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We consider dynamical properties for an ensemble of classical particles confined to an infinite box of
potential and containing a time-dependent potential well described by different nonlinear functions. For
smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning
curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic
sea are characterised as a function of the control parameters and exponents describing their behaviour
show no dependence on the perturbation functions. Given invariant spanning curves are present in the
phase space, a sticky region was observed and show to modify locally the diffusion of the particles.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

After the seminal paper of Buttiker and Landauer [1] deal-
ing with the tunnelling through a time-dependent barrier, many
results on this thematic have been reported. Among them it is
interesting to mention a drift of particles at a sequence of 1D time-
dependent potential wells [2] and the investigation of the dwell
time for a classical particle confined to move in a periodically
time varying potential well [3,4]. Periodically modulated quantum
channel was also used to study quantised ballistic conductance [5],
transport properties for GaAs/AlGaAs were considered [6,7], while
an intense electric field was used to characterise quantum trans-
port in semiconductors super-lattices and multiple quantum wells
[8]. More rigorous and analytical investigations were made for a
two-level system [9,10] particularly using Laplace transform to ob-
tain the probability of a particle to be transmitted from one and
two barriers [11,12] while Fokker–Planck equation was applied to
obtain the transition probability from one potential to the other
and considering different scaling times as well as different noise
lengths [13]. Applications of the formalism were also proved to be
useful in a washboard potential [14] as well as in a double well
potential [15]. The occurrence of phonon assisted resonance tun-
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nelling was measured in [16] while escape time from a fluctuating
barrier considering either dichotomic and Gaussian perturbations
was obtained [17].

Recent applications involving Bose–Einstein Condensates (BEC)
can also be discussed in this approach. A nonlinear effect which
includes self-trapping in a double well potential was discussed
in [18]. A modification of a double potential well which includes
a barrier in the middle was used to describe a resonator [19].
Using the transfer-matrix technique, it was proved [20] that a
time-dependence of the potential wells affect electron probability
transmission. Heun confluent functions were used to represent the
solutions of a family of double-well potential [21]. The effect of
spin–orbit coupling in the tunnelling from wells in a BEC in a dou-
ble well potential was discussed in [22] while a quantum phase
transition in a BEC was also characterised [23]. The probability of
finding a particle in a two-well periodic potential was obtained
analytically in [24] while a power law was obtained in the char-
acterisation of the survival probability of an ensemble of particles
escaping from one well to the other one due to white noise [25].

In this Letter we use the same general procedure as made
in [26,27] to obtain and characterise some dynamical properties
for an ensemble of non-interacting (classical) particles confined to
move inside of a periodically time-dependent potential well. We
are seeking to understand the influence of the position of the low-
est energy invariant spanning curve in the average properties of
the chaotic sea. The Hamiltonian that describes the system is given
by H(x, p, t) = p2/(2m) + V (x, t) where x, p and t correspond to
the position, momentum coordinates and time respectively. As we
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shall see in the next section, the potential V (x, t) is controlled by
three relevant dimensionless control parameters. If one of the con-
trol parameters is equal to zero, the system is integrable. For the
other situations, the phase space of the model is of mixed type.
It contains periodic islands surrounded by a chaotic sea (which
is characterised by a positive Lyapunov exponent). The size of the
chaotic sea depends on the control parameters and is limited by
a set of invariant spanning curves, which prevent the unlimited
energy growth of the particle. Our main goal in this Letter is to
understand and describe how the shape of the periodic potential
influences the dynamics of an ensemble of particles moving along
the chaotic sea by the position of the lowest energy invariant span-
ning curve. Considering different types of perturbations, we study
the behaviour of the Lyapunov exponents and some average prop-
erties of the chaotic sea including the behaviour of the deviation
around the average energy. We show that critical exponents used
in the scaling theory, are independent of the perturbation func-
tion proposed. We also observe a region of strong trapping regime
which affects the transport along the chaotic sea.

The Letter is organised as follows. In Section 2 we describe the
model and obtain the equations of the mapping. The numerical re-
sults are considered in Section 3 and final remarks and conclusions
are drawn in Section 4.

2. The model and the map

In this section we discuss all the details needed to construct
the mapping that describes the dynamics of the model. The system
under consideration has a dynamics governed by a Hamiltonian of
the type H(x, p, t) = p2/(2m) + V (x, t) where x, p and t corre-
spond to position, momentum coordinates and time respectively.

We emphasise that different kinds of potential shape lead to
similar dynamics. For a chain of infinitely many and symmetric os-
cillating square wells with their bottoms moving periodically and
synchronised in time (see Ref. [26] and Fig. 1(a)), the dynamics
leads to diffusion in space [3,4]. One can also assume a single os-
cillating square well with periodic boundary conditions, as shown
in Fig. 1(b). Finally, a step potential whose bottom moves periodi-
cally in time confined in an infinite box of potential (see Fig. 1(c))
leads to similar results in the phase space. This last shape is used
in our simulations, where the potential V (x, t) is given by

V (x, t) =

⎧⎪⎨
⎪⎩

∞, if x � 0 or x � (a + b)/2,

V 0, if 0 < x < b
2 ,

V 1 f (t), if b
2 � x < a+b

2 ,

(1)

where a, b, V 0, V 1 and w are the control parameters. The func-
tion f = f (t) is time-dependent. Possible allusions of the time-
dependent potential can be made as corresponding to the potential
created by atoms localised in sequence along an infinite and sym-
metric chain while the oscillations may denote phonon effects or
either the contact of the chain with a thermal bath. Hence the
potential well is getting energy from a thermal bath and is trans-
ferring it to the particle. It is important to emphasise that the
potential well considered in this Letter can indeed trap temporarily
particles, see applications of trapping in a quantum dot in Ref. [28].
The shape of the phase space is strongly dependent on f . For a
random perturbation, the particle exhibits unlimited diffusion in
energy. On the other hand, for a smooth and periodic f the phase
space is mixed. The existence of invariant spanning curves pre-
vent the particle to exhibits unlimited energy growth. They indeed
work as a physical barrier not letting the particle to pass through.
The chaotic properties of the phase space are directly dependent
on the location of the lowest energy invariant spanning curve and
how it behaves as a function of the control parameters.
Fig. 1. Sketch of: (a) a chain of infinitely many and symmetric oscillating square
wells with their bottoms moving periodically and synchronised in time. (b) A single
oscillating square well. (c) A step potential whose bottom moves periodically in
time.

Fig. 2. (Colour online.) Plots of the functions: (a) f1(φ); (b) f2(φ); (c) f3(φ);
(d) f4(φ) using q = 2. The dashed red lines correspond to plots for f0(φ), used
as comparison.

In this Letter we consider different expressions for f (t) as
shown in Fig. 2(a)–(d). The functions f1(φ), f2(φ), f3(φ) and f4(φ)

are given by

f1(φ) = cos
[
φ + sin(φ)

]
, f2(φ) = sin

[
φ + cos(φ)

]
, (2)

and

f3(φ) = sin
[
φ + sin(φ)

]
, f4(φ) = cos(qφ). (3)
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Fig. 3. (Colour online.) Plot of the phase space for mapping (4) using the control
parameters Nc = 33.18, r = 1 and δ = 0.5 for: (a) f0(φ), (b) f1(φ), (c) f2(φ) and
(d) f3(φ). The red lines denote the position of the lowest invariant spanning curve.

where q is a positive integer number. For q = 1 function f0(φ) =
cos[φ]. Results obtained for the dynamics of the particle consider-
ing function f4(φ) are shown in the last part of this Letter.

To precisely describe the dynamics of the particle, we construct
a nonlinear mapping for the variables energy of the particle and
time that the particle enters the oscillating potential well. We used
a procedure similar to the one discussed in Ref. [26]. We define di-
mensionless variables δ = V 1/V 0, r = b/a, en = En/V 0, φ = wt and
Nc = w/(2π) (a/

√
2V 0/m ). The last variable measures the time

in terms of the number of oscillations of the moving well. It in-
deed corresponds to the number of oscillations that the potential
well completes in a time t = a/

√
2V 0/m for a particle moving the

distance a with constant kinetic energy K = V 0. The mapping is
written as

T :

{
en+1 = en + δ[ f j(φn + i�φa) − f j(φn)],
φn+1 = [φn + i�φa + �φb] mod(2π),

(4)

where j specifies the type of function ( j = 0, . . . ,4 as discussed
above) and i is the smallest integer number that matches the con-
dition en + δ[ f j(φn + i�φa) − f j(φn)] > 1. The auxiliary variables
are given by

�φa = 2π Nc√
en − δ f j(φn)

, �φb = 2π Ncr√
en+1 − 1

,

where �φa and �φb represent, the time (in dimensionless vari-
ables) spend for the particle to travel the distance a and b, respec-
tively. The phase space for mapping (4) is shown in Fig. 3(a)–(d)
for different types of external perturbations and considering as
fixed the parameters Nc = 33.18, r = 1 and δ = 0.5. One sees that
the phase space for all functions is of mixed type. When the func-
tion f j is changed, a deformation of some KAM islands is observed
and the position of the fixed points changes too. The position of
the lowest invariant spanning curve depends on the function un-
der consideration.
Fig. 4. (Colour online.) (a) Plot of the Lyapunov exponent as a function of n for five
different initial conditions and considering the function f0. The parameters used
were Nc = 10, r = 1 and δ = 0.5. For the functions f0, f1, f2 and f3 we have:
(b) λ̄ vs Nc for fixed r = 1 and δ = 0.5; (c) λ̄ vs r for fixed Nc = 33.18 and δ = 0.5;
(d) λ̄ vs δ for fixed Nc = 33.18 and r = 1.

3. Numerical results

Let us start discussing the behaviour of the Lyapunov exponent.
They are obtained as

λk = lim
n→∞

1

n
ln

∣∣Λ(n)

k

∣∣, k = 1,2, (5)

where Λk
(n) are the eigenvalues of the matrix M = ∏n

i J i(ei, φi)

and J is the Jacobian matrix. Fig. 4(a) shows a plot of λ vs n for f0
and considering four different initial conditions where φ0 is ran-
domly chosen in φ0 ∈ (0,2π ] for the parameters Nc = 10, r = 1
and δ = 0.5. The initial energy used was e0 = 1.001. We see that
after an initial fluctuation, the positive Lyapunov exponent con-
verges to a constant value for large enough n and the saturation
point depends on the values of the control parameters. The aver-
age Lyapunov exponent is given by

λ̄ =
∑N

i=1 λi

N
, (6)

where λi is obtained as the asymptotic behaviour for chaotic orbits
considering different initial conditions. In our simulations we con-
sider N = 5 and iterate the mapping up to 108 times for each orbit.
Larger values of N produce a slight decrease of the error bars. In
Fig. 4(b)–(d) we have respectively the plots of λ̄ as a function of
Nc , r and δ for f0, f1, f2 and f3. From Fig. 4(b), one sees that the
positive Lyapunov exponent varies from λ̄ ≈ 0.5 for Nc = 1 up to
λ̄ ≈ 2 for Nc = 103. It also has a monotonic tendency of growth
as a function of Nc for all f j ( j = 0, . . . ,3). Note however that in-
creasing Nc corresponds to raising the number of oscillations of
the well and consequently increasing the randomness of the sys-
tem, therefore leading to an increase in the Lyapunov exponent.
Fig. 4(c) shows a plot of λ̄ vs r for fixed δ = 0.5 and Nc = 33.18
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Fig. 5. (Colour online.) Plot of: (a) ω vs n using f0 considering Nc = 100, r = 1
and δ = 0.5. For functions f0, f1, f2 and f3 we have: (b) ωsat vs Nc for fixed val-
ues of r = 1 and δ = 0.5; (c) ωsat vs r for fixed values of Nc = 33.18 and δ = 0.5;
(d) ωsat vs δ for fixed values of Nc = 300 and r = 1. Numerical values for critical
exponent are shown in Table 2.

and different functions f j . Increasing r for a fixed Nc and δ cor-
responds to enlarge b thus increasing the distance from the well
up to the box of potential. Such an increase leads to a long flight
of the particle until next entrance in the oscillating square well
therefore yielding an increase of the number of oscillations of the
moving well and consequently increasing also the randomness of
the system. The sudden jumps in the behaviour of the Lyapunov
exponent are explained as the destruction of invariant spanning
curves leading to a joint of different chaotic regions. More de-
tails are shown in Section 3.3. Finally a plot of λ̄ vs δ is shown in
Fig. 4(d). The control parameters used were r = 1 and Nc = 33.18.
One sees that for small values of δ, which correspond to very
small fluctuations of the oscillating square well, produce a large
Lyapunov exponent. A minimum value of λ̄ vs δ for all f j was ob-
served for δ ≈ 0.1.

3.1. Deviation of the average energy along the low energy chaotic sea

We now discuss the behaviour of the deviation of the average
energy for a chaotic orbit in the regime of low energy. To do so,
we define the average energy as

e(n, δ, Nc, r) = 1

n

n∑
i=1

ei, (7)

and hence the deviation of the average energy is written as

ω(n, δ, Nc, r) = 1

M

M∑
j=1

√
e j

2(n, δ, Nc, r) − e j
2(n, δ, Nc, r), (8)

where M denotes an ensemble of different initial conditions.
Fig. 5(a) shows a plot of ω vs n for Nc = 100, r = 1, δr = 0.5

and considering function f0. We see that ω grows as a power law
for small n and with slope β ≈ 0.5 and, after a crossover num-
ber nx , ω tends to a regime of saturation reaching ωsat for large
enough n. A variation on the parameters Nc , r and δ produce sim-
ilar plots but with different crossovers and different saturations.
Therefore we propose that

(i) For n � nx , the behaviour of ω can be described as

ω
(
nδ2, Nc, r, δ

) ∝ [
nδ2]β, (9)
Fig. 6. (Colour online.) Plot of the crossover nx as a function of the control parame-
ters, considering the different functions f0, f1, f2 and f3 for: (a) nx vs Nc for fixed
r = 1 and δ = 0.5; (b) nx vs r for Nc = 33.18 and δ = 0.5; (c) nx vs δ for Nc = 300
and r = 1.

Fig. 7. (Colour online.) (a) Plot of the position of the lowest energy invariant span-
ning curve using the function f0 and considering r = 1 and δ = 0.5 for Nc = 800,
Nc = 900 and Nc = 1000. (b) Plot of emin vs Nc with corresponding slope α1 for dif-
ferent functions f i (i = 0,1,2,3); (c) emin vs r with α2; (d) emin vs δ with slope α3.

where β is an accelerating exponent. After extensive simula-
tions we obtain β ∼= 1/2;

(ii) For n � nx , ωsat is given by

ωsat
(
nδ2, Nc, r, δ

) ∝ Nα1
c rα2δα3 , (10)

where α1, α2 and α3 are critical exponents;
(iii) The characteristic crossover nx is written as

nx
(
nδ2, Nc, r, δ

) ∝ Nz1
c rz2δz3 , (11)

where z1, z2 and z3 are also critical exponents.



1818 D.R. da Costa et al. / Physics Letters A 377 (2013) 1814–1821
Fig. 8. (Colour online.) Grid of different initial conditions (φ0, e0) showing in colour the logarithm of the escape time (LET) for: (a) r = 80; (b) r = 100; (c) r = 200. Number
of different return times (NDRT) for: (d) r = 80; (e) r = 100; (f) r = 200. The escape windows are situated at e1 < 59 and e1 > 75. The function F0 was used to obtain the
results.
Table 1
Critical exponents obtained analysing the deviation of the average energy.

f0 f1 f2 f3

α1 0.659(4) 0.651(3) 0.66(2) 0.649(6)

α2 0.32(1) 0.30(1) 0.331(9) 0.30(1)

α3 0.78(1) 0.76(1) 0.725(8) 0.74(2)

z1 1.31(2) 1.30(3) 1.26(2) 1.28(2)

z2 0.64(2) 0.61(2) 0.66(2) 0.62(3)

z3 −0.65(3) −0.55(4) −0.59(2) −0.59(6)

The exponents can be found if the behaviour of ωsat and nx are
obtained as a function of the control parameters. In Fig 5(b) we
have a plot of ωsat vs Nc . Applying a power law fitting we found
for the critical exponent αi with i = 1,2,3, as shown in Table 1,
for f0, f1, f2 and f3. Making similar procedure but varying the
parameters r and δ (see Fig. 5(c) and Fig. 5(d)) we found α2 ≈ 1/3
and α3 as shown in Table 1.
Table 2
Exponents obtained by the lowest energy along the invariant spanning curve.

f0 f1 f2 f3

α1 0.657(1) 0.657(1) 0.645(4) 0.661(2)

α2 0.37(2) 0.31(3) 0.33(1) 0.29(2)

α3 0.64(1) 0.66(2) 0.660(9) 0.64(2)

The behaviour of the crossover nx can be characterised as a
function of the control parameters too. From Fig. 6(a), (b), (c) and
applying a power law fitting we obtain for each function ( f0, f1,
f2 and f3) the exponents z1, z2 and finally z3, as shown in Ta-
ble 1.

3.2. Localisation of the lowest energy invariant spanning curve

Let us discuss in this section the organisation of the phase
space in the light of the position of the lowest energy invari-
ant spanning curve. It works as a physical barrier preventing the
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Fig. 9. (Colour online.) Grid of different initial conditions (φ0, e0) showing in colour the logarithm of the escape time (LET) for: (a) r = 400; (b) r = 600; (c) r = 700. Number
of different return times (NDRT) for: (d) r = 400; (e) r = 600; (f) r = 700. The escape windows are situated at e1 < 117 and e1 > 127. The function F0 was used to obtain
the results.
particle to pass through. The position of the lowest one depends
on the control parameters in the same way as the energy de-
pends. Fig. 7(a) shows the localisation of the lowest energy in-
variant spanning curve for the parameters r = 1 and δ = 0.5 for
Nc = 800, Nc = 900 and Nc = 1000 considering function f0. A plot
of the lowest energy along the invariant spanning curve as a func-
tion of the parameters gives a glance of how the chaotic sea varies.
Fig. 7(b) shows a plot of emin vs Nc and corresponding slope α1.
Using a similar procedure, a plot of emin vs r and emin vs δ are
shown in Fig. 7(c), (d) with their slopes also. The slopes α1, α2
and α3 obtained for different functions f0, f1 f2 and f3 are shown
in Table 1. We notice that the numerical values of α1 ∼= 2/3 is re-
markably well described as theoretically predicted in Ref. [29].

3.3. Behaviour of the energy as a function of the parameter r

Let us now discuss some properties of the phase space as
a function of the control parameter r. As shown in Fig. 7(c),
emin keeps constant for certain ranges of r and then suddenly it
changes. This is easily seen for the range of r = 100 and r = 200
and also for r = 600 and r = 700. In Figs. 8(a)–(f) we have grids of
106 equally spaced initial conditions φ0 ∈ [0,2π) and e0 ∈ [60,74].
The colours in Fig. 8(a)–(c) represent the logarithm of the escape
time (LET) for each chosen initial condition. We define the escape
time as the number of iterations of the mapping that the initial
condition needs to escape the region in energy of e > 75 or e < 59
in Fig. 8. The maximum iteration number used was 106. The white
colour corresponds to the region where the particle was trapped
for the initial condition chosen and not escaped before 106 itera-
tions. For some regions indeed the particle stays trapped forever
as is the case of periodic islands. If e > 75 or e < 59, we consider
that the particle escaped and another initial condition is started.
As shown in Fig. 8(a) (with r = 80) there is a large region (white
colour) where the escape time is larger than 106. The red colour
represents the regions where stickiness is observed leading to a
larger escaping time as compared to the non stickiness regions.
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Such regions appear mostly near the periodic islands. The colours
in Fig. 8(d)–(f) represent the number of different returning times
(NDRT). To calculate them we consider a rectangle of recurrence,
where each time that an orbit enters in this region a counter was
accumulated and it accounts the sums of the number of different
return times. For the same parameter r = 80 as in Fig. 8(d) we see
that inside of the periodic islands, the NDRT has low values (green
colour). A chaotic region is characterised by NDRT ∼= 300 while
stickiness regions are shown to have NDRT of the order of 50.

Fig. 8(b) shows the results for the LET using r = 100. We no-
tice that the blank region, which represents the region where the
orbits have had not access because of the stickiness, for such a
parameter becomes smaller when comparing with r = 80. On the
other hand, the results for the NDRT are approximately the same
as those obtained in Fig. 8(e). If r = 200 and as shown in Fig. 8(c)
for the analysis of the LET, we may conclude that it is possible to
trespass the region with stickiness (that the blank regions disap-
peared), therewith the energy of the particles might grow higher.
Looking at Fig. 8(f), the NDRT confirms that the sticky region be-
comes smaller and the islands start to disappear. Consequently the
orbits reach a higher maximum of energy e ∼= 120 as shown in
Fig. 9(a) for r = 400. Again it is possible to observe a large blank
region in the LET and consequently a large stickiness highlighted
in the NDRT (see for instance Fig. 9(d)). For a larger value of r, say
r = 600, again the blank region becomes smaller in the LET (see
Fig. 9(b)), but for r = 700 (Fig. 9(c)) such region disappears and
the energy grows higher. Same phenomenon happens for larger r
and we can conclude that the plateaus of energy shown in Fig. 7(c)
for emin arise because of the large stickiness regions.

3.4. Results for the function f4(φ)

According to the definition of function f4 (see Eq. (3)) for q = 1
function f0(φ) is recovered. Increasing q, the number of hills and
valleys increase too for a range of φ ∈ [0,2π ]. Fig. 2(d) confirms
this assumption for q = 2. Clearer an increase in q produce an in-
crease in the randomness of the system leading the position of the
lowest invariant spanning curve to rise too. Fig. 10(a) shows a plot
of emin vs Nc for four different values of q. As one can see, after
power law fit the slopes obtained for each curve are approximately
equal to 2/3. Fig. 10(b) shows a plot of emin vs q. A power law fits
furnishes a slope of α = 0.65557(7). Using such result and rescal-
ing properly the axis in Fig. 10(a) (emin → emin/a0.65557) we show
that the position of the lowest invariant spanning curve is scaling
invariant with respect to q.

4. Summary and conclusions

We have studied the dynamics of an ensemble of classical
particles confined in an infinity potential box and containing
time-dependent potential wells with different perturbation func-
tions. The square wells represented the conduction band defined
by GaAs/AlGaAs [26] heterostructure or a quantum dot [26,28].
The oscillating depth in our Letter represented, for example, the
electron–phonon interaction [16] or the presence of a monochro-
matic electromagnetic or acoustic field [7]. One of the most impor-
tant results was to show that the critical exponents are indepen-
dent of the perturbation function proposed for the time-dependent
perturbation of the oscillating depth. It is important to say that
the critical exponents describe the characteristic behaviour of a set
of particles in the phase space and is controlled by the position
of the lowest invariant spanning curve. The critical exponents αi
(i = 1,2,3) were obtained analysing the saturation of the devia-
tion of the average energy as function of the control parameters.
The critical exponent β was also found to be close to 1/2 for all
functions f j ( j = 0, . . . ,4). The critical exponent zi (i = 1,2,3)
Fig. 10. (Colour online.) Plot of emin vs Nc for q = 2, q = 25, q = 50 and q = 100.
A power law fit gives a slope 2/3; (b) Plot of emin vs q with slope 0.65557(7);
(c) Overlap of the curves shown in (a) onto a single and universal plot after the
transformation emin → emin/a0.65557.

was obtained analysing the crossover nx as function of the con-
trol parameters. We discussed the behaviour of the energy of the
particle as a function of the parameter r, which has a different be-
haviour, showing plateaus with constant energies. It was noticed
that a region with strong stickiness do not let the diffusion of
the particles to be observed, therefore trapping the particles for
long enough time in some regions. Regarding function f4, we have
shown that the position of the minimum of the lowest invariant
spanning curve is scaling invariant with respect to q.
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