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In this work, we introduce an exact calculation method and an approximation technique for tracing
the invariant manifolds of unstable periodic orbits of planar maps. The exact method relies on an
adaptive refinement procedure that prevents redundant calculations occurring in other approaches,
and the approximated method relies on a novel interpolation approach based on normal displacement
functions. The resulting approximated manifold is precise when compared to the exact one, and
its relative computational cost falls like the inverse of the manifold length. To present the tracing
method, we obtain the invariant manifolds of the Chirikov-Taylor map, and as an application we
illustrate the transition from homoclinic to heteroclinic chaos in the Duffing oscillator that leads
from localized chaos to global chaotic motion. Published by AIP Publishing. https://doi.org/10.1063/
1.5027698

Invariant manifolds are the underlying structure that
delimit chaotic regions in the phase space and deter-
mine the transport channels induced by periodic orbits
in the sea of chaos. The calculation of these invariants is
important for the characterization of chaotic transport in
diverse areas of interest, like magnetically confined plas-
mas and turbulent flows, and play an important role in the
description of transport barriers. The methods introduced
in this work are ideal for mappings involving intensive cal-
culations like numerical function inversion or the numeri-
cal integration of ordinary differential equations between
crossings through a surface of section. Our approximation
method is based on an intuitive geometrical decomposition
of the manifolds in bare and fine details and allows us to
determine a suitable discretization for the curve without
requiring numerical optimization.

I. INTRODUCTION

In dynamical systems, the determination of unstable peri-
odic orbits and their invariant manifolds is a problem on
its own and is fundamental to understanding the underly-
ing structure of the chaotic orbits of planar maps.1 These
manifolds provide the skeleton for chaotic dynamics and are
relevant in physical applications for the interpretation of the
transport induced by non-integrability.2,3

Physically, invariant manifolds determine the geometri-
cal features of advection and delimit the extension of irregular
flows. For instance, in magnetically confined plasmas, a small
non-axisymmetric magnetic field induces Hamiltonian chaos
near the plasma edge of single-null tokamak discharges.4–8 In
this situation, the invariant manifolds of the magnetic saddle
can be related to the heat flux patterns where the confinement
chamber interacts with the plasma.9,10 In analogous systems,
time-dependent perturbations lead to orbit transfers between

a)Also at: Department of Applied Physics, University of São Paulo, São
Paulo, SP 05508-090, Brazil; electronic mail: davidcirotaborda@usp.br

otherwise isolated regions of bistable non-linear oscillators.11

Here, invariant manifolds determine the transport channels
between the phase space domains.

From the dynamics point of view, manifold tracing is
required for determining the geometry of the basins of attrac-
tion of chaotic sets,12 and can be used to identify homoclinic
and heteroclinic intersections which are contained in non-
attracting invariant sets that play a fundamental role on the
description of the dynamics of typical chaotic orbits in the
phase space.13 Although global quantities like the Lyapunov
exponents allow us to determine numerically the bifurcation
parameters, they do not, in general, provide details on the
type of bifurcation that takes place. In this situation, pre-
cise invariant manifolds tracing determines clearly the topo-
logical mechanisms that take place during the bifurcations
and accounts for physically relevant features, like regions of
enhanced transport or the destruction of transport barriers.14

In some situations, the geometry of the manifolds can be
estimated through the mapping of a large collection of orbits
close to the saddle, a procedure similar to the one used to
determine chaotic saddles.15–18 However, without an order-
ing scheme and refinement, this method is computationally
expensive and limited in resolution.

In this work, we introduce an exact and an approxima-
tion method to calculate the invariant manifolds of periodic
saddles of planar maps. The maps in question can be explicit
or induced by three-dimensional flows. Both calculations are
based on the manifold decomposition in primary segments
introduced by Hobson.19 The exact method relies on the effi-
cient calculation of primary segments from a single seed
segment near the saddle, while the approximated method is
based on the determination of reliable interpolants for arbi-
trary primary segments. The latter is specially relevant for
maps induced by flows, where lengthy numerical integrations
are required to produce a single iteration of the Poincaré map.
This allows us to deal with the increase in length of the man-
ifold segments due to the stretching and folding mechanism
inherent to the chaotic dynamics.
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The approximation method involving the primary seg-
ments interpolation has been discussed before by Hobson19

and Krauskopf,20 and more detailed implementations were
made by Goodman and Wróbel21 and references therein. In
this work, we introduce a versatile interpolation approach
based on the curve decomposition in bare and fine details,
which allow us to focus on different aspects of the mani-
fold separately. The bare details of the curve are determined
by a discretization procedure that determines an appropriate
set of nodes containing most of the curve information, while
the fine details are contained in a normal displacement func-
tion or shape function which ensures the smoothness of the
manifold. The presented normal displacement description is
new to our knowledge and can be easily implemented, con-
taining a single set of adjustable parameters which can be
fixed from intuitive geometrical conditions, complementing
other approaches based on Catmull-Rom splines.21 The result-
ing approximation method gives the invariant manifold as
a continuous parametric curve from which we can measure
the distance to the discretized manifold obtained from the
exact calculation. This allows us to estimate the approxima-
tion error that, in general, is well below an estimated baseline.
The approximation procedure is numerically stable and more
efficient than the exact one, making it ideal for fast and precise
calculations.

The methods presented in this work are specific for one-
dimensional manifolds of planar maps. Other sophisticated
methods are available for tracing manifolds for continuous
dynamical systems,22 which can then be used to intersect the
surface of section instead of using a Poincaré map. Also,
parametrization methods23,24 are available for obtaining a
patched manifold in discrete systems with arbitrary precision.
In contrast to these methods, our simpler approach can be eas-
ily implemented by a non-specialist and is robust enough to
deal with fairly complex manifolds. This work is intended
to enable the reader to trace exact and approximated man-
ifolds with a reliable numerical procedure, without dipping
into the subject of numerical interpolation or parametrization
functions.

The paper is organized as follows: in Sec. II, we present
a review on invariant manifolds and their decomposition in
primary segments. In Sec. III, we introduce an approxima-
tion method to obtain the zeroth segment of the manifold to
machine precision. In Sec. V, we present an exact calculation
method and in Sec. VI, we introduce its approximated version,
where the interpolation procedure is detailed. In Sec. VII,
we show an example application of the manifold tracing for
bi-stable systems where the transition from homoclinic to
heteroclinic chaos is used to explain the transition from alter-
nating chaos to global chaos. In Sec. VIII, we present our
conclusions and perspectives.

II. INVARIANT MANIFOLDS AND PRIMARY SEGMENTS

In this review section, we want to introduce the concept
of invariant manifolds for planar maps and show their decom-
position in primary segments. We also show, formally, the
method to obtain any primary segment from a single known
segment which will be discussed in the following section.

Without loss of generality, we will develop our discussion
around the Poincaré maps of three-dimensional flows, since
they represent a situation in which we do not have access
to a closed-form expression for the planar map of interest.
Consider the dynamical system

dx

dt
= f (x), (1)

where x ∈ R
3 and f : R

3 → R
3. The solution φt(x0) of this

differential equation takes an initial condition x0 ∈ R
3 and

maps it to a new point x ∈ R
3 for a given t ∈ R. Now, consider

an orientable two-dimensional surface � which is transverse
to the flow everywhere, so that orbits starting in � must
eventually return to �. Then, the Poincaré map T is a dif-
feomorphism T : � → � such that y = T(x), where x, y ∈ �

and y = φτ (x) for the smallest τ > 0 such that the flow tra-
verses � always in the same direction (Fig. 1). Analogously,
the inverse map T−1 is such that x = T−1(y), where x = φτ (y)
for the largest τ < 0.

A fixed point x∗ ∈ � satisfies T(x∗) = x∗, which means
that the orbit starting in x∗ is closed or periodic. For the case
of interest, x∗ is a saddle point, i.e., the Jacobian matrix of T
has real eigenvalues {λs, λu}, such that |λs| < 1 and |λu| > 1.

The unstable manifold of x∗, Wu(x∗), is the collection
of points that converge to x∗ under T−1, and the stable one
Ws(x∗) is the collection that converge to x∗ under T . Formally,
we can write13

Wu(x
∗) = {x ∈ � : T−n(x) → x∗, as n → ∞}, (2)

Ws(x
∗) = {x ∈ � : Tn(x) → x∗, as n → ∞}. (3)

For the numerical calculation of the invariant manifolds, it is
useful to develop an ordering scheme that allows us to cal-
culate them recursively, for this we resort to the concept of
primary segments.19 A primary segment based on x is a con-
tinuous subset of the manifold Ps,u(x) ⊂ Ws,u(x∗), containing
every point in Ws,u(x∗) between x and T(x), including x but
not T(x). Notice that, if y ∈ Pu(x), then T(y) /∈ Pu(x), but
clearly T(y) ∈ Pu[T(x)], i.e., every point inside Pu(x) has an
image in the next primary segment and a pre-image in the pre-
vious one, and this is also valid for the base point x (Fig. 2).
Without loss of generality, we will continue this discussion
in terms of the unstable manifold, since the definitions and
methods are analogous for the stable one.

The unstable manifold can be written as the union of
all primary segments based on the images of an arbitrary

FIG. 1. Poincaré map as the first return to the surface � in a specified
direction.
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FIG. 2. The unstable manifold can be subdivided as a sequence of primary
segments based on the images and pre-images of an arbitrary point of the
manifold.

x ∈ Wu(x∗),

Wu(x
∗) =

∞⋃

n=−∞
Pu[Tn(x)]. (4)

Since every point in Pu(x) has an image in Pu[T(x)], we can
say that the primary segment based on T(x) is given by

Pu[T(x)] = T[Pu(x)], (5)

where T[A] is the set obtained after mapping every element of
A. This implies that the manifold can be obtained by joining
subsequent mappings of an arbitrary primary segment

Wu(x
∗) =

∞⋃

n=−∞
Tn[Pu(x)]. (6)

Consequently, if we know every point in any primary seg-
ment, we can map them forward and backward repeatedly to
obtain the desired extent of the manifold. This is the theoreti-
cal basis of interpolation methods,19,21 and it is valid for both
conservative and dissipative diffeomorphisms.

III. APPROXIMATING THE ZEROTH SEGMENT

Now, we need to determine at least one primary segment
of the manifold. This can be done to any desired precision in
the region near the saddle point and, here, we illustrate this
with a third order parametric form. Consider an arbitrarily
small displacement vector δx around x∗. To a second order,
we can write

T(x∗ + δx) = x∗ + JT (x∗)δx + 1

2
δxT

HT (x∗)δx, (7)

where JT (x∗) and HT (x∗) are the Jacobian matrix and Hes-
sian tensor of the map T(x) at the saddle point. The idea here
is to determine a function f (u) that determines the normal
displacement of the manifold at position u along the tangent
line lu, touching the manifold at x∗. In this representation, the
parametric form of the local manifold takes the vector form

W loc
u (x∗, u) = x∗ + uû + f (u)v̂, (8)

where û is the unit unstable eigenvector of JT (x∗), satisfying

JT (x∗)û = λuû, (9)

with λu > 1, and v̂ is perpendicular to û. Using Eq. (9), it
can be shown that a vector of magnitude u aligned with the
unstable direction û gets stretched by a factor λu + κu, in the

unstable direction, with the parameter κ given by

κ = 1

2

2∑

i,j,k=1

uiujukTi,jk , (10)

where ui are the coordinates of û in some set of orthog-

onal coordinates, and Ti,jk = ∂2

∂xj∂xk
Ti(x1, x2)

∣∣∣
x∗ are the map

derivatives with respect to these coordinates.
If we represent the phase space points by their displace-

ments (u, v) along û and v̂ with respect to the fixed point p∗, it
can be shown that the normal displacement function satisfies

Tv[u, f (u)] = f (λuu + κu2). (11)

This comes because the effect of T over a point in the man-
ifold is moving it by a factor λu + κu along the unstable
direction and displacing it normally to a new distance given
by f (λuu + κu2). Provided that we are close to the saddle, we
can use (7) in the new coordinates to write-down the LHS of
(11), which leads to a consistency relation for f ,

uTv,u + f (u)Tv,v + 1
2 [u2Tv,uu + 2uf (u)Tv,uv + f 2(u)Tv,uv]

= f (λuu + κu2). (12)

In practice, we can use a polynomial expansion for f ,

f (u) = au2 + bu3 + · · · , (13)

where 1 and u are absent because of the chosen coordinates.
Provided that (12) is valid for any small u, we have that the
coefficients resulting from replacing f (u) in (12) must vanish
independently. This allows us to relate the coefficients of f
with the local properties of the map, i.e.,

a = Tv,uu

2(λ2
u − Tv,v)

, b = a(Tv,uv − 2κλu)

λ3
u − Tv,v

, . . . . (14)

In the Appendix, we provide additional information on how
to obtain the Hessian elements in (14) for an arbitrary planar
map in arbitrary coordinates. With this, we have the infor-
mation required to write explicitly a parametric form of the
manifold near the saddle point x∗ and, consequently, we are
able to determine, to a leading order, one primary segment of
the manifold that we will call the zeroth segment,

P0 : {W loc
u (x∗, u), u0 ≤ u < (λu + κu0)u0}, (15)

for some u0 << 1. Numerically speaking, a representation of
the local manifold can be determined to machine precision
by making the highest order term of the manifold expansion
to be below the roundoff error. In practice, we can check the
performance of the local approximation by applying the map
repeatedly over an initial condition obtained by W loc

u (x∗, u0)

for some small u0. In Fig. 3, we compare the performance
of a linear and cubic expansions of the local manifold for
one saddle of the Henon map25 with the classical parameters
aH = 1.4 and bH = 0.3.

In regular situations, a linear approximation of the local
manifold may be sufficient,20 but having higher orders in
the expansion of f (t) have important advantages in practical
applications, given that a larger primary segment can store
more preimages required to obtain numerically the global
manifold. For instance, the primary segment between the 4th
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FIG. 3. Distance between the mapped points from W loc
u (x∗, 10−6) and the

local manifold for the simple linear approximation of the local manifold
and an approximation with a cubic normal displacement function. For the
first four iterates, the cubic manifold error is numerically zero (but here are
illustrated at the minimum precision), and can be regarded as exact.

and 5th iterates of the cubic Henon manifold can generate
preimages to machine precision along a portion of size 10−3,
while the linear manifold can only generate preimages with
precision 10−13 between the initial condition and its first iter-
ate, in a portion of size 10−6. Clearly, there is an important
gain when using higher order approximations of the manifold,
in this example, a 1000-fold increase in available space with
1000-fold increase in precision (assuming machine precision
around 10−16).

Numerical indistinguishability between the actual man-
ifold and its functional approximation guarantees that they
will be equally affected by roundoff errors due to the appli-
cation of the map itself, i.e., approximation errors will not
propagate numerically if they were numerically nonexistent.
In this context, general methods based on parametrization
functions valid for high-dimensional systems can be used
as well.26 Generalizations for continuous systems are also
available,23 allowing us to approximate the manifold along the
flow instead of in a cutting surface (the Poincaré section).24

IV. COMMENTS ON NON-REFINING ADVECTION
ROUTINES

Provided that we identified an appropriate parametric
form of the zeroth segment, the unstable manifold can then
be written as the following semi-infinite union:

Wu(x
∗, T) = x̃∗xε ∪ P0 ∪ P1 ∪ · · · ∪ Pi · · · , (16)

where Pi+1 = T[Pi] and x̃∗x is the union of inverse mappings
of P0 which can be approximated by the parametric form
W loc

u (x∗, t) for t ∈ (0, t0).
With this simple definition, we can compute a finite rep-

resentation of the invariant manifold to the desired extension,
provided we know how to calculate T[Pi] and we know one
segment P0. Formally speaking, if we know how to compute
T(y) for any y ∈ Pi, then we are able to compute T[Pi], but
mapping a set of uniformly distributed points in Pi will not, in
general, lead to evenly distributed set of points in Pi+1.

As we do not know a priori which distribution of points
in P0 will lead to a uniform discretization of Pn, an interim
solution consists in discretizing P0 uniformly with a large

FIG. 4. Unstable manifold portion of the saddle x∗ = (0, 0) for the Chirikov-
Taylor map with k = 1.5. The base segment P0 was uniformly discretized
with 4662 points, and the portion contains 25 primary segments. In the red
circle, we can see a poorly resolved region, and the red inset shows the effect
of stretching for different layers of a homoclinic lobe.

number of nodes, although, eventually, the stretching and
folding mechanism will overcome the excess points, and the
segments will become poorly resolved.

In Fig. 4, we show a short portion of the unstable mani-
fold of the period-one saddle of the Chirikov-Taylor map,27

yn+1 = yn + k sin xn, (17)

xn+1 = xn + yn+1 (18)

for k = 1.5. Although the resulting curve appears smooth,
close inspection shows the undesired effects of uniform dis-
cretization in P0. The segment stretching leads to a complex
mix of over-resolved and under-resolved portions of the man-
ifold. In Sec. V, we introduce an adaptive method that allows
us to determine the discretization of P0 that leads to a well
resolved discretization of an arbitrary Pn.

V. MAPPING-REFINEMENT METHOD

In this section, we introduce a refinement method for pro-
ducing a suitable exact discretization of the manifold which
satisfies some predefined resolution criteria by limiting the
distance between subsequent nodes and the angles between
consecutive secant lines. The word exact is used here to refer
to the procedure by which nodes in an arbitrary segment are
obtained from the zeroth segment, given that it can be deter-
mined to machine precision. More precisely, the only source
of error in this case is the application of the mapping itself. For
explicit mappings, it is the accumulated roundoff error, while
for Poincaré maps, it is the inherent error of the numerical
integration routine.

The exact method is then a procedure to obtain the most
reliable discretization of the manifold for a prescribed finite
precision, while the actual curve between each pair of nodes
must be approximated by some suitable method.

Consider the following initial discretization of P0:

P0 → {x0,1, x0,2, . . . , x0,M }, (19)
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FIG. 5. The discretization of the nth segment may be improved by inserting
new points at specific locations in the zeroth segment and applying Tn to
populate the nth segment in a controlled fashion.

where the “→” symbol is used instead of “=” to indicate
that we are only representing the continuous set P0 by a dis-
crete set of points. The initial set of points can be obtained by
evaluating

x0,i = Lε

(
i − 1

M

)
(20)

for i = 1, 2, . . . , M , M is a small number, usually < 10. Then,
the induced discretization of the segment Pn is

Pn → {xn,1, xn,2, . . . , xn,M }, (21)

where

xn,i = Tn(x0,i). (22)

As mentioned before, the resulting points of Pn will be
unevenly spaced due to the non-uniform stretching of the pri-
mary segments, but this can be solved by adding new points to
Pn at specific locations. For instance, if some resolution crite-
rion is violated between xn,k and xn,k+1, we need to insert a new
manifold point x′

n between these points. Since we do not have
a parametric representation for Pn, we need to obtain the new
points from initial conditions in the first segment P0, where we
do have a parametric form given by (8). Then, we calculate x′

0
between x0,k and x0,k+1 in P0 and calculate x′

n = Tn(x′
0), which

is the required refinement point (Fig. 5). This procedure can
be iterated until the discretization of Pn satisfies the desired
resolution requirements.

The refinement procedure must result in evenly spaced
points for low curvature regions and a higher density of points
in high curvature regions. Such a scale-invariant resolution is
desired if we require a reliable description of densely packed
portions of the curve, or if we need to study the intersection
between manifolds. In Fig. 6, we show the quantities involved
in resolution conditions. In general, the length of the chord
li connecting the nodes xi and xi+1 is required to be below
some small value lc. This chord belongs to an infinite secant
line that forms and angle θi with the secant line containing

FIG. 6. Relevant quantities for the resolution criteria. The chord li connects
the nodes xi and xi+1, and the angle θi is defined between the secant lines
containing li and li−1.

FIG. 7. Refinement procedure to produce a discretization of Pn satisfying the
resolution criteria and preventing superfluous clustering. The points x′ and/or
x′′ are obtained by applying Tn to corresponding points in P0.

the chord li−1. Analogously, the inter-secant angle θi must be
below some predefined value θc. Provided that lc and θc are
sufficiently small, the arcs connecting the points xi−1, xi, and
xi+1 will not differ much from straight lines. With this, we
establish that most of the geometric information is contained
in the nodes instead of the arcs connecting them. Then, the
small details contained in the parameters that determine the
arcs are used to guarantee the manifold differentiability.

Upon violation of the resolution criteria, a refinement
procedure must be carried out as illustrated in Fig. 7. In short,
a new point is introduced between xi and xi+1 if the chord li is
larger that the critic distance lc, or if li is the longest chord in
an angle that exceeds some small critical value θc. This simple
procedure and the rules of motion in Fig. 7 prevent clustering
of new nodes and distribute the new entries evenly along the
manifold. The procedure is iterated until the criteria are sat-
isfied for all nodes in the segment Pn, then these nodes are
mapped to obtain an initial discretization of Pn+1 and so on.

This method differs from others in that we do not try to
extrapolate the location of new nodes based on the informa-
tion of previous nodes,19,20 we start with an initial set of nodes
generated by mapping the nodes of the previous segment, then
perform the refinement operations following Fig. 7. A similar
method is mentioned by Goodman and Wróbel,21 but it adds
two points instead of one and does not discuss on movement
rules, which in our experience have important consequences
for the efficiency and reliability of the refinement.

In Fig. 8, we show the same portion of Fig. 4 calcu-
lated with the mapping-refinement method. The calculation
was done so that the number of nodes in P0 is the same for
the uniform discretization example, and the number of calls
to the map function is the same for both calculations. In the
inset region of Fig. 8, it is clear that the resulting nodes are
evenly spaced in regions of low curvature and accumulate in
the high curvature regions as required. Although the results
from the mapping-refinement method have no error intrinsic
to the manifold tracing, they have some inherent error sources,
as the roundoff error when applying explicit maps or the error
of numerical integration routine when using a Poincaré map.

Before introducing the interpolation-mapping approach,
let us discuss a relevant limitation of the presented method.
Since all the points in the manifold are seeded in P0, the
mapping-refinement method is numerically intensive; more
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FIG. 8. Unstable manifold portion of the Chirikov-Taylor map saddle with
k = 1.5. The adaptive generation of initial conditions on segment P0 was used
to satisfy lc = 0.1, θc = 10◦ for each of the 25 segments depicted.

precisely, if Mn is the number of points required to resolve
the nth segment, the total number of calls to the map function
when tracing n segments of a manifold is

Nc(n) = nMn. (23)

Assuming that the stretching mechanism leads on average to
an exponential growth in the primary segments, we obtain

Nc(n) ∝ neλn (24)

for an appropriate λ > 0. Consequently, the presented method
can be computationally expensive for manifold calculations
involving a large number of primary segments, although in
most situations a few tens of segments are sufficient to obtain
sufficient information on the manifold geometry. A more fun-
damental problem lies in the finite-precision of the numerical
representation, which limits the number of different initial
conditions that can be represented in P0, and can be insuf-
ficient to resolve a given Pn due to the exponential growth
of Mn. This is why it is important to use high order inter-
polants for the zeroth segment, as this allows us to work with
a large primary segment. In practical situations, the stretching
mechanism can be sufficiently large for two neighbor initial
conditions in a linear representation of P0 separated by the
minimum representable numerical difference in coordinates
to become separated after a few mappings by a distance that
exceeds the resolution limit lc in the phase space.

VI. INTERPOLANT-MAPPING METHOD

In Sec. V, we introduced a refinement method to produce
a suitable discretization of the exact manifold to any desired
resolution and extent. Despite our control over the calls to
the map function and a precise definition of the refinement
regions, the resulting procedure can be computationally inten-
sive (but far less intensive than a non-refining procedure). To
reduce the computational cost we can move to an approxi-
mation paradigm,19 where the refinement of segment Pn+1 is
based on the approximation of initial conditions in segment
Pn, instead of initial conditions in P0.

In this section, we concentrate on producing an approxi-
mated continuous representation for Pn+1 based on an approx-
imated representation of Pn. This is formally closer to the
original composition presented in (16), but, in practice, we
use the refinement methods presented in Sec. V to define an
iterative scheme that allows us to produce reliable interpolants
from a previous segment in the manifold.

Assume that we have a planar parametric curve P̄n(s) :
R → R

2 for s ∈ [sl, sr] that approximates the points in the nth
segment Pn to a given precision ε. This is

∀ s ∈ [sl, sr], ∃x ∈ Pn : |P̄n(s) − x| < ε. (25)

In other words, the points in P̄n(s) differ from those in Pn by
at most a distance ε. To approximate the segment Pn+1, we
can infer its behavior from an appropriate set of nodes

xi = T[P̄n(si)]; i = 0, 1, 2, . . . , N , (26)

where s0 and sN are the parameters corresponding to the end-
points of the segment Pn+1. The set s0, s1, . . . , sN is chosen so
that the curve between any pair {xi, xi+1} cannot differ much
from a straight line. The procedure to do this is analogous
to that presented in Fig. 7, where a new node between xi and
xi+1 is added when the resolution criteria are not met. The new
point is obtained by parametric bisection

x′ = T

[
P̄n

(
si + si+1

2

)]
. (27)

After determining an appropriate set of nodes for the whole
domain of Pn+1, the interpolant curve to approximate it is a
piecewise vector function

P̄n+1(s) =

⎧
⎪⎨

⎪⎩

f0(γ0, s), s ∈ [s0, s1],
...

fN−1(γN−1, s), s ∈ [sN−1, sN ],

(28)

where fi : R → R
2 and γi’s are adjustable parameters that

determine the local properties of the curve and can be deter-
mined by imposing geometrical constrains on the interpolant
pieces fi.

A. The interpolant model

Consider the following expression for the position vector
along the interpolant of the ith arc:

�fi(γi, s) = �xi + t�li + hi(γi, t)ẑ ×�li, (29)

where �xi is the position vector of node xi, �li = �xi+1 − �xi,
and t ∈ [0, 1] is the normalized position along the chord
line joining xi and xi+1 (see Fig. 9). The function hi(γi, t) :
R → R is proportional to the normal distance between the
interpolant curve fi(s) and the chord xi, xi+1, and satisfies
hi(0) = hi(1) = 0, which guarantees that the curve passes
through the nodes xi and xi+1. Notice also that the L.H.S.
in (29) depends on the global parameters s, and the R.H.S.
depends on the normalized parameter t so that there is a func-
tion s = g(t) that allows us to make the transformation from
the local parameter t to the global one s. The interesting part
of this arc representation is that the bare geometrical aspects
of the curve are contained in the first half of the expression
�xi + t�li, and the fine tuning is carried by the shape function
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FIG. 9. The position along the model curve can be decomposed into three
vectors. One defines the first node xi, the second is the displacement along
the chord joining two nodes, and the third gives the normal displacement of
the arc with respect to the chord.

hi(γi, t), in the second part, which contains the error adjustable
parameters γi. Notice also that a good choice of the parti-
tion nodes results in hi(γi, t) << 1, everywhere in the interval,
guaranteeing that the main geometry is well described by the
nodes themselves and only small (but extremely important)
details are described by hi(γi, t).

By definition, the arc representation (29) is continuous
across the nodes xi, but we also require the curve model to
be differentiable everywhere. Since the interpolant is smooth
inside the arcs, we concentrate on the nodes and require

d�f
ds

∣∣∣∣∣
s=s−i

= d�f
ds

∣∣∣∣∣
s=s+i

(30)

for all si in the partitioning. In terms of the local representa-
tions of the interpolant, this becomes

dt

ds

d�fi−1

dt

∣∣∣∣∣
t=1

= dt′

ds

d�fi
dt′

∣∣∣∣∣
t′=0

, (31)

where t and t′ are the corresponding local parameters of the
arcs i − 1 and i. Because the global parameter s has the same
meaning across the node, the differential ds is the same in
both sides, and we are left with a simpler relation that does
not depend on the global parameter

d�fi−1

dt

∣∣∣∣∣
t=1

= dt′

dt

d�fi
dt′

∣∣∣∣∣
t′=0

. (32)

The relation dt′/dt can be determined by the ratio of the pro-
jections of a line element d�r along the secant lines xi−1xi and
xixi+1, leading to

dt′

dt
= li−1

li

cos αi

cos βi−1
, (33)

where αi and βi−1 are the angles between the tangent line at xi

and the secant lines. In other words, αi and βi are the angles
between the ith arc and its corresponding chord line at the end-
points (see Fig. 9). Writing βi−1 as the difference between αi

and the inter-secant angle θi, we obtain a consistent equation
for the differentiability at the node i,

d�fi−1

dt

∣∣∣∣∣
t=1

= li−1

li

cos αi

cos(αi − θi)

d�fi
dt′

∣∣∣∣∣
t′=0

, (34)

where the angles θi can be determined from the position of
the nodes alone. For a suitable choice of the shape function
hi(γi, t), the chord-tangent angles αi determine the overall
behavior of the model curve and can be considered as the
fundamental parameters of our interpolant.

Using the explicit arc representation in (29) and the dif-
ferentiability condition (34), we can relate the angles αi with
the derivatives of the shape function at the end-points

h′
i(0) = tan αi and h′

i(1) = tan(αi+1 − θi+1). (35)

B. The simplest shape function

Requiring the shape function h(γi, t) to be the lowest
order polynomial, vanishing for t = 0 and t = 1, and allow-
ing for different left and right derivatives, we obtain a cubic
function as the simplest expression for the shape function

hi(t) = ait(1 − t)2 − bit
2(1 − t), (36)

where ai = h′
i(0) and bi = h′

i(1) are the end-point derivatives,
and bi can in turn be related to the parameters of the next shape
function using the conditions obtained from differentiability
in (35)

bi = ai+1 − mi+1

1 + ai+1mi+1
, (37)

where mi+1 = tan θi+1. Given that the inter-chord angles θi

are the resulting features of the discretization procedure,
they are not adjustable parameters and are kept fixed. This
leaves us with the set �a = {a0, a1, . . . , aN } which can, in
principle, be adjusted to obtain an interpolant P̄n+1 which
is closest to the primary segment Pn+1. However, to adjust
this set, an error functional must be minimized, and this
requires obtaining more information about the curve being
modeled. For instance, we can calculate a set of intermediate
points yi = T[P̄n(s′

i)] where s′
i ∈ (si, si+1) and minimize the

functional

ε(�a) =
N−1∑

i=0

|�fi(ai, ai+1) − �yi| (38)

by performing subsequent variations δ�a obtained from a
Levenberg-Marquardt procedure.28 As expected, this results
in an interpolant that passes through every node and is clos-
est to the intermediate points �yi. However, there can be an
arbitrary distance between the interpolant and the primary
segment P̄n+1 in every other location without affecting the
error functional. In fact it was observed that an appropriate
guess of the set {a0, a1, . . . , aN } performed better at arbitrary
locations than the numerically optimized set, even when addi-
tional optimization constraints were applied, like requiring the
interpolant arc-length to be small or limiting the domain of
variation of the αi’s.

A suitable guess consists in requiring the tangent line on
each node to bisect the inter-secant angle. In other words,
αi = θi/2, resulting in the following relations between param-
eters:

ai =
√

1 + m2
i − 1

mi
and bi = −ai+1 (39)

with mi = tan θi. This results in a very smooth curve passing
through all the nodes, but as discussed before, the success of
this approximation relies on leaving a minimum amount of
information on the shape function. Most of the information
must be contained in the node positions, and the interpolant
between two nodes must differ very little from a straight line,
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FIG. 10. Comparison between 26 primary segments of the exact and approx-
imated unstable manifolds of the Chirikov-Taylor map for a region of phase
space. To depict any difference between the manifolds we zoomed into an
extreme corner, where differences below 10−6 develop.

i.e., the values of ai must be very small. Notice that this is
automatically satisfied for a good set of nodes because all
inter-secant angles satisfy θi < θc with θc << 1.

We can estimate the maximum distance from the inter-
polant curve to the corresponding secant line in terms of the
resolution parameters lc and θc. Provided that θc << 1, we
have

Hc = lchc ≈ θclc
8

, (40)

where θc is measured in radians and hc = h(1/2) for a = b =
tan θc. This gives us a baseline to measure the interpolation
error, which must be small in units of Hc.

C. Comparison to the exact calculation

In Fig. 10, we compare the approximated manifold and
the exact one in a 1 × 1 region of the phase space for the
Chirikov-Taylor map with k = 1.5. For this comparison, we
traced 26 primary segments with dc = 0.01 and θc = 3.0◦ for
both the exact and approximated calculation. This gives us a
distance baseline of Hc ≈ 6.5 × 10−5 so that the local inter-
polation error must satisfy ε << Hc. In the scale of Fig. 10,
differences between the manifolds are not observable, and in
fact they are not observable in any low or moderate-curvature
region, because the distance between consecutive nodes of
the manifold is much larger than the separation between the
curves. To depict any difference we must look into very
sharp corners, where any tiny amount of compression along
the manifold amplifies the differences between the exact and
approximated manifold.

To have a better perspective of the approximated mani-
fold error, we can measure the distance between an exact node
and its expected position from the manifold interpolant. This
can be done by finding the normal projection of the exact node
along the secant line between two nodes of the approximated
manifold. This gives us the value of t in (29), and we can
calculate the corresponding interpolant position.

FIG. 11. Distance between the nodes of the exact manifold and their loca-
tion from the manifold interpolant as a function of the arc-position along the
manifold. The distance fluctuates widely but remains bounded below 10−5.

In Fig. 11, we show the distance between the exact nodes
and their corresponding estimation by the interpolants that
compose the approximated manifold. Because the first seg-
ment of the approximated and exact methods is the same,
we expect smaller errors for the first segments. However, the
correlation between the nodes of the exact calculation and
approximated method is quickly lost because of the differ-
ence in the construction methods, then the distance from the
exact nodes to their estimated positions gives us a good esti-
mate of the local error. An important feature of Fig. 11 is that
the interpolant error does not grow along the manifold as a
consequence of mapping approximated new nodes based on
an interpolant curve. This indicates that the approximation
method is stable, i.e., small errors introduced by the inter-
polation of new nodes get damped due to the compression
perpendicular to the manifold.

For this example, the manifold error is quite small, as
can be seen in Fig. 12, where the statistical distribution of
distances of Fig. 11 is shown. The error of the interpolants
that compound the approximated manifold concentrate around
10−9 and below 10−17, and error values close to the baseline
Hmax ≈ 6.5 × 10−5 show a very small probability. Remark-
ably, these results were obtained after setting the adjustable
parameters {α0, α1, . . .} only by geometrical requirements. It
is important to realize that errors below 10−17 must not be
considered to be meaningful, since they are below machine
precision, and their numerical representation is not reliable.
However, it is important to keep them in the error histogram
because they account for the events where the approximated
and the exact manifolds were numerically identical.

FIG. 12. Statistical distribution of the distances in Fig. 11. For a random
position in the manifold there is a high probability of obtaining errors near
10−9, and the probability of values near the baseline ∼ 10−5 is significantly
small. The values in the shaded region below 10−17 are not numerically
reliable because they fall below machine precision; however, we preserve
them because their frequency indicates the number of events where the
approximated and exact methods were numerically identical.
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The resolution criteria led to 106 calls to the map function
for the exact calculation and 105 calls for the approximated
one. This factor ten reduction in the number of calculations
is due to the seeding of a new initial condition in the seg-
ment previous to the segment under refinement, instead of the
zeroth segment. The number of calculations involved in the
approximated calculation can be approximated by

N∗
c (n) =

n∑

n′=0

Mn′ ∝
n∑

n′=0

eλn′
, (41)

so that, for a large stretching rate λ and large number of pri-
mary segments n, the number of calls to the map approaches

N∗
c (n) ∝ eλn

1 − e−λ
, (42)

then, for a finite number of segments, the ratio to the number
of calls for the exact calculations satisfies

N∗
c

Nc
� κ

n
, (43)

where κ = (1 − e−λ)−1 > 1. This rapidly decreasing function
of the number of segments n guarantees a sustained growth in
efficiency as the number of primary segments increases.

VII. AN EXAMPLE APPLICATION

Now that we have illustrated the approximated mani-
fold calculation for an explicit map, we consider a situation
where the computational efficiency is more relevant, a con-
tinuous time dynamical system. Consider, for instance, the
conservative Duffing oscillator with the Hamiltonian function

H(q, p, t) = p2/4 − 2q2 + q4 + εq cos(ωt), (44)

where q and p are conjugate variables and satisfy the Hamilton
equations. Physically, q and p are the position and momen-
tum of a particle in a double-well potential subjected to a
periodic force field. In the unforced situation, particles with
energy E < 0 are restricted to one side of the well, but in
the forced situation, the external field enables the transition
from one well to the other for energies moderately below
zero. This problem has interest in modeling the increase of
the transition rate over potential barriers induced by exter-
nal monochromatic fields.11 Moreover, the corresponding
deterministic diffusion in the chaotic region competes with
quantum-mechanical tunneling between wells.29,30

In the subject of magnetically confined plasmas this prob-
lem is equivalent to that of an asymmetric single-null tokamak
discharge.31 Here, small asymmetries cause some magnetic
field lines to become chaotic around the plasma column and
the external divertor coils, leading the charged particles to
encounter the tokamak chamber.4,5 The use of resonant mag-
netic perturbations to break the magnetic invariants in the
separatrix region has important applications in the control
of plasma edge instabilities and plays an important role in
modern tokamak operation.

Broadly, the potential barrier penetration can be under-
stood through the formation of a chaotic layer around the
separatrix of the well, which overcomes the potential barrier
of the integrable case, allowing chaotic orbits to wander in

both sides of phase space. However, there are interesting situ-
ations where the transit between sides of the well is virtually
suppressed for orbits in the chaotic layer during long extents
of time, and manifold tracing provides relevant insight into
the mechanisms involved in transport or lack of it.

In Fig. 13, we show 30 000 cycles of the strobo-
scopic position of the Duffing system for an arbitrary orbit
in the chaotic layer with different forcing amplitudes. For
ε = 0.025, the orbit spends a long time on each side of the
well with shorter interludes of global motion. As we increase
the amplitude, the times spent in local motions become
shorter, and global motion begins to dominate. For instance, at
ε = 0.05, periods of localized motion are very short compared
to those of global motion.

To understand these transitions in a geometrical basis,
we need to know which invariants control the motion in the
chaotic region. From structural stability,13 it is expected for
the perturbed system to contain a saddle x∗

c , which is a time-
dependent version of the unperturbed saddle at (0, 0). The
invariant manifolds of this saddle are responsible for driving
the chaotic orbits from one side of the well to the other, but
this is not the only period-one saddle in the chaotic region.
For ω = 1.5, there are two resonant tori near the separatrix of
the double well, one for each side of the well. For ε = 0.025,
they are destroyed by the perturbation creating period-one
K.A.M. islands surrounded by a thin chaotic layer driven by
the invariant manifolds of a helical saddle x∗

h. The chaotic lay-
ers of the central saddle and the islands are in contact, but their
interaction depends on the perturbation strength.

In Fig. 14, we show a single orbit in the merged chaotic
layers and an inset depicting the central and right period-one
saddles with some of their invariant manifolds. The periodic
orbits x∗

c and x∗
h were determined to 14 significant digits using

a modified Levenberg-Marquardt algorithm.28 For ε = 0.025,
a finite tracing of the invariants shows no entanglement
between the manifolds of the central and the helical saddle.
The lobes of the stable and unstable manifolds of x∗

h develop
around x∗

h so that chaotic orbits near the helical saddle tend
to remain so, leading to a slow diffusion from the chaotic

FIG. 13. The particle’s position from the stroboscopic map of the Duff-
ing system with ω = 1.5 and two different amplitudes. Larger amplitudes
lead to a predominantly global motion, while small ones cause spontaneous
transitions between the different localized and global motions.
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FIG. 14. For ω = 1.5 and ε = 0.025, the orbit transits between sides of the
potential well spending long times near the helical saddles of period-one
K.A.M. islands. The resonant torus is sketched with a dashed line. The inset
shows finite portions of the invariant manifolds of the central saddle x∗

c and
helical one x∗

h , exhibiting homoclinic intersections.

layer around the island to the global layer responsible for
transitions, as if they were only weakly connected.

When the forcing amplitude is increased, the lobes of
the stable and unstable manifolds of x∗

h develop around x∗
c ,

and vice versa, causing a heteroclinic connection between
these saddles and a strong entanglement between their man-
ifolds which results in a full mixing of the chaotic layers
(Fig. 15). This transition from homoclinic to heteroclinic con-
nection explains the transition from the alternating localized
chaotic motion to the global chaotic dynamics, and leads to
the suppression of the local motion features of around the
period-one islands. Provided that there are transitions for the
ε = 0.025 case, there must be some heteroclinic connection
between the saddles, and such can be observed after a rather

FIG. 15. For ω = 1.5 and ε = 0.05, the orbit wanders the chaotic region
uniformly. The inset containing the central and helical saddles shows the
development of heteroclinic connections between them, and a rather com-
plex pattern of manifold intersections, so that diffusion in the chaotic region
becomes more uniform.

extensive manifold tracing; however, this is a second-order
feature and the homoclinic connections determine the most
relevant features of the weak forcing situation.

VIII. CONCLUSIONS

In this paper, we introduced a mapping-refinement
approach to discretize the exact invariant manifolds of planar
maps. This intensive method prevents redundant calculations
and makes the best use of every new orbit resulting in a
lower computational cost when compared to non-refining
approaches. An intensive non-refinement technique with the
same computational cost results in a non-smooth representa-
tion of the manifold with under-resolved and over-resolved
portions.

Then, we introduced an interpolant-mapping approach
to approximate the invariant manifolds. Our interpolation
method was based on the curve decomposition in bare and
fine details, where the fine details were contained in a nor-
mal displacement function or shape function. This curve
decomposition is new to our knowledge and does not involve
any parametric optimization stage, which eases the method
implementation.

With the approximation method, the efficiency was
greatly increased with a small precision penalty due to the
interpolation of the primary segments for seeding new orbits.
Comparison between the exact and approximated manifold
resulted in errors well below the determined baseline, even
when the shape functions of the interpolant curve were chosen
to be the simplest polynomial function with independent end-
point derivatives. This leaves space for further improvement
if more elaborate shape functions are used, or even paramet-
ric optimization techniques, with the cautions mentioned in
Sec. VI B.

To illustrate the different manifold tracing routines, we
obtained the invariants for the Chirikov-Taylor map dur-
ing the methods comparison, and used the approximation
technique to study the chaotic transitions between local and
global motions in the conservative Duffing oscillator, where
the transition from homoclinic to heteroclinic connections
between the central and helical saddles in the chaotic layer
was evidenced in agreement with the observed intermittent
dynamics.
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APPENDIX: DETERMINATION OF HESSIAN
ELEMENTS OF T

In Sec. III, we described with some detail how to deter-
mine the normal displacement function coefficients for an
approximated local manifold near a saddle point of an arbi-
trary map. Any planar map T : R

2 → R
2 consists of two
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functions T1,2, one for each dimension

T(x1, x2) :

(
T1(x1, x2)

T2(x2, x2)

)
. (A1)

The unstable unit vector û satisfies
(

T1,1 T1,2

T2,1 T2,2

)
û = λuû (A2)

with Ti,j = ∂
∂xj

Ti(x1, x2)

∣∣∣
x∗ , and its determination is elemen-

tary in two dimensions. The entries of û are related to the angle
θ , between û and x̂1, by

û = (cos θ , sin θ)T = (c, s)T . (A3)

Coordinates (u, v) are such that u is the displacement along the
unstable subspace with respect to the saddle x∗, and v is the
displacement perpendicular to u. These coordinates are just a
rotation by −θ of coordinates (x1, x2) and, analogously, the
representation (Tu, Tv) of map T can be obtained by

(
Tu(u, v)
Tv(u, v)

)
=

(
c s

−s c

) (
T1(x1, x2)

T2(x2, x2)

)
. (A4)

Using elementary transformation rules, we can obtain the
required elements for the calculations in (14). For the Jacobian
elements, we have

Tv,u = −csT1,1 − s2T1,2 + c2T2,1 + csT2,2, (A5)

Tv,v = s2T1,1 − csT1,2 − csT2,1 + c2T2,2, (A6)

and for the Hessian elements

Tv,uv = cs2T1,11 − s(c2 − s2)T1,12 − cs2T1,22

− c2sT2,11 + c(c2 − s2)T2,12 + c2sT2,22, (A7)

Tv,uu = −c2sT1,11 − 2cs2T1,12 − s3T1,22

+ c3T2,11 + 2c2sT2,12 + cs2T2,22, (A8)

where Ti,jk = ∂2

∂xj∂xk
Ti(x1, x2)

∣∣∣
x∗ can be obtained by elemen-

tary differentiation of the original map or can be obtained
numerically by finite differences when an explicit form is not
available.
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