plasmas in
a uniform gravitational field has been considered in the clas-
sical work of Kippenhahn and Schlüter of 1957, describing
quiescent solar prominences in rectangular coordinates [4].

Analytical solutions for rectangular coordinates have
been studied by Khater et al., by using Painlevé analysis
method [5]. Other kinds of astrophysical phenomena, like
extragalactic jets, may require the use of cylindrical coordi-
nates [6]. Spherical coordinates, which are natural choices
to investigate the solar coronal plasma, were treated by
Hundhausen et al. [7, 8], Tsinganos et al. [9], and Neukirch
[10], who have obtained analytical solutions for the ideal
MHD equations. Vlahakis and Tsinganos have proposed a
systematic method for obtaining general classes of MHD
equilibria with azimuthal symmetry [11]. The stability of
gravitating plasmas at rest in a magnetic field has been dis-
cussed in ref. [12] for ideal plasmas and in ref. [13] for
dissipative plasmas.

The equations of ideal MHD can be written in a gen-
eral form using an arbitrary curvilinear coordinate system,
as long as the system has one ignorable coordinate, i.e.,
a generalized axisymmetry [14]. A related formulation has
been given by Kucinski and Caldas [15]. In these cases, the
plasma equilibrium is described by two surface functions,
namely the transversal magnetic flux and transversal current
functions, obeying a generalized version of Grad-Shafranov
equation [16].

In this work, we use a general formalism for ideal MHD
equilibria so as to add the gravitational field produced by an
external source [17]. This amounts to include a third surface
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function, namely the gravitational potential (or the equiva-
lent function for a general external force). In order to close
the system of equations, one needs to have some thermody-
namical information so as to determine the plasma density.
We considered both isothermal and adiabatic processes.

We consider particular cases in rectangular, cylindrical,
and spherical geometries, for both isothermal and adia-
batic cases. In some of these processes, there are even
analytical solutions for the transverse flux function, using
particular profiles for the remaining surface functions. This
paper is organized as follows: in Section 2, we present the
model equations and the general formalism for surface func-
tions leading to a partial differential equation which des-
cribes ideal MHD equilibrium with a gravitational field.
Sections 3, 4, and 5 present results for rectangular, cylindri-
cal, and spherical geometries, respectively. The final section
is devoted to our conclusions.

2 MHD Equilibrium Equation with Gravitational
Field

We start with the set of ideal MHD equations, describ-
ing low-frequency phenomena in a non-viscous conducting
fluid without heat conduction (SI units are used) [18]

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇p + J × B − ρg, (2)

∇ × E = −∂B
∂t

, (3)

∇ × B = μ0J, (4)

∇ · B = 0, (5)

E + v × B = 0, (6)
∂s

∂t
+ v · ∇s = 0, (7)

where ρ, v, p, s, J, g, E, and B are, respectively, the mass
density, fluid velocity, scalar pressure, specific entropy,
current density, external field, electric field, and magnetic
induction.

In the case of an external gravitational field, it can be
obtained from a scalar potential by g = −∇�, where �

satisfies Poisson equation

∇2� = 4πGρg, (8)

where G is the Newtonian gravitational constant and ρg is
the density of the matter distribution which produces the
gravitational field. When describing stellar equilibria and
other astrophysical problems where the plasma density ρ is
sufficiently large, there is a coupling between (8) and (2), and
the set of MHD equations is usually too complicated to be

solved analytically. However, if the plasma which equilib-
rium configuration is to be analyzed has a sufficiently small
density, we can decouple the equations, in such a way that
the plasma density ρ is different from the density of matter
ρg which appears in Poisson equation. A classical example
is the solar coronal plasma, which has a density ∼ 108cm−3

much less than the chromosphere ∼ 1014 cm−3, for exam-
ple. Hence, we can consider the coronal plasma interacting
with the gravitational field created by the solar core plasma.
We will consider here the latter case, for which the gravita-
tional effect of the plasma itself is negligible.

The static ideal MHD equilibrium equations follow from
vanishing time derivatives and velocities in the above sys-
tem of equations, leading to

∇p = J × B − ρ∇�, (9)

∇ × B = μ0J, (10)

∇ · B = 0. (11)

In the following, we will consider a general configu-
ration described by curvilinear (contravariant) coordinates
(x1, x2, x3), and with a given symmetry such that 0 ≤
x3 ≤ L will be an ignorable coordinate with period L.
In other words, any physical quantity must not depend on
x3 by hypothesis. Moreover, the magnetic axis will be a
x3-coordinate curve. It is well-known that a magnetic field
having this symmetry and satisfying (11) can be written in
the following form [15]

B(x1, x2) = ê3

g33
× ∇� + B3

ê3

g33
, (12)

where ê3 is a covariant basis vector and g33 the correspond-
ing element of the covariant metric tensor.

In this representation, we have introduced the transversal
flux function �, defined by

�(x1, x2) = 1

L

∫
S

dx1dx3√g B · ê2, (13)

which is the specific (divided by L) magnetic flux across a
part of the coordinate surface x2 = const., bounded by the
magnetic axis and a x3 coordinate curve. Once � it is known
the contravariant magnetic field components are given by:

B1 = − 1√
g

∂�

∂x2
, (14)

B2 = 1√
g

∂�

∂x1
. (15)

Computing the dot product of (12) with ∇�, there
follows that B · ∇� = 0, i.e., � is a surface function.

The divergence of (10) yields ∇ · J = 0, in such a
way that, similarly to the previous case, we can write a
representation for the current density

J = ê3

g33
× ∇I + J3

ê3

g33
, (16)
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where we have defined a transversal current flux I (x2, x2),
which can be interpreted in terms of the total current flowing
through the surface S2 per unit length

I (x1, x2) = Iaxis + 1

L

∫ x1

a

dx′1
∫ L

0
dx3√gJ 2, (17)

where Iaxis = I (x1 = a, x2), such that

J 1 = − 1√
g

∂I

∂x2
(18)

J 2 = 1√
g

∂I

∂x1
. (19)

Substituting the vector potential (B = ∇ ×A) in (13) and
using Stokes’ theorem, we have that, for axisymmetric sys-
tems �(x1, x2) = −A3(x

1, x2). By analogy with Ampére’s
law (10), there follows that B3(x

1, x2) = −μ0I (x1, x2) and
the magnetic field representation (12) can be rewritten as

B = ê3

g33
× ∇� − μ0I

ê3

g33
. (20)

Inserting this magnetic field representation into (10)
gives, after dotting with the covariant basis vector ê3,

μ0J3 = �∗� − μ0ID, (21)

where we have defined a generalized Shafranov operator

�∗� = g33√
g

{
∂

∂x1

[√
g

g33

(
g11 ∂�

∂x1
+ g12 ∂�

∂x2

)]

+ ∂

∂x2

[√
g

g33

(
g12 ∂�

∂x1
+ g22 ∂�

∂x2

)]}
, (22)

and the following non-orthogonality factor

D = g33√
g

[
∂

∂x1

(
g23

g33

)
− ∂

∂x2

(
g13

g33

)]
, (23)

which vanishes for orthogonal coordinate systems.
Moreover, the Lorentz force density J×B, after using the

representations (20) and (16), reads

J × B = − 1

g33
(J3∇� + μ0I∇I ) . (24)

Dotting the equilibrium equation (9) with ê3, we have
(J × B) · ê3 = 0. This expression leads, after substituting
(24), to the condition B · ∇I = 0. Hence, I = I (�) is
another surface quantity, like in the case without gravita-
tional field. On inserting ∇I = I ′∇� back into (24) gives
(primes denote differentiation with respect to �)

J × B = − 1

g33

[
J3 + 1

2
μ0(I

2)
′
]

∇�. (25)

Substituting (21) and (25) in (9), we obtain

[
�∗� − μ0ID + 1

2
μ2

0(I
2)

′
]

∇� = −μ0g33∇p − μ0g33ρ∇�.

(26)

Dotting the force equilibrium equation (9) with B results

B · ∇p = −ρB · ∇�. (27)

Hence, for a spatially uniform gravitational potential
B · ∇p = 0, from which follows that the magnetic field
lines lie on constant pressure surfaces (magnetic surfaces).
These surfaces are proven to exist provided there is some
form of spatial symmetry of the system. In the usual case,
they are nested surfaces with the topology of tori around a
degenerate surface (with zero volume) called magnetic axis.
However, for a non-uniform gravitational potential, it turns
out that ∇� has a component parallel to B and thus, while
magnetic surfaces may still exist, they are no longer sur-
faces of constant pressure. In other words, p is no longer a
surface quantity (like the volume, for example).

In fact, p will depend on both � and the gravitational
potential �. Let us suppose that ∇� and ∇� be linearly
independent, such that we can write

∇p = ∂p

∂�
∇� + ∂p

∂�
∇�. (28)

which, substituted in (26), yields[
�∗� − μ0ID + 1

2
μ2

0(I
2)

′ + μ0g33
∂p

∂�

]
∇�

+μ0g33

(
∂p

∂�
+ ρ

)
∇� = 0. (29)

The independence of ∇� and ∇� implies that their coef-
ficients in the expression above must vanish identically,
what gives us two equilibrium equations,

�∗� − μ0ID + 1

2
μ2

0(I
2)

′ + μ0g33
∂p

∂�
= 0, (30)

∂p

∂�
= −ρ. (31)

If there are no external forces hence p = p(�) and (29)
reduces to the Grad-Schlüter-Shafranov equation [14]

�∗� − μ0ID + 1

2
μ2

0(I
2)

′ + μ0g33p
′ = 0. (32)

Due to the explicit presence of the plasma density in (31),
to advance further, we need a thermodynamic hypothesis.
Two possible paths present themselves to the investigation.
Firstly, if the plasma obeys the ideal gas equation

p = ρR̄T , (33)

where R̄ = (me + mi)kB is the gas constant, with kB Bolts-
mann’s constant, me and mi respectively the electron and
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ion masses, and T (�, �) is the temperature. On integrating
(31), one obtains

p(�,�) = p0(�) exp

[
−

∫ �

�0

d�′

R̄T (�, �′)

]
, (34)

where p0(�) = p(�,�0). For an isothermal process, T is
constant and the above expression leads to the barometric
formula:

p(�,�) = p0(�) exp

[
−� − �0

R̄T

]
. (35)

Differentiating the above expression with respect to �

leads to the equilibrium equation in the isothermal case

�∗� − μ0ID + 1

2
μ2

0(I
2)

′ + μ0g33p0
′e−(�−�0)/R̄T = 0.

(36)

The second type of situation that we can deal with shows
up if the plasma satisfies an adiabatic condition

p = Kργ , (37)

where K = K(s) is a constant depending on the plasma
entropy and γ = 5/3 is the ratio of specific heats. Substi-
tuting ρ into (31) and integrating

p(�,�) = K

[(
p0(�)

K

)1/η

−
(

� − �0

ηK

)]η

, (38)

where we defined η = γ /(γ − 1) = 5/2.
In the adiabatic case, the equilibrium equation now reads

�∗� − μ0ID + 1

2
μ2

0(I
2)

′ + μ0g33p0
′(p0

K

)(1/η)−1

×
[(p0

K

)1/η −
(

� − �0

ηK

)]η−1

. (39)

In both isothermal and adiabatic cases, the equilibrium
equations can only be solved if we assume profiles for both
p0(�) and I (�), just like in the usual case without gravita-
tional field. Likewise, the boundary conditions are chosen,
in principle, in the same way.

3 Solutions in Rectangular Coordinates

Perhaps the simplest application of the formalism so pre-
sented is to consider rectangular coordinates (x1 = x, x2 =
z, x3 = y), for which g33 = 1 and D = 0. Notice
that we consider y to be the ignorable coordinate, such
that the system is translationally invariant along it. This

situation is compatible with a uniform gravitational field
along the z-direction: g = −gêz. The corresponding grav-
itational potential is �(z) − �0 = gz. In the case of an
isothermic plasma, we thus have, from (36), the following
equation

�∗� = ∂2�

∂x2
+ ∂2�

∂z2
= −1

2
μ2

0
dI 2

d�
−μ0

dp0

d�
e−gz/R̄T . (40)

Let us consider the following profiles

p0(�) = κ

2μ0
e2�, (41)

I 2(�) = I 2
0 = const. (42)

Hence, (40) reads

�∗� = −κ exp

(
2� − gz

R̄T

)
. (43)

Making the following change of variables in (43)

ψ = � − gz

2R̄T
, (44)

we obtain �∗ψ = −κe2ψ , with the solution [17]

ψ(x) = − ln cosh(
√

κx), (45)

which, after using (44), is the well-known Kippelhahn-
Schlüter solution, describing prominences of the Solar sur-
face, assuming that the distances from the surface are small
enough that the Solar magnetic field can be considered
nearly uniform along the z-direction [4].

The magnetic field components are

B =
(

− g

2R̄T
,
√

κ tanh(
√

κx), ∓μ0I0

)
. (46)

Analogously, the current density components are

J =
(

0, − κ

μ0

1

cosh2(
√

κx)
, 0

)
. (47)

From (46), the magnetic field line equations are

dx

dy
= ± g

2R̄T μ0I0
, (48)

dz

dy
= ±

√
κ

μ0I0
tanh(

√
κx), (49)

which can be integrated so as to yield the magnetic field
lines in the y = const. plane:

z = z0 − g

2R̄T κ
ln

[
cosh(

√
κx)

cosh(
√

κx0)

]
. (50)

A graph of z as a function of x is shown in Fig. 1a for var-
ious values of z0. The field lines actually have the curvature
characteristic of solar prominences, which are anchored in
the Solar photospheric surface.
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Fig. 1 Magnetic field lines for
the solution of the a isothermal
and b adiabatic MHD
equilibrium equation in
rectangular coordinates. We
indicate normalized coordinates
in the axes
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Another solution in rectangular coordinates exists for the
adiabatic equation (39) which, in rectangular coordinates
reads

�∗� = −μ0
dp0

d�

(
p0(�)

K

)(1/η)−1
[(

p0(�)

K

)1/η

− gz

ηK

]η−1

.

(51)

Let us consider a nonlinear profile for the pressure and a
constant current function in the form

p0(�) = K�η, (52)

I 2(�) = I 2
0 , (53)

in such a way that

∇∗� = −μ0Kη

(
� − gz

ηK

)η−1

. (54)

Nonlinear pressure profiles have been previously chosen
in a study on a special class of time-dependent solutions of
the ideal two-dimensional MHD equilibrium equations [19].

As in the previous case, we make a change of variables,

ψ = � − gz

ηK
, (55)

which turns (54) into �∗ψ = −μ0Kηψη−1. On assuming
that ψ depends only on x, we obtain for the above equation
the following solution

ψ(x) =
[ −2

(2 − η)2μ0K

]1/(η−2)

x2/(2−η) ≡ cx2/(2−η),

(56)

such that

�(x, z) =
[ −2

(2 − η)2μ0K

]1/(η−2)

x2/(2−η) − gz

ηK
. (57)

The magnetic field components related to this solution
are

B =
(

− g

ηK
, ∓μ0I0,

2c

2 − η
xη/(2−η)

)
, (58)

and the magnetic field line equation can be integrated in the
y = const. plane as before, giving

z(x) = z0 − ηKc

g(2 − η)2

(
x2/(2−η) − x

2/(2−η)

0

)
. (59)

The magnetic field lines are represented as graphs of z

vs. x in Fig. 1b, also showing a downward bending caused
by the gravitational field, but they do not represent the same
type of arcade configurations as in the isothermal case, since
the field lines asymptote to infinity as x → 0 due to the
power-law behavior expressed by the components in (58).

4 Solutions in Cylindrical Coordinates

A certain class of problems with translational symmetry
can be solved by using a cylindrical coordinate system:
(x1, x2, x3) = (r, θ, z), where z is an ignorable coordinate,
i.e., surface quantities can depend at most on r and θ . More-
over g33 = 1, g = r2 and D = 0. The MHD equilibrium
equation (in the isothermic case) reads

1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r

∂2�

∂θ2
= −μ0

dp0

d�
e−(�−�0)/R̄T − 1

2
μ2

0
dI 2

d�
.

(60)

One problem which fits into this model is the gravita-
tional effect of an infinite mass line with linear density λ,
aligned with the z-axis, for which the gravitational field
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is g(r) = −(2Gλ/r) êr , which can be derived from the
gravitational potential

�(r) = �0 + 2Gλ ln

(
r

r0

)
. (61)

where r0 is a characteristic length.
Substituting (61) into (60)

1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r

∂2�

∂θ2
= −μ0

dp0

d�

(
r

r0

)ξ

− 1

2
μ2

0
dI 2

d�
.

(62)

where we defined

ξ = 2Gλ

R̄T
, (63)

which is the ratio between gravitational and thermal energy.
We can rewrite (62) after choosing the following profiles

p0(�) = A(� − �0), (64)

I 2(�) = I 2
0 , (65)

such that

1

r

d

dr

(
r
d�

dr

)
= −μ0Ar

ξ
0 r1−ξ , (66)

where we supposed that the system also exhibits azimuthal
symmetry, yielding the solution

�(r) = �0 − μ0Ar
ξ
0

(2 − ξ)2

(
r2−ξ − r

2−ξ
0

)
, (67)

valid for ξ �= 2. The magnetic surfaces in this case are
cylinders of radius r , and the magnetic axis is located at
r = 0.

Once � is known, the magnetic field components are
given by

B =
(

0, −μ0Ar
ξ
0

2 − ξ
r1−ξ , ∓μ0I0

)
, (68)

such that the magnetic field line equations can be integrated
to give

r = const., θ(z) = ± A

(2 − ξ)I0

( r0

r

)ξ

, (69)

in such a way that the field lines have helical paths on
the flux surfaces, their winding number depending on the
radius, i.e., there is a magnetic shear involved (in the form
of a monotonic twist radial profile) (Fig. 2). Moreover, the
magnetic shear depends on the gravitational field through
the parameter ξ , which is the ratio between the gravitational
and thermal energies. When ξ > 1, the former dominates
the latter, the situation changing if ξ < 1. The pitch of
the helices decreases as ξ increases, meaning a stronger
gravitational effect.

Now let us consider the adiabatic MHD equilibrium
equation (39) in cylindrical coordinates, viz.

�∗� = −1

2
μ2

0
dI 2

d�
− μ0

dp0

d�

(p0

K

)(1/η)−1

×
[(p0

K

)1/η − 2Gλ

ηK
ln

(
r

r0

)]η−1

, (70)

Inserting in the above expression the same profiles used
in the rectangular case, (64), after a similar calculation there
results

∇∗ψ = −μ0Kηψ, (71)

Fig. 2 Magnetic field lines for
the solution of the isothermal
MHD equilibrium equation in
cylindrical coordinates, for
ξ = 0.5 (a), 1.0 (b), and 1.5 (c).
We indicate normalized
coordinates in the axes. The red
line stands for the source of the
gravitational field
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where we have defined

ψ = � − 2Gλ

ηK
ln

(
r

r0

)
. (72)

If we, in addition, also assume that ψ does not depend
on θ , the above equation can be analytically integrated,
yielding

ψ(r) =
[

−μ0K(2 − η)2

2

]1/(2−η)

r2/(2−η) ≡ dr2/(2−η),

(73)

such that

�(r) = dr2/(2−η) + � ln

(
r

r0

)
, (74)

where we defined the nondimensional parameter

� = 2Gλ

ηK
. (75)

The magnetic field components obtained from (74)
allows for an exact integration of the corresponding mag-
netic field line equations, yielding

θ(r, z) =
(

2d

(2 − η)μ0I0

)
r−2/(2−η)z + 2Gλ

ηKμ0I0

z

r2
, (76)

and are plotted in Fig. 3 for different values of the param-
eter �. Since � depends only on r the magnetic surfaces
are cylinders but the field lines spiral with larger pitch when
compared with the isothermal case. Moreover, the gravita-
tional effect (increasing �) bends more the field lines, and
the pitches are correspondingly shorter.

5 Solution in Spherical Coordinates

A wide class of problems of interest in astrophysics deals
with spherically symmetric configurations, for which we
use spherical coordinates (x1, x2, x3) = (r, θ, φ), with

φ ∈ [0, 2π) as the ignorable coordinate. In addition, we
have g33 = r2 sin2 θ and D = 0. The isothermic MHD
equilibrium equation is

∂2�

∂r2
− sin θ

r2

∂

∂θ

(
1

sin θ

∂�

∂θ

)
= μ0r

2 sin2 θ
dp0

d�
e−(�−�0)/R̄T

−1

2
μ2

0
dI 2

d�
. (77)

The simplest spherically symmetric problem is the grav-
itational potential of a sphere of mass M and radius a, with
a uniform density

ρ(r) =
{

ρ0 = 3M

4πa3 , if 0 ≤ r ≤ a,

0, if r > a
,

which is given by

�(r) =
{

−GM 3a2−r2

2a3 , if 0 ≤ r ≤ a,

−GM 1
r
, if r > a

. (78)

Considering only the plasma inside the sphere and defin-
ing

�0 = 3GM

2a

the equation (77) becomes

∂2�

∂r2
− sin θ

r2

∂

∂θ

(
1

sin θ

∂�

∂θ

)
= μ0r

2 sin2 θ
dp0

d�
e−�(r2/a2)

−1

2
μ2

0
dI 2

d�
. (79)

where another nondimensional parameter has been intro-
duced:

� = GM

2R̄T a
. (80)

Fig. 3 Magnetic field lines for
the solution of the adiabatic
MHD equilibrium equation in
cylindrical coordinates, for
� = 0.5 (a), 1.0 (b), and 1.5 (c).
We indicate normalized
coordinates in the axes. The red
line stands for the source of the
gravitational field
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We choose the same profiles as in the cylindrical isother-
mal case, namely (64), and obtained

∂2�

∂r2
− sin θ

r2

∂

∂θ

(
1

sin θ

∂�

∂θ

)
= −μ0Ar2 sin2 θe−�(r2/a2).

(81)

We solve the above equation using separation of variables

�(r, θ) = f (r) sin2 θ, (82)

where the radial function satisfies the following differential
equation

d2f

dr2
− 2f

r2
= −μ0Ar2e−�r2/a2

. (83)

Using the nondimensional variables x = r/a and y =
f/μ0A, this equation reads

d2y

dx2
− 2y

x2
= −a2x2e−�x2

, (84)

which can be solved using standard Green’s function tech-
niques.

The corresponding homogeneous equation is of Sturm-
Liouville form with integrating factor p(x) = 1 and has two
linearly independent solutions, namely

y1(x) = x2, y2(x) = x−1, (85)

Fig. 4 Magnetic field lines for the solution of the adiabatic MHD equilibrium equation in spherical coordinates, for � = 0.5 (a), 1.0 (b), and 1.5
(c). We indicate normalized coordinates in the axes. The red circle stands for the source of the gravitational field
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since their Wronskian W(x) = −3 is nonvanishing. The
Green’s function is therefore [20]

G1(x, ξ) = −y1(x)y2(ξ)

p(ξ)W(ξ)
= x2

3ξ
, (0 ≤ x ≤ ξ), (86)

G2(x, ξ) = −y2(x)y1(ξ)

p(ξ)W(ξ)
= ξ2

3x
, (ξ ≤ x < ∞), (87)

such that the solution of the inhomogeneous equation (84),
with the source term F(x) = a2x2e−�x2

, is

y(x) =
∫ x

0
dξ G2(x, ξ)F (ξ) +

∫ ∞

x

dξ G1(x, ξ)F (ξ)

= a2√π

8� 5/2

erf(
√

�x)

x

− a2

6�
e−�x2

[
3

2
+ x2(� − 1)

]
, (88)

and the flux function reads

�(r, θ) = μ0Ay(r) sin2 θ. (89)

The magnetic field lines corresponding to this solution
are depicted in Fig. 4. When the parameter � is less than the
unity, i.e., the thermal energy is larger than the gravitational
energy, the magnetic field has a dipolar structure (Fig. 4a).
If the converse is true (� > 1), then the magnetic field lines
form different closed loops inside and outside the spheri-
cal source of gravitational field (Fig. 4c). The outside loops
have the same dipolar structure as before, whereas the inside
loops are closed. Therefore, in this case, we can regard the
spherically symmetric plasma as being effectively confined
by the gravitational field, as in a magnetic star.

6 Conclusions

Exact solutions for ideal MHD equilibrium equations are
always welcomed since they can be used to benchmark
numerical methods of solution. This is known to be useful
in fusion plasmas, for which equilibrium numerical codes
sometimes present challenging problems of stability and
convergence. In the case of a gravitational field, such solu-
tions can also be used with this purpose, at least in the
simpler case of problems here treated, namely, when the
plasma itself has a small density, such that the gravitational
field is generated by another body. In this case, Poisson
equation is decoupled from the ideal MHD equations, allow-
ing for analytical solutions with selected profiles of both
pressure and current function.

In this work, we deduced a general ideal MHD equi-
librium equation in presence of such external gravita-
tional field, with the assumption that there is an ignorable

coordinate, what reduces the problem to two dimensions
effectively. The presence of plasma density imposes the use
of a thermodynamical assumption, and we considered both
isothermal and adiabatic cases. For more detailed studies
of stellar equilibria, however, a politropic process would
be a better choice. We present an exact solution for the
MHD equilibrium equation in rectangular coordinates in the
adiabatic case. It has features similar to the corresponding
isothermal equation, whose solution dates back to the pio-
neer work of Kippenhahn and Schluter, namely the ben-
ding of magnetic field lines caused by the gravitational
field. By Alfvén theorem, since the plasma clings to the
field lines in the ideal case, such solution can describe solar
prominences.

We also present exact solutions for the equation in cylin-
drical coordinates in both isothermal and adiabatic cases.
The gravitational field with such symmetry can be found in
models of astrophysical jets. Finally, we present an exact
solution for the equation in spherical coordinates in the
isothermal case. In the case of stronger gravitational energy
(compared to the thermal energy), the field lines are closed
inside the spherical source of the gravitational field, which
brings about a gravitational confinement of a magnetized
plasma. Unfortunately, we did not find such solution for the
adiabatic case, but it is probable that this could be possible
by making a convenient separation of variables, such that
part of the solution be analytical and the other can be numer-
ically obtained as a two-point boundary value problem. We
think that the solutions we obtained can be used in a vari-
ety of astrophysical problems with such symmetry such as
globular nebulae and other related objects.
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