RESEARCH ARTICLE | FEBRUARY 18 2025

A recursive method to find the extreme and superstable
curves in the parameter space of dissipative one-
dimensional mappings ®©

Special Collection: From Sand to Shrimps: In Honor of Professor Jason A. C. Gallas

Diogo Ricardo da Costa & © ; Luam Silva de Paiva @ ; Julia G. S. Rocha © ; Joelson D. V. Hermes © ;
Matheus Hansen © ; Ricardo Luiz Viana @ ; Iberé Luiz Caldas © ; Rene O. Medrano-T @

’ '.) Check for updates ‘

Chaos 35, 023146 (2025)
https://doi.org/10.1063/5.0239022

©
c
-
=
O
-
-
©
IE
2
o
Iﬂ
§e)
=
(]
)
c
C
<

of Nonlinear Science

@ B

View Export
Online  Citation

Articles You May Be Interested In

Dynamical properties of the composed Logistic-Gauss map

Chaos (January 2025)

Logistic map trajectory distributions: Renormalization-group, entropy, and criticality at the transition to
chaos

Chaos (March 2021)

A note on chaotic unimodal maps and applications

Chaos (August 2006)

P
Publishing Chaos

Special Topics Open

for Submissions

Learn More

AIP
é/_‘_ Publishing

€2:66:G1 G20z Atenige gL


https://pubs.aip.org/aip/cha/article/35/2/023146/3336228/A-recursive-method-to-find-the-extreme-and
https://pubs.aip.org/aip/cha/article/35/2/023146/3336228/A-recursive-method-to-find-the-extreme-and?pdfCoverIconEvent=cite
https://pubs.aip.org/cha/collection/425591/From-Sand-to-Shrimps-In-Honor-of-Professor-Jason-A
javascript:;
https://orcid.org/0000-0003-1891-6415
javascript:;
https://orcid.org/0000-0002-8089-6999
javascript:;
https://orcid.org/0000-0002-7134-5570
javascript:;
https://orcid.org/0000-0002-9600-6305
javascript:;
https://orcid.org/0000-0003-0125-9033
javascript:;
https://orcid.org/0000-0001-7298-9370
javascript:;
https://orcid.org/0000-0002-1748-0106
javascript:;
https://orcid.org/0000-0003-0866-2466
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0239022&domain=pdf&date_stamp=2025-02-18
https://doi.org/10.1063/5.0239022
https://pubs.aip.org/aip/cha/article/35/1/013129/3330287/Dynamical-properties-of-the-composed-Logistic
https://pubs.aip.org/aip/cha/article/31/3/033112/1059446/Logistic-map-trajectory-distributions
https://pubs.aip.org/aip/cha/article/16/3/033113/985800/A-note-on-chaotic-unimodal-maps-and-applications
https://e-11492.adzerk.net/r?e=_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09YmFubmVyJnV0bV9jYW1wYWlnbj1IQV9DSEFfU1QrT3Blbitmb3IrU3Vic19QREZfMjAyNCJ9&s=fsqWeqXUa2OHfuCuAnFJq3hGXGQ

Chaos ARTICLE pubs.aip.org/aip/cha

A recursive method to find the extreme and
superstable curves in the parameter space of
dissipative one-dimensional mappings @

Cite as: Chaos 35, 023146 (2025); doi: 10.1063/5.0239022 T
Submitted: 16 September 2024 - Accepted: 29 December 2024 - @ u @
Published on“ne: 18 February 2025 View Online Export Citation CrossMark

Luam Silva de Paiva,' & Julia G. S. Rocha,' 2 Joelson D. V. Hermes,*”
Iberé Luiz Caldas,® /- and Rene O. Medrano-T'®

Diogo Ricardo da Costa,'®
Matheus Hansen,” ) Ricardo Luiz Viana,®

AFFILIATIONS

TDepartment of Physics, Sdo Paulo State University—UNESP, 13506-900 Rio Claro, SP, Brazil

?Federal Institute of Education, Science and Technology of South of Minas Gerais—IFSULDEMINAS, 37576-000 Inconfidentes,
MG, Brazil

3Physics Institute, University of Sdo Paulo—USP, 05508-090 Sao Paulo, SP, Brazil

“Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Universidade NOVA de Lisboa,
Quinta da Torre, 2829-516 Caparica, Portugal

SDepartment of Physics, Federal University of Parana—UFPR, 82590-300 Curitiba, PR, Brazil

cDepartment of Physics, Federal University of Sdo Paulo—UNIFESP, 09913-030 Diadema, SP, Brazil

Note: This paper is part of the Focus Issue, From Sand to Shrimps: In Honor of Professor Jason A. C. Gallas.
@ Author to whom correspondence should be addressed: dliogocost2@gmail.com

ABSTRACT

This paper presents a recursive method for identifying extreme and superstable curves in the parameter space of dissipative one-dimensional
maps. The method begins by constructing an Archimedean spiral with a constant arc length. Subsequently, it identifies extreme and super-
stable curves by calculating an observable . The spiral is used to locate a region where v changes sign. When this occurs, a bisection
method is applied to determine the first point on the desired superstable or extreme curve. Once the initial direction is established, the recur-
sive method identifies subsequent points using an additional bisection method, iterating the process until the stopping conditions are met.
The logistic-Gauss map demonstrates each step of the method, as it exhibits a wide variety of periodicity structures in the parameter space,
including cyclic extreme and superstable curves, which contribute to the formation of period-adding structures. Examples of extreme and
superstable curves obtained by the recursive method are presented. It is important to note that the proposed method is generalizable and can
be adapted to any one-dimensional map.
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This paper presents a recursive method for identifying extreme
and superstable curves in the parameter space of dissipative
one-dimensional maps. The approach begins by constructing an
Archimedean spiral with a constant arc length, which is then used
to locate regions where an observable changes sign. This sign
change indicates the presence of extreme or superstable curves,
which are subsequently identified by using a bisection method.
The method proceeds recursively, refining the search for these
curves until predefined stopping conditions are met. The tech-
nique is applied to the logistic-Gauss map, which is known for its
complex periodic structures, effectively demonstrating how the
method uncovers cyclic extreme and superstable curves as well

as period-adding structures. Moreover, the recursive approach
is adaptable to any one-dimensional map, making it a robust
and versatile tool for exploring parameter spaces in dissipative
systems.

I. INTRODUCTION

In recent years, significant progress has been made in the study
of nonlinear phenomena, introducing new concepts and approaches
to the analysis of conservative and dissipative systems.' The lit-
erature includes several applications involving two-dimensional
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Chaos

maps,” such as the standard map,’ the Fermi-Ulam model,'”'" and
others. If these systems preserve the area in phase space,”'"” they are
considered conservative; otherwise, they are dissipative, exhibiting
forms of dissipation, such as viscosity or friction.

This paper focuses on the study of one-dimensional dissipa-
tive systems,''”"> which can exhibit chaotic attractors and periodic
fixed points.'® To investigate the organization of periodic struc-
tures, we analyze the parameter space, constructed by varying two
control parameters of the system. For each combination of control
parameters, the corresponding Lyapunov exponent is calculated. In
one-dimensional systems, a positive Lyapunov exponent indicates
chaotic behavior, a negative value corresponds to periodic behavior,
and a null exponent typically signifies bifurcations in the dynamics.

Lyapunov exponents'’~'” are a tool for analyzing the divergence
or convergence of two initial conditions over time, enabling the
identification of chaotic and periodic regions based on the color
palette used in the parameter space. The study of such systems is
a growing field of research, revealing a rich variety of complex peri-
odic structures in parameter space diagrams,>”’~** bifurcations,”*
and foliations.””” These investigations have direct applications
in understanding and characterizing dynamical systems, includ-
ing periodic structures embedded in chaotic domains and various
mechanisms of self-organization and bifurcation.

When discussing parameter space, one cannot overlook
Arnold’s seminal article,”® where he explored the organization of
Arnold tongues. Following his work, there was a significant surge
in interest in understanding periodicity windows, which are sur-
rounded by chaotic attractors in parameter space. The organization
of these periodic structures is governed by extreme and superstable
curves.”>”’ These curves are crucial for studying periodicity win-
dows, as their intersections provide valuable information about the
system’s dynamics. Specifically, they allow the determination of the
period associated with the structure at the point of intersection.
Additionally, cascades of periodicity windows are observed along
extreme curves.”’ Superstable orbits, which exhibit very fast conver-
gence as indicated by their Lyapunov exponent, are a key feature of
these systems. The intersections of extreme curves not only reveal
periodicity structures but also pinpoint the locations of superstable
curves within the parameter space.

In this work, we present a highly accurate method for trac-
ing extreme and superstable curves (both open and closed) with a
comfortably large number of data points homogeneously distributed
along the curves. The construction of our recursive method relies on
Archimedean spirals,” which serve as the mechanism for locating
the curves. These spirals are generated starting from an origin, with
consecutive points spaced at a constant arc length.

We define an observable, denoted as ¥/, that quantifies the dis-
tance from the desired curve. When ¥ changes sign—from positive
to negative (or vice versa)—a bisection method is applied to pin-
point the first point on the curve. Once this initial point is identified,
the optimal direction for the method to proceed is determined, and a
new bisection method is used to iteratively find all subsequent points
along the desired curve.

To validate the method, we apply it to the coupled logistic-like
and Gauss mapping.'” This mapping is particularly relevant as it
exhibits various complex sets of periodicity (CSP). Of special interest
is the phenomenon of the period-adding sequence, where the
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difference in periods between adjacent CSPs in an infinite sequence
remains constant.”’~’ This phenomenon, observed in Ref. 12, high-
lights how extreme and superstable cyclic curves evolve as a function
of a control parameter.

Our method can be seamlessly extended to multidimensional
dynamical systems and to codimension-one bifurcation curves,
including saddle-node, period-doubling, pitchfork, transcritical,
and Andronov-Hopf bifurcations.

This paper is organized as follows: Sec. II introduces the test
model, explains the differences between superstable and extreme
orbits, and describes the process of obtaining the parameter space.
Section I1I provides a detailed explanation of the proposed method.
Finally, Section IV presents the concluding remarks.

1. INITIAL CONSIDERATIONS

Before introducing the method proposed in this paper, it is
essential to outline some key definitions. We begin by presenting an
example of the mapping used to validate our recursive method. Next,
we clarify the differences between superstable and extreme orbits.
Finally, we describe the procedure for constructing the parameter
space of a given model.

A. Presenting our test model

To facilitate understanding of the step-by-step process involved
in the recursive method, we apply the entire methodology to a
specific example. The map considered in this paper is the one-
dimensional logistic-Gauss mapping, introduced in Ref. 12. As pre-
viously mentioned, its parameter space exhibits a rich variety of
complex sets of periodicity (CSP). As demonstrated in the final
section of the paper, this mapping reveals extreme and superstable
cyclic curves, which signal the emergence of CSP in period-adding
sequences and mark the onset of the period-adding phenomenon.

One can write the Logistic-Gauss (LG) map as follows:

X1 = e P0XDT 4 g = Fx,), (1)

where § > 0, y > 0, and 8 € (—1,1) are control parameters of the
system. Note that F(X,) > 0, and this function is not unimodal,
meaning that F(X,,) can be greater than one. We refer X, to a given
initial condition of the trajectory composed of the set of points X,
X; = F(Xy), X, = F?(X,) = F(X,), and so on.

The critical values of X for the extremes (maximums and min-
imums) of F(X) are determined by solving the equation F'(X) = 0.
In contrast to what is discussed in Ref. 12, we focus on even values
of y, specifically y = 2, which yield five solutions,

Xoy=-1 Xo=-0+9"", Xz =0,

()
Xo=Q0Q+py)™7,

and X(5) =1.

These five critical values of X, shown in Eq. (2), lead to the five
local extremes Y(; = F(X;), withj = {1,2, 3,4, 5}. For odd values
of j (1, 3, or 5), we are dealing with local maximums, while for even
values of j (2 or 4), we have local minimums.
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B. Differences between superstable and extreme
orbits

We refer to k-extreme orbits as trajectories that connect solu-
tions of Eq. (2) after k iterations, i.e.,

Xop = F® Xg)s (3)

with i # j. A superstable periodic orbit is one that connects X; to
itself after k iterations; in other words,

X = FO(X). 4)

In this paper, we refer to (k)" as a period-k extreme orbit that
connects X; to X after k iterations, while [k]’ denotes a period-k
superstable orbit that connects X;) to itself after k iterations.

Figure 1 illustrates the differences between superstable and
extreme orbits by considering the return map X, vs X;. For example,

ARTICLE pubs.aip.org/aip/cha

in Fig. 1(a), we show an extreme curve that connects the maximum
Y3 at X3y to the minimum Yy, at X4, after two iterations of the
mapping. This extreme trajectory is denoted as (2)*~*. To construct
this return map, we used (8, 8) = (6.52514, —0.14099). Figure 1(b)
shows the result of iterating the map after reaching (X, Y()). As
seen, the blue orbit is periodic, meaning that after two iterations,
it returns to its initial position. In fact, this orbit is more than just
periodic; it is superstable because there is an extreme in its closed
trajectory, specifically a local minimum in this case. This blue super-
stable orbit is denoted as [2]*; i.e., it connects X4 to itself after two
iterations.

Figure 1(c) shows the combination of control parameters
(8, B) = (16.22074, —0.09097). It illustrates the red extreme (1)*7>,
which connects the local minimum Y4, to the maximum Y3, after
one iteration. In Fig. 1(d), we continue iterating the map twice,
resulting in the blue curve. This blue orbit is also an extreme curve

€2:65:G1 G20z Aenigad gL
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FIG. 1. In (a), we present the extreme (2)*~*, which connects a local maximum Yz, at X, to a minimum Y, at X4, after two iterations. This orbit, when iterated, as

shown in (b), remains trapped in a period-2 superstable orbit (blue lines) named as [2]", i.e., connects a local minimum Y, at X4, to itself after two iterations. Item (c) shows
the extreme orbit (1)*~° (red line), while (d) presents the extreme (2)*~* (blue color). It is important to observe that the sum of the iterations of the extreme orbits gives
the periodicity 3 of the superstable orbit (closed polygon). Iltem (e) shows the extreme orbit (2)>~*, and in item (f), we see that the extreme orbit is a transient to a chaotic
attractor. To produce these plots, we considered the following combination of control parameters: (a) and (b) § = 6.52514 and B = —0.14099, (c) and (d) § = 16.22074
and 8 = —0.09097, and (e) and (f) § = 11.3613 and B = —0.1081. For all plots, we have y = 2.

Chaos 35, 023146 (2025); doi: 10.1063/5.0239022
Published under an exclusive license by AIP Publishing

35, 023146-3


https://pubs.aip.org/aip/cha

Chaos

that connects the local maximum to the minimum, denoted as
(2)°*. As seen, if we consider both the blue and red orbits, we
obtain a closed orbit with period 3 (the sum of the interactions
required to obtain both extremes). Here, we have two period-3
superstable curves coexisting, denoted as [3]° and [3]%, along with
the two extreme curves (1)*~3 and (2)>~*.

Figure 1(e) considers (8, 8) = (11.3613, —0.1081), where the
extreme (2)>~* appears in red. Figure 1(f) shows what happens
when we continue iterating the map multiple times. Here, the orbit
converges to a chaotic attractor (blue lines). This illustrates that an
extreme orbit is not necessarily a periodic orbit; it can be a transient,
as shown in this figure.

C. How to get the parameter space of a model?

Figure 2 shows the parameter space § vs B for the LG map-
ping. To construct this parameter space, we consider a 1000 x 1000
grid of equally spaced points in the intervals € [—0.8,0] and
8 € [0, 25], while the last control parameter y = 2 remains constant.
For each combination of (8, 8), we set X, = 0.2 as the initial con-
dition. Then, we calculate the Lyapunov exponent for the next 10°
iterations, after discarding a transient time of 10° iterations. In such
a situation, the Lyapunov exponent is

1 M
A= ]T/IZIn|F(X) , (5)

j=1

where M = 10°. The color palette, shown in Fig. 2, varies from red to
yellow (negative Lyapunov exponent) for periodic regions and from
green to blue (positive Lyapunov exponent) for chaotic regions. This
plot shows periodic regions embedded within chaotic regions, along
with superstable curves (A < 0), highlighted in shades of red and
embedded in yellow areas.

-0.8 —0.6 —0.4
B
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Ill. A DETAILED EXPLANATION ABOUT OUR METHOD

The goal of this method is to find a selected extreme or super-
stable curve close to a given region of interest in the parameter
space. For this purpose, we chose the Archimedean spiral, due to
its linearly increasing size, which allows it to sweep the surround-
ing region homogeneously. The idea is to search for the intersection
between the spiral and the curve. Once this point is identified, the
next step is to find a sequence of points on the curve (in both direc-
tions) starting from this intersection. The condition we impose is
that the distance between consecutive points on the curve must
remain constant, independent of the scale used. For example, note
the significant difference between the scales of the y and 8 axes in
Fig. 2. Below, we detail our method step by step.

A. Archimedean spirals

Our main objective here is to derive a one-dimensional geomet-
ric object that can fill a surrounding space uniformly, independent
of the scale used. Specifically, we aim to distribute points along this
object in an equally spaced manner (As = const.) in order to locate
extreme or superstable curves with very precise accuracy. For this
purpose, we choose the Archimedean spiral, a special type of spiral
that grows linearly with its size, described by the equation r = A6,
where r and 6 are the polar coordinates in the plane, and A > 0.
This results in the distance between consecutive revolutions being
constant, Ar = 2 A.

From basic calculus, it is well known that the length of a curve
in a planar space from point a to point b is given by s = fab |z| db,
which means that a small variation of s is

As ~ |Z]a AD, (6)

where z = dz/d0 with z(8) = (r(0) cos 6, r(0) sin 6). Returning to
the Archimedean spiral, let us consider a point (r,,,0,,) along the
spiral. Then, the next point is determined by r,,4; = A6,,1; and,

—0.2 0

FIG. 2. Parameter space & vs 8 for y = 2. For each combination of 8 and &, we consider X, = 0.2 as the initial condition. The color palette represents the Lyapunov
exponent A. We will use this parameter space as our study object to explain how to find superstable and extreme curves. It is important to say that we flipped the axis for
visual aspects, but the method was entirely built with & in the horizontal axis and 8 in the vertical axis.
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FIG. 3. (a) Archimedean spiral (As = 1 and Ar = 1.5) in the original axis scales of the graph, Egs. (8) and (9). (b) Rescaled Archimedean spiral from Egs. (10) and (11)

with As = 0.1 and Ar = 0.15 rescaled according to the § axis scale.

according to Eq. (6),
As

AYT+ 62

where we deal with |z],, = A\/1 402 and AO = 0,4, —6,,. To
guarantee the onset at the spiral focus, we set 6, = 0.

Now, we consider that we have an available plot region on
which we want to draw an Archimedean spiral, centered at (3, ;)
= (15, 20), with points spaced by As = 1 and growing by Ar = 1.5
per revolution (Fig. 3). It has minimum and maximum values for
both the vertical and horizontal axes. Our method will consider the
value of § € [8min> Smax] as the horizontal axis and 8 € [Bumin> Bmax] aS
our vertical axis. Defining

9m+1 ~ gm + (7)

A8 = max — Smin>
Aﬁ = IBmax - ﬁmin)

we call attention to the example shown in Fig. 3(a), where A§ = 10
and AB = 20. This spiral was plotted by

8§ — 8. =rcoséb, (8)

B — B. =rsind, 9)

with 7 = 120 and 6 incremented by A# = 27/100, starting from
0 = 0 for the gray curve, while for the green dots, it was deter-
mined from Eq. (7). Note that, since the scales of the axes are
different (AB/AS = 2), the distances As and Ar do not appear
constant, leading to some undesirable situations: (i) local concen-
tration of points and (ii) regions of interest not covered by the
spiral. To bypass these inconveniences, we rescale the variation in
each axis to obtain the same geometric variation in both axes, i.e.,
§—8.— (5—05)/Asand B — B. — (B — B.)/ AB. Applying these

rescalings to Eqgs. (8) and (9), the desired spiral, for a general case,
has coordinates

8§ =26.+ AOAS cosb, (10)

B = PBc+ AOABsinb. (11)

Electing, in Fig. 3(a), the geometric distances along the horizon-
tal axis () as the optimum ones, As =1 and Ar = 1.5, have to be
rescaled to 0.1 and 0.15, respectively, to fix these distances as shown
in Fig. 3(b).

B. How to highlight extreme/superstable curves?

We define the observable ¥ as a measure of how far we are from
our desired curve. This observable is defined as

Y8, v, B,k Xa, X)) = FP (X)) — Xj)- (12)

Here, X(; and X; can assume one of the critical values shown
in (2). For a period-k superstable curve [k]i, we need to have
X = X}, while for a k-extreme curve (k)" "/, we have X, # X;.

We will consider the same parameter region used in Fig. 2, i.e.,
8 €[0,25], B € [-0.8,0], and y = 2. We are going to search for
a specific extreme or superstable curve. Let us start by giving one
example: imagine you need to find the period-2 superstable curve
that connects the local maximum (X), Y(3)) to itself after two iter-
ations (named [2]°). Using Eq. (12), we need to consider k = 2 and
X = X() = X3), so the observable  for the superstable [2]° is

VS, B) = FP (X)) — Xe)- (13)

For each combination of § and B, we calculate the observable
Y. Figure 4(a) shows the result obtained. Here, negative values of
Y are assigned a red-to-yellow color palette, while positive values
are assigned a gradient from cyan to blue. The interface between the
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FIG. 4. This figure highlights a period-2 superstable curve that connects (X3, Y(3)) to itself after two iterations (named 12%). In (a), we considered 8 € [0,25], 8 € [—0.8,0],
and y = 2. The color palette represents the value of v [see Eq. (13)]. First, we draw an Archimedean spiral with constant arc length As = 8, which is centered at the
position (8, B;) = (8.25, —0.64). This spiral is used to find the solution (8, By). Pictures (b), (c), and (d) are magnifications around (8, By) illustrating the method to obtain

the following points (81, B1) and (82, B2) (see detailed explanation in the text).

warm and cold colors identifies our superstable [2]%, where ¥ — 0.
Therefore, the fundamental idea is to find this interface.

C. Searching for an initial point that belongs to the
given curve

To find our superstable curve, we will consider an
Archimedean spiral centered at the position (8., 8,) = (8.25, —0.64).
Figure 4(a) shows this spiral, which has a constant arc length As = 8.
The center of the spiral starts in a region with ¥ < 0 [according
to Eq. (13)]. Each point on the spiral follows Egs. (10) and (11)
(with A = 0.008), where we constantly check if the value of y enters
a region where the sign changes. In our example, point number
27 reaches a region with positive 1. After that, we apply a bisec-
tion method between points [5,(26), 8;(26)] (negative region) and
[65(27), Bs(27)] (positive region). The bisection method continues
until [| < 107!° (our tolerance value). When this occurs, we find
the first point that belongs to the superstable [2]', here named as
(80> Bo) because it is our reference [see Fig. 4(a)].

D. Finding the initial direction

Now, it is necessary to find an initial direction for the method.
The angle ¢, is the direction we are moving toward the superstable
curve [see Fig. 4(b)]. Observe that ¢, is also the direction of the
semi-circle. In this example, we considered that ¢, can assume four
values (Ny =4):¢(1) = 0,¢(2) = 7/2,¢(3) = w,0r ¢p(4) = 37/2.
Just an observation: in our final code, we chose N, = 100; i.e., we
have 100 values for ¢ in the interval ¢y € [0,27). As this is just an
example, let us continue with N, = 4.

We start with ¢y = ¢ (1) = 0 and calculate ¢, and ¢, as

$a=o—m/2 and ¢, =y +7/2. (14)

Considering R as the radius of the semi-circle, the symmetric
points Pag = (840> Bao) and Ppy = (8po» Bpo)> shown in Fig. 4(b), are
calculated as
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FIG. 5. In (a)—(c), we apply our method to find the superstable curves [2]°, [1]*, and [2]*, while in (d)-(f), we use the method to find the extreme curves (1)*~*, (1)*~*, and
2**.In (a), the spiral has A = 0.008 and As = 8, with a radius of the semi-circles equal to R = 0.1, while in (b)—(f), we considered A = 0.004, As = 4, and R = 0.03

for visual aspects.

8o = 8o + RAS cos(¢y), (17)

Bro = Bo + RAB sin(¢y). (18)

The parameter R is very important. It defines the distance between
consecutive points that will compose the superstable curve of [2]°.
In Figs. 4 and 5, we fix R = 0.1, A§ = 25, and Ap = 0.8. By using
Eq. (13), we can find the value of  for the points P4y and P, named
as Y40 and Vg, as follows:

Yao = V(840> Bao) and Yo = ¥ (80> Bro)- (19)

An important thing needs to happen here, 140 and {5 must be in
regions with opposite signs, i.e.,

Yao X Yo < 0. (20)

In the example of Fig. 4(b), this multiplication is greater than
zero because both 49 and /5 are greater than zero (both are in the
same yellow region).

Now that we know that ¢y = ¢ (1) = 0 does not work properly,
we need to consider that ¢y = ¢(2) = /2 (the second value for ¢).

Figure 4(c) shows this simulation, where we need to recalculate ¥4y
and Vg all over again by using Eqs. (14), (18), and (19). Here, the
condition shown in Eq. (20) is satisfied, because (849, Bao) is inside a
cold region, while (g, Bpo) is in a warm region. When this happens,
we consider that the angle ¢y = ¢ (2) is a good starting direction. If
¢o = ¢(2) were not a good angle, it would be necessary to consider
¢ = ¢(3) and then ¢y = ¢ (4), until finding a good direction.

E. Finding the second point that belongs to the
superstable curve

Now, we intend to find the point (8;, 81) shown in Fig. 4(c). We
can do this by finding ¢,,, which is the average between the angles
¢, and ¢y, calculated as

_ ¢u+¢h
_—2 .

For this ¢,,, we calculate the corresponding point (8,,, 8,,) on
the semi-circle. We obtain these coordinates by

bm 21)

8m = 80 + ASRcos(¢p,) and B, = Bo + ASRsin(¢,). (22)
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After that, we calculate the value of ¥ for this point as

wm = 1/f(5m, ﬂm); (23)

if ¥, X ¥a9 < 0, we consider that ¢, = ¢,,; otherwise, ¢, = ¢,.
We recalculate ¢,, using Eq. (21), trying again to find the value of
Y [through Eq. (23)]. This bisection method continues until ||
< 107, When this happens, we consider that (§;, 81) = (8,1, Bm)-
We show the result in Fig. 4(c), where one can see points converging
to the red point (8, B1). The new angle ¢, called ¢, is

&1 = Pm. (24)

F. Finding the next points

Now, we follow a similar procedure to find the next points
that belong to the given superstable curve [2]°. As we have a new
direction ¢;, we calculate ¢, and ¢, by substituting ¢, with ¢, in
Eq. (14).

Points (841, B41) and (8g1, Bp1) in Fig. 4(d) are calculated
through Eq. (18) by substituting (840, Ba0) and (8go, Bro) with
(841> Ba1) and (8p1, Bp1), respectively.

pubs.aip.org/aip/cha

After that, we find the value of ¢,, by using Eq. (21), calculate
(8> Bm) by using Eq. (22), and the respective value of v, through
Eq. (23). When the bisection method converges, we can say that we
found (85, B2) = (8> Bm). Figure 4(d) shows the result, where we
can see that there are points converging to the red point (6,, 85).

G. Stop condition and going to the opposite direction

Figure 5(a) shows the result obtained by applying our method.
The stopping condition occurs when we reach one of the borders of
the figure.

To construct the entire superstable/extreme curve, we also need
to move in the opposite direction of ¢,. Here, it is simply a matter
of sending the semi-circles in the direction ¢y — ¢ + 7, and we
expand the method in this other direction as well.

H. Testing our method by finding other extreme and
superstable curves

In Figs. 5(b) and 5(c), we apply our method to find the super-
stable curves [1]* and [2]*, while in (d), (e), and (f), we find the

FIG. 6. In (a), we show the superstable curves [1]*, [2]>, and [2]* obtained by using our method. In (b), we show the extreme curves (1)>7*, (1)*3, (2)>*, and (2)*~°.
Observe that the extreme curves (1)>~* and (1)*~° connect to each other in a period-2 CSP structure, which is the exact location where the extreme curves [2]3 and [2]*

connect in (a).
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extreme curves (1)>~%, (1)*72, and (2)*7*. In Fig. 5(a), the spiral
considers A = 0.008 and As = 8, with a radius of the semicircles
equal to R = 0.1, while in Figs. 5(b), 5(c), 5(d), 5(e), and 5(f), we
considered A = 0.004, As = 4, and R = 0.03 for visual aspects. As
one can see, for all cases, we draw the extreme and superstable curves
efficiently.

Observe that Fig. 5(b) shows the superstable curve [1]% but
it also appears when we highlight the superstable curve [2]* in
Fig. 5(c). This happens because the period-2 superstable is a mul-
tiple of the superstable curve with periodicity 1. A similar situation
will occur when trying to highlight the superstable curve [4]*, where
we will also see the curves [2]* and [1]*. Therefore, it is necessary to
filter these curves. This issue (apparently) does not occur with the
extreme curves.

In Figs. 6(a) and 6(b), we plotted the extreme and superstable
curves obtained using our method. Figure 6(a) highlights the super-
stable curves [1]%, [2]°, and [2]*, while Fig. 6(b) shows the extreme
curves (1), (1)*3, (2)*™4, and (2)*7>. Observe that the extreme
curves (1)>~* and (1)*~* connect to each other in a period-2 CSP
structure, which is the exact location where the superstable curves
[2]° and [2]* are connected in Fig. 6(a). Additionally, the extreme

pubs.aip.org/aip/cha

curves (2)°7* and (1)*7? intersect in a period-3 CSP structure. The
same occurs with the extreme curves (2)*~* and (1)°~*, which also
intersect in a period-3 CSP structure.

l. Cyclic superstable/extreme curves

The stop condition for cyclic superstable and extreme curves
occurs when both of the following conditions are met:

for j > 2. The method will continue until both conditions are met.
We used this stop condition to find the superstable and extreme
curves shown in Fig. 7.

These cyclic superstable and extreme curves are important
because they illustrate the birth of period-adding cascades. Identi-
fying these extreme curves is crucial for understanding the organi-
zation of periodic structures in the parameter space of dissipative
systems.

FIG. 7. Example of cyclic superstable and extreme curves. In (), we show the superstable curves [6]* and [6]°, while in (b), we present the extreme curves (7)*~° and
A1)**.In (c), (d), (e), and (), we highlight the extreme and superstable curves using the observable v for the curves [6]*, [6]°, (7)*~%, and (11)°~*, respectively.
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IV. CONCLUSIONS

In this paper, we presented a recursive method to identify
extreme and superstable curves in the parameter space of dissi-
pative systems. We provided a detailed explanation of how our
method worked. In summary, the method utilized an Archimedean
spiral and defined an observable, denoted . The spiral searched
for regions where 1/ changes sign. Then, a bisection method was
employed to find the first point on the extreme or superstable
curve. Following this, the method determined a suitable direction
and identified subsequent points. We applied our methodology to
the logistic-Gauss mapping, which was particularly relevant due to
its display of various complex periodic structures. Through this,
we identified several extreme and superstable curves, demonstrat-
ing that the method was also applicable to cyclic extreme and
superstable curves. Notably, we highlight that this recursive method
can be adapted to any one-dimensional mapping and can also
be extended to codimension-one bifurcations in multidimensional
systems.
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