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Abstract-In this paper, we show how a whole set of primary resonances can be generated by a 
definite sequence of bifurcation-reconnections in a nonlinear Hamiltonian system. The resonance 
generation is accomplished from a sequence of tangent inverse bifurcations followed by reconnection 
processes inside a nonpendular island nonmonotonic in the frequency. The stability of the nonpendular 
island is found to be unaffected by these processes except for the [2:1] resonance, where it presents a 
window of instability. In particular, we consider the problem of particle acceleration in a plasma media 
and discuss possible implications of the instability window on the acceleration process. 0 1998 Elsevier 
Science Ltd. All rights reserved 

1. INTRODUCTION 

This paper initially deals with the analysis of sequences of bifurcations that characterize 
Hamiltonian phase space patterns. We are interested in the analysis of two sequences that 
originate a complete set of primary resonances in an Hamiltonian system. The main point is 
that this process is possible because it occurs inside a nonpendular island that is 
nonmonotonic in the frequency; besides bifurcations there is the presence of reconnections 
[l, 21 in this system. 

The nonpendular resonance is originated in the context of low energy relativistic particle 
acceleration [3, 41; one calls this island a nonpendular island, following [5]. One of the most 
important characteristics of the nonpendular island is the absence of hyperbolic points in its 
boundary. As a consequence, this resonance island does not develop a stochastic layer in its 
boundary and follows atypical transition to chaos [6]. The nonpendular island is also found in 
the restricted three-body problem of celestial mechanics [7]. 

To carry out this work, we will focus on a physical model from the acceleration context 
that presents one nonpendular island. Furthermore, the investigation of bifurcation- 
reconnections process provides a knowledge on stability of island of resonance and bJ 
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consequence of the accelerator devices: this is a theme of great technological importance 1.3. 
4.x. 9). 

The paper is therefore organized as follows. In Section 2. we define the physical model and 
discuss some features related to the nonpendular island: in Section 3, we perform a global 
analysis of the phase space; in Section 4, we analyze the sequences of bifurcation- 
reconnections inside the nonpendular island: and in Section 5 we conclude the work. 

2. THE MODEL: A NONPENDULAR ISLAND 

The model consists of an electron immersed in a background of magnetized plasma which 
is perturbated by a perpendicular electrostatic wave [6.101. The wave is characterized by an 
amplitude II,,, a wave vector k and a frequency CL). The corresponding relativistic Hamiltonian 
of an electron is written a~ 

I/ L- [I -L p’ t (p, ’ .x: t py ’ A,, cos(ks -. cd). (1) 

where 11 is normalized to rrrc’. p to MC’, A,, to e/m-‘. time and space are normalized to 
(IJ, = I eR,,lmc I and w,:c. respectively, with B,, as the background field. m as the electron mass. 
(’ as the velocity of light and C’ as the electron charge. The injected particle parallel 
momentum p; is a constant of motion and can hc treated here as a parameter of the system. 
Although the parameter 1): is a constant of motion. smooth variations of p; caused by 
nonhomogenities in the magnetic field are expected. 

I.:sing guiding-center variables dehncd as 

/‘I = \ 77 cos (1~. v :- p, -: k 5 sin d. (2) 

and making use of the harmonic expansion for Bessel functions J,, it becomes possible to cast 
the Hamiltonian in the resonant form 

‘l‘his Hamiltonian can be written as If F-H,,-t A,,H!. where ff,, =- \’ 1 + 21 + p. is the 
integrable part of H and H, -xX, ’ ,_ J,(k\ 21) cos(ld, -- wr) is its perturbation part. Note 
that I is directly related to the kinetic energy. All theoretical conclusions from this model are 
valid even for adiabattc variations of p.. because the action is an adiabatic invariant. 

The natural frequency OJ,, of the system is easily estimated in the action angle coordinates 
LO he 

4s / varies from 0 to x. the frequency behaves monotonically. The term ff, perturbales ff,, 
,giving rise to resonances that are approximated hy pendular island whose frequency behaves 
also monotonically [I I]. In this way. one can expect that no reconnections take place in the 
phase space generated by the Hamiltonian of eqn (3). due IO the monotonicity in the 
trequencv. However. the nonpendular island plays a differential role at this point. as we shall 
<Cc'. 
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2.1 The resonance condition 

There is a primary resonance [m,n] in the phase space when the resonance condition 

nuO=mw (5) 

is fulfilled, where w. is the natural frequency of the system, given by eqn (4), n and rn are 
integers, and w is an external frequency that perturbates the system [ll]. In our case, the 
perturbing frequency is just the one of the electrostatic wave and the resonances produced 
are named primary resonances. 

Using eqn (5), one can write a resonance condition for the Hamiltonian of eqn (3); this 
condition assumes the form 

1 nz 
Z n,m= - 

2 ((-) -1-p:>, mw (6) 

where Z,,, is the value of the action at resonance [m,n]. The most important resonances are 
those where m = 1; they can be described choosing only one term I = n in the Hamiltonian in 
eqn (3). We call this the resonance n = 1, and denote the value of the action at this resonance 
by 4. 

If one takes a tenuous plasma o = 1 and the resonance n = 1, the resonance condition in 
eqn (5) produces a negative value for I,. However, by eqns (2), Z is positive defined; this 
unusual kind of resonance is known in the literature as a nonpendular island [5]. 

We can see in eqn (6) that the value of the action in a chosen resonance is a function of the 
parameter pz. As pz increases, Z, brings the n-esim resonance closer to the nonpendular 
island that is always found in the region of low values of the action I, or low energy. The 
parameter pz produces a shift in the position of all resonances. The main aim of this paper is 
to describe the annihilation of resonances as pz increase, or, on the other hand, the 
generation of resonances as pz decrease. 

It is worth saying that the value of the action Z, of many resonances can become negative, 
but only the resonance n = 1 will survive becoming a nonpendular island in the region of low 
energy. This happens because of the larger value of the polynomial representing this island, 
as compared with others [lo]. 

2.2 The frequency inside the nonpendular island 

In this paper, we are interested in the process involving a special resonance produced in 
the low energy regime. To describe its dynamics we choose in eqn (3) the term n = 1, 
responsible for acceleration in low energy regime, and discard other terms. After a canonical 
time removal in the Hamiltonian in eqn (3) one arrives at the local Hamiltonian 

H local =[1+2Z+p~]“2tA,J,(k~)cos @-wZ, (7) 
where the new angle coordinate is defined by fi = $ - wt. 

The Hamiltonian in eqn (7) describes the nonpendular island. In Fig. 1, we show a contour 
plot of this Hamiltonian, the parameters used being o = k = 1, pz = 2.3 and A0 = 0.1. The main 
aspects of the nonpendular island are pointed out; these are the elliptic point and the island 
boundary. 

We use the Hamiltonian in eqn (7) to estimate the frequency inside the nonpendular 
island. First we expand the square root and the Bessel function for low values of the action Z. 
The Hamiltonian obtained is 

H local = al + pz2 + 8x0 cos *, 

where (Y= l/m- 1, p= - (l/2)(1 +P:)-~‘* and s=Adfi. 
(8) 



lising the Hamiltonian equations. WC can write an effective potential that results 

where V(Z) = 6’1 - (E -. (YI - @I’)’ and E is the value of the energy. 
The integration of eqn (9) produces the period T of the movement 

where the integration limits coincide with the two real roots of the effective potential VI 
Finally the frequency ,f= 2&I can bc estimated. 

0.08 

0.06 

I 

0.04 

Viz, 1 Sketch of the nonpcndular island. On the vzr~cal axis is rhe variable action and on the horizontal axis the 
v:+riabla angle ‘1%~ elliptic point of lhe island and iis boundary are indicated. 
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In Fig. 2, we plot the frequency inside the nonpendular island versus the value of the 
energy E; the energy of the boundary is indicated. Three curves, corresponding to three 
values of parallel momentum pz =0.25, 0.3 and 0.35, are indicated. One observes that the 
behavior of frequency inside the nonpendular island is nonmonotonic. Moreover, the 
minimum of frequency drifts as the parameter pz varies. The situations pz = 0 and p, -+ = are 
two degenerate cases where the extremum drifts, toward the boundary and towards the 
elliptical point of the nonpendular island, respectively. 

3. GLOBAL ANALYSIS OF THE PHASE SPACE 

Three issues will be treated in this section. The first is that the nonpendular island allows 
one to understand all the resonant chains presented in the phase space as generated by 
bifurcations and reconnections involving itself. 

The second is that the generation of resonances corresponds to critical values of pz. Finally, 
the third issue deals with the integrable limit of pz-+ ~0. In order to explore these points, we 
will start by analyzing the stability index of the elliptic point of the nonpendular island. 

The Newton-Raphson stability algorithm [12] provides the stability index Q of a particular 
periodic orbit. When ( Q I> 1 the corresponding periodic orbit is unstable (one has an 
unstable fixed point in the Poincare plots) and when 1 LY ] < 1 the periodic orbit is stable (one 

0.178 
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p, =0*30 --------- 

‘\ ] p,=o.35 ------ 

0.170 - 
0.000 0.004 0.008 

E 
0.012 

Fig. 2. Analytical estimation for the frequency inside the nonpendular island vs the value of the energy. The scale in 
energy begins at the elliptic point and ends at the boundary of the island. The three curves correspond to different 

values of pz indicated in the figure. 
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has an elliptic fixed point). For the periodic orbits. the winding numbers can be extracted 
from the Newton-Raphson algorithm. 

I?K resonance condition for secondary resonances inside the first island is defined by 

qw,,, =- [“IJ. (11) 

where OJ,” is the frequency of the nonpendular island close to the elliptical point and p and y 
are integers. The secondary resonance chain has the winding number p/q, where 9 is the 
number of islands in the chain. When the winding number assumes a rational value. II 
secondary resonance appears [ 1 l] around this elliptic point. This information is connected 
with the stability index a by the relation [ 121 

In Fig. .;. we can see a diagram 01 the stability index CY versus the longitudinal momentum 
I>.. for the elliptic point of the nonpendular island. for two values of the amplitude of the 
wa~c: (a) A,,=0.05 and (b) A,,::O.S. I>et us focus our attention on case (a). Iwo aspects are 
important: a minimum of the curve and the asymptotic behavior for large p:. In a detailed 
simulation, one can see that (I I. -- I at the minimum (see Fig. 7) and so there is a window 01 
instability for the nonpendular island fixed point. This window will be pointed out in the 
discussion on the sequence of bifurcations during the generation of resonance [2:1]. 

I Ising the relation in eqn ( 12) that provides the secondary resonances present inside the 
nonpcndular island. we indicate in Fig. i(a) some secondary resonances. Following this 
picture. the instabilit!. of the nonpcndular island is simply a situation where p/q= 112 and :I 
rcsonancc [J:l 1 i5 produced. WC can see that as /jT increase the number of resonant chains (1 
in ~hc uccondar!, rcs~.>nancc:, becomes greater: in the asymptotic limit. the nonpendular island 
produces :I rcsonancc \vith (1 growing t6 infinite, and it ---3 I. 

l‘hc value\ 01 IJ: which correspond to the resonances indicated in the Fig. 3(a) arc called 
critical values. Instead of obtaining these values from the relation in eqn (12). we can 
alternatively use the relation in cqn (6) with /,,,,,, := 0. In a experimental situation. these values 
OI 1~: are critical hccausr ;l~reat changes in the phase +ICC can takt‘ place and the regular 
;tccelcration bc destroyed. 

in order to get ;I clearer understanding 01 the genesis 01’ phase space we are working with. 
II 1s better IO consider the set of bifurcations gcnrrntccl I‘rom the nonpendular island ac the 
parameter 1’ decreases iron1 inlinitc to lero. We define the ring around the elliptic point 
where the trequencb takes &In cxtrcmum \:~luc. and. b! consequenct!. the reconnection 
procc~s tnkcs place aSlong the rcconncction ring. A\ ;mal~;lcd in the last section. for 11: = (I the 
reconnection ring ih the nonpcndular boundsr\ and AS 11 + -c 1 he reconnection ring collapsc5 
10 the elliptic point 

If the frequency hzhavior of the nonpendular island were monotonic the situation c~ould 
IX easily explained. Each t~mc p. satisfies cqn (I I ). a secondary I-csonance appears in the 
vtcinity of the elliptic point according to a bifurcation well defined by H normal form [ 1.3). Ah 
1’. continucc to decrease. Ihis resonance migrates to the nonpendular boundary and crosses ir 
becoming a prirnarv rcsonancc. The fact that the frequency inside the nonpendular island is 
nonmonotonic implies the cxistencc of a reconnection process and the picture above breaks 
down: in the nest section. we will return to this point. 

In Fig. J(b). the situation is characterized by an instability for IOM values ofpZ: the reason 
is the high amplitude of the wave that chaotizc all the phase space. In [IJ], an appropriate 
overlapping of resonance criteria is worked out in order to describe the overlapping of 
resonance between the resonance [2: I ] and the nonpendular island. 
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Fig. 3. Stability diagram vs pL for two values of the amplitude of the wave: (a) Ao=0.05, (b) A,=05 In case (a), 
some values of secondary resonances internal to the nonpendular island are indicated. Here k = w = 1. 
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M’e can XY in Fig. 3(a) and (b) that. for large 1). . the stability index LY remains alwavs 

smaller than 1 and. AS ;I consequence. stable. ‘Ihe influence of higher values of /) 
compensates for the chaotic dynamics caused by the wave and guides the nonpendular island 
to stability. Following this picture. 17~ can be considered as a chaos suppressing parameter of 
the system. ‘Ibis aspect can be understood in the context of relativistic dynamics. Jf or-u 
thinks that the relativistic mass of the electron accelerated is done by the y factor. where 
7 --- If,,. it is easy to conclude that as 11~ becomes larger so will the inertial mass. The stability 
of the nonpendular island for high 1~: can be credited to a high inertial mass of the electron. 
In the limit 1); +x. /I---+ ff,, and the system becomes integrable: this is an alternative way to 
understand the stability of the system in this limit. 

Figure 3(a) can bc reproduced analytically from the Hamiltonian of eqn (7) of the 
nonpendular island. In this way. we will use the resonance condition of eqn (11) for 
secondary resonances inside the first island. ‘The frequency CO,,, is obtained in a standard wa! 
as in the cast of pendular islands [ I1 j. Using the relations of cqns ( 12) and (1 I), M’C 
reproduce the analytic function of the stability index or versus 1):. In Fig. 4. we can see this 
tigurc for the same set of parameters of the simulation showed in Fig. 3(a), just to make 
possible a comparison. There is a good agreement between the two figures. 

rherc is nevertheless a point where these two figures present a qualitative difference. The 
theoretic curve in Fig. 4 is- tangent to the line CY = -- 1. but the simulation curve in Fig. 3(a) 
crosses CY Z. I yielding a instability window. As the theoretical estimate do not make use of 
the other resonances of the system. one can say that the window of instability is due to the 
nonlinear influence of all other resonances on the nonpendular one. We have made other 
simulations where a greater. amplitude A (). and consequently greater influence of all the 
r-csonanccs. i$ taken into account and the window of instnbilitv becomes larger. 
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4. SEQUENCES OF BIFURCATION-RECONNECTIONS 

In this section, we will analyze the sequences of bifurcation-reconnections that characterize 
the generation (annihilation) of resonances as the parameter pZ decrease (increase). First one 
deals with the generic case of any resonant chain, and then we will analyze the case of the 
resonance [2:1]. 

In all cases, the sequence that characterizes the generation (annihilation) process actually 
changes the phase space and destroys the regular acceleration of particles. Some of the most 
important resonances are indicated in Fig. 3(a), but the most dangerous resonance is the [2:1] 
because the elliptic point of the nonpendular island lost stability during the process as we 
shall see later. 

4.1 Generic case 

Two aspects are important in the generation of generic resonances inside the nonpendular 
island: there are no windows of instability and the pattern of bifurcations is typical. The 
sequence of bifurcations as pz decreases is as follows. The generic case will be analyzed as a 
function of a decreasing pz. At the beginning, there is the nonpendular island and the ring of 
reconnection that is the minimum of frequency. As the reconnection ring takes on a rational 
value, two sets of pairs of elliptic-hyperbolic points are bifurcated via a tangent inverse 
process. After this, by reconnection, two secondary resonant chains are formed and both of 
them migrate, the internal one towards the elliptic point and the external towards the 
boundary of the nonpendular island. The internal resonance vanishes in the elliptic point 
according to a typical bifurcation [13] and the external one crosses the boundary becoming a 
primary resonance. 

We will illustrate this situation with the help of a sequence of Poincare plots for the case of 
resonance [1:5]. The Hamiltonian in eqn (3) is integrated for w = k = 1, A, = 0.125 and various 
values of pz. In Fig. 5(a), with pz =0.42, is shown the nonpendular island before any 
bifurcation. In Fig. 5(b), where pz =0.41, is presented the first set of coupled elliptic- 
hyperbolic points that was produced via tangent inverse bifurcations. In Fig. 5(c), where 
p; = 0.4025, the first and the second pairs of elliptic and hyperbolic points are shown. The 
asymmetric behavior in the creation of the two sets of hyperbolic-elliptic points is credited to 
the shape of the curve of the frequency inside the nonpendular island that is not parabolic; 
see Fig. 2. In Fig. 5(d), where pz = 0.40, the reconnection process is accomplished. And finally 
in Fig. 5(e), where pz = 0.37, the internal resonance has already vanished close to the elliptic 
point of the nonpendular island according to a typical bifurcation [13]. The external 
resonance has crossed the boundary of the nonpendular island. 

4.2 Case of resonance [2:1] 

The process involving the resonance [2:1] is special because a window of instability is 
formed during this process, i.e. the elliptic fixed point of the nonpendular island becomes 
hyperbolic during the process. The sequence of bifurcations and the window of instability will 
be illustrated with the help of Poincare plots. We integrate the Hamiltonian of eqn (3) for 
w = k = 1, A0 = 0.1 and some convenient values of pz. 

The process involving the resonance [2:1] will be analysed, as pz is increased, the 
annihilation process. Fig. 6(a), where pz= 1.58, shows the resonance [2:1] close to the 
nonpendular island. Fig. 6(b) corresponds to the same value of pz, a zoom of the first island is 
done. The next step corresponds to the period-doubling bifurcation of the nonpendular island 
that produces new elliptic and hyperbolic points; the two elliptic points of the nonpendular 
island collide via tangent inverse bifurcation with the hyperbolic points of the resonance 
[2:1]. These bifurcations were shown in a previous work [63; the difference is that in that 
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paper we were interested in the transition to chaos. and the bifurcation of the nonpendular 
kland was done by increasing the amplitude of the wave A,,. Figure 6(c). where p; = 1.7. 
shows the remaining fixed points. the hyperbolic of the nonpendular island and the two 
clliptics of’ the resonance i2:1]. Finally in Fig. i<(d). where Q 2 I .X5. we recover the 
nonpendular island after an inverse doubling bifurcation. 

Figure 7 shows the stability diagram for the central fixed point of the nonpendular island. 
The interval at which the point is hyperbolic, the instability interval. is below the long dashed 
line and the interval at which the point is elliptic is above this line. The diagram has on ihe 
vertical axis the stability index LY and on the horizontal axis the parameter p.-. The Newton- 
Kaphson algorithm reveals that the central fixed point of the nonpendular island is not stable 
for 1.6 s,‘i) ‘. I .%I. 

5. FINAL REMARKS 

A global analysis of the origin of the resonant chains of the system is accomplished and it 
1’; concluded that all the primary resonant chains can be viewed as being originated by a 
scyuence of bifurcations and reconnections from a ring placed around the elliptic fixed point 
of the nonpendular island. ‘Ibis topic suggests one question to be posed in the context of 
nonlinear Hamiltonian systems: in what circumstances is it possible to describe the complex 
\arietv of resonances of a generic Hamiltonian as a.n unfold of bifurcations from a single 
resonant isiancl’i 
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Fly. n. foincare plut showing a scqucnce 01‘ bifurcations rnvolving nonpendular island and the resonance [2:1 J. (a 
I’- - !.SP. the rebonancc [2:1] and the nonpcndular island; (h) zoom of the previous figure showing the nonpendulal 
islam: (ci p. :. 1.7. the hyperbolic point of the nonpendular island and the two elliptic points of tile resonance [Fl] 

idi /J .: 135, the nonpendulal- island after the annihilation 0: the resonance [?:I]. 
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Fig. 7. Stability diagrams showing the index a of the central fixed point of the nonpendular island vs the value of F.-. 
Below the long dashed line instability is characterized. 

The method of effective potential for the local Hamiltonian that describe the nonpendular 
island is used in order to estimate its frequency, which is nonmonotonic along the radius of 
the island. A simulation and a theoretical analysis is done for the frequency of the elliptical 
point of the nonpendular island as the parameter pz varies. An estimation of critical values of 
pr that generate resonances is done; these values disturb a regular acceleration of particles 
and must be evicted in a experimental system. 

We can describe the complex topology of this system from the unfold of resonances of the 
nonpendular island. In the limit of parameter pz infinite, the system is integrable and the 
nonpendular island occupies all the phase space. The generation of resonances from the 
nonpendular island is a stable process unless to the resonance [2:1]. In the generic situation 
as pr decreases the sequence of bifurcation-reconnections is as follows: a set of pairs of 
elliptic-hyperbolic points is generated by tangent inverse bifurcation close to the extremum 
of frequency (reconnection ring) and suffer reconnection setting up a pair of resonance 
chains; the internal resonance collapses into the elliptical point as the external one crosses 
the nonpendular boundary becoming a primary resonance. The chains produced in the 
nonpendular island establish all the primary chains of the Hamiltonian phase space. 
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