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Field line diffusion and loss in a tokamak with an ergodic magnetic limiter
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A numerical study of chaotic field line diffusion in a tokamak with an ergodic magnetic limiter is
described. The equilibrium model field is analytically obtained by solving a Grad~8chlu
Shafranov equation in toroidal polar coordinates, and the limiter field is determined by supposing its
action as a sequence of delta-function pulses. A symplectic twist mapping is introduced to analyze
the mean square radial deviation of a bunch of field lines in a predominantly chaotic region. The
formation of a stochastic layer and field diffusivity at the plasma edge are investigated. Field line
transport is initially subdiffusive and becomes superdiffusive after a few iterations. The field lines
are lost when they collide with the tokamak inner wall; their decay rate is exponential with Poisson
statistics. ©2001 American Institute of Physic§DOI: 10.1063/1.1371769

I. INTRODUCTION between two helical resonant magnetostatic perturbations, or

. . . from one helical perturbation with toroidal effe¢t3he de-
The existence of magnetic surfaces is a necessary re- . . .

. : ; . Struction of magnetic surfaces is followed by the appearance
quirement for plasma confinement in fusion schefres.

These surfaces, with the topology of nested tori, exist when(-)f a thin layer O.f ChaO'fIC magne_tlc field lines in the neigh-
>gorhood of the islands’ separatrices. These layers may fuse

ever the system has some spatial symmetry and, accordingly, q d out th hout a | ion i th wurbai
they may well be destroyed as this symmetry is broken b hd spread out Tnroughout a farger region, It the perturbation
Is strong enough.

some means.The problem of particle confinement in a 2 ' )
While field line chaos may sometimes be regarded as an

plasma is related in a nonobvious way to the problem of ) ) ) ) o
determination of magnetic surfaces. Classical and neoclasdindesirable feature—as it may trigger soft disruptive insta-

cal transport in a direction perpendicular to these surfacedilities in tokamaks, e.g., Refs. 15 and 16—it can be of in-
for example, is not sufficient to explain the experimentaltereSt for the sake of controlling plasma—wall interactions in

data*® This phenomenon of anomalous transport has beelPkamaks. It has been proposed that a cold boundary layer of
one of the most studied themes in fusion plasma theory sincghaotic field lines may uniformize heat and particle loadings
the 1960¢. on the tokamak inner wali’ reducing the release of impuri-
There are two general points of view on anomalous dif-ties due to sputtering processes. More specifically, it has
fusion: (i) the existence of magnetic surfaces is assumed, bulgeen argued that the impurity concentration in the plasma
the transport properties are due to complex particle motiongore could be reduced by a factor that is inversely propor-
which are disregarded in traditional theorié) the particle  tional to the electron diffusion coefficient in the plasma
orbits are taken as essentially simple, but the magnetic suedge®
faces themselves may not exidn the latter case, a layer of This chaotic region in the plasma edge may be created
stochastic, or chaotic, magnetic field lines should be foundusing suitably designed resonant helical windifgsut they
These chaotic field lines are volume filling in an essentiallyhave to be mounted externally to the tokamak vessel wall,
ergodic fashion, causing a uniform spread of particles andvhich is an intensively used interface with many diagnostic
energy. Field lines in a magnetostatic configuration may bevindows that complicate the task of setting up these wind-
chaotic in a Lagrangian sense—nearby field lines divergéngs. The ergodic magnetic limitéEML ), on the other hand,
exponentially in their revolutions along the torus. circumvents this problem by using only slices of helical
One of the first works to deal with this problem was thewindings in the form of current ring&. Some experiments
seminal paper of Rosenbluét al.8in which it was assumed with EMLs222 have shown a decrease of the plasma tem-
that the destruction of magnetic surfaces is caused by gerature in the edge region, thus reducing plasma—wall in-
symmetry-breaking resonant perturbation. Since then, thigeractions, as well as opening the possibility of controlling
prOblem has been extenSively studied in fugi_dhand as- some magnetohydrodynamicWHD) oscillation modes.
trophysical application§? Magnetic surface destruction is However, the claim that the chaotic boundary layer could
related to the overlapping of two or more chains of magnetiqniformize heat and particle loadings in the wall has been
islands.™™" These islands may result from the interaction q,estioned by experiments in which a poloidal modulation of
thermal fluxes has been obsenféd?
dElectronic mail: viana@fisica.ufpr.br The design of an EML depends on a detailed knowledge
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of the field line diffusion in the chaotic region it is supposed 025
to generate. In this paper we aim to study field line diffusion

in a tokamak with EML, in order to investigate the design
parameters required to achieve efficient particle diffusion in
the plasma edge. We employ theoretical models for both
equilibrium and limiter fields in order to analytically obtain a
magnetic field line mapping. In this way the effect of param-
eter variations is more easily studied in comparison withZ (m)
mappings generated by numerical integration of field line
equations® However, the use of very simplified models,

with ad hocequilibrium fields and large aspect ratio geom-
etry, may lead to rather artificial mappings which may mask
some important aspects of the EML action, such as the role

of toroidal effects and the Shafranov shift of magnetic sur-
faces. We derive a field line mapping which embodies three ~0.95 . . .
important features(i) a coordinate system in which the tor- 0.00 010 020 R (m) 0% 040 050
oidicity effects appear naturally in the corresponding coordi-

nate surfacedii) a self-consistent equilibrium field obtained FIG. ]; Some coordinate surfaces of the polar toroidal coordinate system in
from an analytical solution of the Grad—Sctdu-Shafranov e ¢=0 plane.

equation;(iii) the design of the EML tries to follow the ac-

tual helical paths of field lines, taking into account pitch
variations due to the toroidal geometry. IIl. EQUILIBRIUM AND LIMITER FIELDS

The map we obtain is ngorpusly area pres.ervmg, and We use anonorthogonalpolar toroidal coordinate sys-
may be regarded as a canonical transformation betwee@y . g, ¢,) thatis introduced to exhibit toroidal effects in
action-angle variables, which are related to the geometricghe tokamak equilibrium field line geometfyIn the large
field-line coordinate$® An explicit Hamiltonian function is  aspect ratio limit these coordinates reduce to the local coor-
obtained for the problem, assuming that the EML perturbadinates ¢, 6, ). For arbitrary aspect ratio they may be de-
tion is a sequence of delta-function puléédNe analyze fined in terms of the toroidal coordinates, {, )2 by the
phase portraits of this mapping which exhibit a sizable chafollowing relations:
otic layer comprising both the plasma edge and the vacuum
region that separates it from the inner wall. The radial excur-

0.15 |

-0.05 -

-0.15

Ro

sion of chaotic field lines is studied by means of their aver- ' coshé—cosw
age square mean displacement. If the chaotic region contains
- o . o . =7 w, 2
no stable periodic orbits, field line motion is essentially sto-
chastic in the sense that the square mean radial displacement ,, — o (3)

grows linearly with time, the diffusion coefficient being the

corresponding growth rate. The presence of periodic island¥here Ry is the magnetic axis radius. In Fig. 1 we depict
embedded in the chaotic region alters this situationSOMe of the coordinate surf_ace§ for this system, in the plane
however®?® Furthermore, there are other transport®~9: andR, Z are usual cylindrical coordinates.
regimes—super- and subdiffusive—which are characterize? The Fokamak eqwhbnum magnetlc f|e39 is obtained

by a power-law dependence on tiffeFinally, as chaotic rom an ideal MHD static equilibrium, described by

field lines diffuse along the radial direction, they eventually  JxB,=Vp, (4)
collide with the inner wall and are lost. We study statistically
this process and find an exponential decay, from which a VXBo= uoJ, )

field line half-life can be defined and studied with respect to
variations of the EML current. Moreover, the field line loss
process may be treated using Poisson statistics, which is iwherep andJ are the equilibrium pressure and current den-
accordance with the numerical results we obtained. sity, respectively. The equilibrium configuration can be also
This paper is organized as follows: In Sec. Il we outlinedescribed by a scalar functic¥r,, the poloidal magnetic
the equilibrium and limiter fields to be used in this work. flux function, satisfying
Section Il describes the obtention of the field line mapping.
Section IV shows results for mean square radial displace-
ment of field lines in predominantly chaotic regions, indicat- For an axisymmetric configuration, the poloidal flux is
ing the transport regimes we observe, as well as the questiasbtained by solving a Grad—Schdu—Shafranov equation,
of the loss of field lines due to collisions with the inner that is equivalent to Eq$4)—(6). In the polar toroidal coor-
tokamak wall. Section V is devoted to our conclusions. dinate system used in this work this equation réads

V-B,=0, (6)

Bo'VW,=0. )
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1 9 (N, 1 azq,p An approximate spluti9n fo(8) may be sought i_n pow-
TR T R R ers of the aspect ratio,/R;. At lowest order, we find the
Lot t/ory 96 following equilibrium magnetic field component$:
d r B:=0, (15)
= poda(Wp) + Ry’ P 2—0030t —sir? g, 0
d‘lf R, R(')Z o\ y+1
2 I“OI p It
) Bo=——|1-|1-— , (16)
rt (‘7 \I,p 1 (9‘1, 27Tl’t a2
+—|cosby| 2——+ —
0 arg T f?rt ol 1
B=— 01 2 eosh,| . 1
, 10¥, 2 0¥, 0 R)2 ROCOS t) (7
Fsinb| 2 56 _r_ 30t ®
r to T The corresponding poloidally averaged safety factor is
whereJ; is the toroidal current density, given by o i Z”Bg(rtvﬁt)de . 1_4i 1/2 "
(¥p) =R g~ ¢ (1 |2) ©) 2mlo By(re,00 O\ Rl
J3 p) = o T | oMol
d‘lf d\lfp 2 with
in terms of the pressung and the poloidal current function 2 2\ y+17-1
) e g r;
I(r¢,6,). The contravariant components of the equilibium g (r)=-27— —|1-|1-— ) (19)
magnetic field, consistent with E¢7), are Ip RY? a®
1 9w which results in a parabolic profile. We assume ftipatl at
Béz - fa—ep, (100  the magnetic axis and~5 at plasma edge. We normalize
Rore 7% the minor radius, and plasma radiua to the major radius
Ry, so thata/R)=0.26, b;/Ry=0.36, andy= 23, which are
B2— 1 9%, (11) consistent with typical tokamak d|scharg‘e§|gure 4a)
0 Ryry 9t ' shows some equilibrium flux surfaces for this set of param-

eters, and Fig. ®) depicts the corresponding radial profile of
5 ol the safety factor. In Fig.(2), the zeroth- and first-order so-
Bo=—— (12)  |utions practically coincide, whereas in Figb2they show a
small deviation as we approach the plasma edge.
where the radial coordinate, in the cylindrical system, is re- We consider the following design for an ergodic mag-
lated to the polar toroidal coordinates netic limiter: N, current rings of length located symmetri-
cally along the toroidal circumference of the tokam&kg.
3). These current rings may be regarded as slices of a pair of
external helical windings located at the tokamak minor ra-
diusr,=h;, and conducting a curremt, in opposite senses
At the large aspect ratio limitr(<Rp), and supposing for adjacent conductors. To induce a resonant perturbation
that in lowest order the solutiof/ ,(r,), does not depend on We choose a helical winding with the same pitch as the field
6,, Eq.(8) reduces to an equilibrium equation similar to the lines in the rational surface we want to perturb. This surface
one obtained in a cylindrical geometry, but in termsrpft  has a safety factaj=mg/ny, wheremy andn, are positive
However, as,; embodies the toroidal character of coordinateintegers. In order to obtain this effect the winding law takes
surfaces, the intersections of magnetic surfadeg(r,) into account the helical field line pitch nonuniformity caused
=const with a toroidal plane are not concentric circles butby the toroidal effect
present a Shafranov shift toward the exterior equatorial
region®! In this way actual magnetic surfaces are well ap-
proximated by coordinate surfaces in whighk= const. The choice of\ is dictated by the location of the main reso-
To solve Eq.(8) we need to assume spatial profiles for nant magnetic surface to be destroyed, and where we aim to
both the pressurp and current function. In lowest order, produce chaotic field lines. In our case, we chose the reso-
however, it is sufficient to assume a single profile for thenant effect to occur at the equilibrium rational magnetic sur-
toroidal current density;, as given by Eq(9) in terms ofp  face withq=>5/1, since it is located near the plasma edge
and 1. So, we choose a peaked current profile, commonlysee Fig. 2b)]. It corresponds td =0.54, as has been shown

R2:R'5

2
r r
1—2—cos,—| —| sir? 6,|. (13
R/ R/

0 0

u;=mq( 6;+ \ sin ;) —nge;= constant. (20

observed in tokamak dischargeand given by in Ref. 34.
The magnetic field produced by the resonant helical
IRy re)” winding from which we build the EML rings is obtained by
‘]3(rt):§(7+ 1 1_; ' (14) neglecting the plasma response and the penetration time

through the tokamak wall. In this case, it is assumed to be a
wherel, anda are the total current and plasma radius, re-vacuum fieldB=V®, , where the scalar magnetic potential
spectively, andy is a positive constant. @, satisfies the Laplace equati®?®, =0 in polar toroidal
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(R-R)/b FIG. 2. (a) Equilibrium flux surfaces, andb) safety
factor radial profile for a tokamak. Ifb), we show both
the zeroth-(dashed ling and first-order(full line) re-
60 sults.
(b)
Q
0.0 L . .
0.00 0.25 0.50 0.75 1.00
r./a
coordinates, and with suitable boundary conditions which 1 9A.
take into account the helical conductors at the tokamak wall szf o (23
following the winding law (20). In the following we will Rory ot
rather use the corresponding vector poterdigl such that Note that, due to the toroidal geometry, &g no)
BL=VXA_. Inlowest order, the only nonvanishing compo- = (5 1) resonant helical winding excites a large number of
nent ofA_ is satellite resonancesmp+k)/ny whose amplitudes, being

proportional to Bessel functions of ordky decay with in-
Mol nRo O creasingk. Excluding marginal stability states, for which the
T km, K(Mol) plasma response would have to be taken into account, the
model field is the superposition of the equilibrium and lim-

+mMg

ALs(re, 0y, 00) = —

mp+k . !
X(%) ’ ell(Mo*+K) 6 —=noed 21) iter fields:B=By+B, .
t
from which the limiter field components are given by IIl. MAGNETIC FIELD LINE MAPPING
1 A5 Initially, we consider a tokamak with a resonant helical

(220  winding, which is a set of conductor pairs wound around the

Bl=-— ,
Rore 90 torus with a given definite pitch that resonates with the rota-

Downloaded 22 Dec 2005 to 200.17.209.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 8, No. 6, June 2001 Field line diffusion and loss in a tokamak 2859

Ergodic Magneti 1 Ro 1
Frase Nosneos do=>——| | sir.apraras
27R\Bt
1 . - rtz 1/2 s
R 4 R_gf ' (28)
n:‘,; " ] b
:i - = N 1 9th(l’t y Ht)
A \t'\ \\\ 19(rt 1 6t) = 2
- > a(ro Jo BZ(ry, 6,
Geometric axis _ ( 1-4 I ) 2\ 102 fa do
Current feed points Ro 0 1-2(r¢/Ry)cos6
% > arct 1 sin 6, -
@ —earcang iy 15 cosa, | | (29)
U—flnsulators
wheret= ¢, and
Conduct
ondauctior ﬂ r s r i
FIG. 3. Schematic diagram of an ergodic magnetic limiter. Q(ry)= ( 1- 2—t,) ( 1+ 2R_t’) , (30
0 0

in such a way that the Hamiltonian for the tokamak field with

tional transform of the magnetic surface we wish to affect.@ resonant helical winding characterized by E2f) is
The cqrrespondmg me}gnetlc field line equations are written, H(J,9,t)=Ho(J) + Hy( T, 9,t)
in toroidal polar coordinates, as

1
= Vo(D+ —5An(Z ). (3D

dry 1 I BrRZ P BRyE

—=——| 1—2—cos¥,

dey rBr R$

J
[7_0tAL3(rt 00,00, (24) . .
However, it turns out that the lengthof each EML ring
is typically a small fraction of the total toroidal circumfer-
de, 1 ry J ence 27R}. If | is small enough, we can model its effect as
de. 1By 1- ZECOS% a—rt[‘l’p(ft) +AL(re, 0,00 ], a sequence of delta functions centered at each ring poéftion.
0 (25) So, we suppose the following Hamiltonian for the tokamak
with finite length EML rings:

where we use Egs.(10—-(12) and (22)—-(23), and I +e o
Br=— uol/R} is the toroidal magnetic field at the magnetic ~ H (7, 9,t)=Ho(J) + EHl(J, ﬁ,t)kE 5<t— kN_> ,
axis. 0 - a

Since the equilibrium field is axisymmetric, we may set (32)
the ignorable coordinate as a time-like variable, and put where theN, rings are symmetrically located along the tor-
field line equationg24) and(25) in a canonical form oidal direction.

The impulsive character of the perturbation caused by
dJ JH the limiter rings enables us to derive a Poincés&obo-
at - a9’ (26) scopig map for field line dynamics, defining,, and 9, as

the action and angle variables at thte crossing of the plane
p=t=0, respectivel¥’ In the case of an EML with finite
(27) size rings, we have an expliditdependence in the expres-
sions, that gives a near-integrable Hamiltonian system, if the
limiter current is small enough. The canonical area-

where (7,9) are the action-angle variables of a Hamiltonian preserving mapping for this near-integrable system is written
system and=¢. The equilibrium field line Hamiltonia as

=H(J,7) is an autonomous one-degree-of-freedom system,
hence it is integrabl& The addition of a nonsymmetric per- ~ Jn+1=Jnt €f(Jn+1,9n,tn), (33
turbation caused by an EML introduces a “time”-dependent

do  oH
dt a7’

term that breaks the integrability of the system. If the mag- 9, ,=9,+ T €9(Tni1,00,th), (34

nitude of this perturbation is not too strong, however, we Nad(Jn+1)

may use the methods of Hamiltonian dynamics to understand o

field line behaviort? the1=tht (35
The action (7) and angle {}) variables are related to the a

polar toroidal coordinates in the following way: where

Downloaded 22 Dec 2005 to 200.17.209.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



2860 Phys. Plasmas, Vol. 8, No. 6, June 2001 da Silva, Caldas, and Viana

0.06 T 3 T T 0.06 T 7 =

FIG. 4. Phase portrait, in action-angle variables, of the field line map for arFIG. 5. Phase portrait, in action-angle variables, of the field line map for an

EML with N,=4 rings, (mg,no)=(5,1), A=0.54, and,=0.021 . EML with N,=4 rings, (mg,ng)=(5,1), A=0.54, andl,=0.049 .
IH1(TJ,9.1) . . . .
f(7,0t)=— ———, (36) here, is the stretching—folding nature of the dynamics, char-
7 acterized by the existence of one positive Lyapunov expo-
IH (T, 9,t) nent. Since the available phase space is bounded, the result
9(J 0= 7 (37 of many stretchings and foldings results in an involved and
complex behavior, leading to field line diffusion. However,
and the perturbation parameter is the phase space structure due to the presence of periodic

orbits determines the kind of transport regime we deal
(38 with.?®**This has been the object of many recent theoretical
and numerical studie¥.

The main function of the EML is to create a boundary
layer of chaotic field lines, centered around a given rational
map, characteristic of an integrable system. magnetic surfaf:e that has been destroyed by the pgrturpation.

In Fig. 4, we show a phase portrait, in action-angle Vari_Throughout thls boundary_layer, the mggnetlc fle|.d lines
ables, of many orbits with a large number of iterations of theSNOW predominantly chaotic, or areafilling, behavior. To
above-mentioned map for an EML witk,=4 current rings, study field line diffusion within such a region, we takk
(Mg,no)=(5,1), \=0.54, and a limiter current of 2.1% of initial conditions uniformly spread alongj; =7, and 3
the plasma current. There is a main chain of five magneticc27i/Ny, with i=1,2,...Ny, and 7 is picked up from
islands at7%0035 surrounded by many satellite Chainsthe center of a chaotic region. For each initial condition we
(3/1, 4/1, 6/1, 7/1, and 8/1) caused by toroidicity effects.compute the average square displacement of the action vari-
The overlap of the chains witm=4, 5, and 6 generates a able
sizable chaotic field line region with a width df 7~0.02 1 No
centered at/. g§z<(5jn)2>i=N— > (Tni— Toi)?. (39)

This chaotic region does not reach the plasma wall be- o=l
cause of some remaining magnetic surfaces that exist béfthe action is not restricted to a limited domain in the Poin-
tween them=6 and 8 chains, and that act as barriers precare phase plane [, d) this displacement goes asymptoti-
Venting field line diffusion in the radial direction. In order to Ca”y asn®. Anomalous transport is characterized py& 1,
have a chaotic region that effectively touches the wall wewhich we call subdiffusive ifu<1, and superdiffusive ifs
have to increase the EML current, as shown in Fig. 5, where- 1. Gaussian transport is characterizeduy 1, for which a
I, was raised to 4.5% of,. For this higher perturbation diffusion coefficient is defined as
value all chains withm=5 practically disappear, although
the islands’ centers—being elliptictable fixed points of
the Poincaremap (note the remnant of then=4 chain—

may still exist, but with a negligible interference on the field ) ] o o .
line transport. As we will see in more detalil, it is impossible in practice

to take a large time limit in the case of field line transport
due to an EML, since field lines eventually collide with the
tokamak wall and are lost. To circumvent this problem it is

The hallmark of chaotic motion in a conservative non-possible to consider the diffusion only in a limited region in
autonomous single-degree-of-freedom system, as is the caaetion space. The diffusion coefficient, in this case, is pro-

I I
e=—-2 (h .
27Ry) 1\ |
The explicit forms of the Fourier coefficients bf; may be
found in the Appendix. Foe=0 it results in a radial twist

2

. Un

n—o

IV. FIELD LINE DIFFUSION AND LOSS
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=
Nz 107 L , J 004 | after 5 turns -
=
; \ ﬂ
v
0.03 [ N B
10° L 1 S~ ) \f* \/
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10 ‘ . . 0.00 1.57 3.14 4.71 6.28
0 1 2
10 10 10
n L

FIG. 6. Time evolution of the average square action displacement for an
EML with (mg,ng)=(5,1), A\=0.54, and two different limiter currents:

0.049 , (upper curvgand 0.021, (lower curve. nis the number of toroidal b
turns.

0.06 T T T T

0.05 - after 15 turns h

portional to the ratio between the action interdaf and the
average number of field line turns in the toroidal direction. J ¢4

The anomalous, or non-Gaussian, nature of field line
transport due to EML may be seen in Fig. 6, where the time
behavior of the average square displacemxﬁwts depicted
for two different values of the EML current, corresponding
to the phase portraits of Figs. 4 and 5. We udggd=4000

initial conditions at 7=0.031 and spread out uniformly
along the direction. We see that for both EML current
values the transport is initially superdiffusive, wimiﬁ grow-

ing with time roughly anld After onIy a dozen iterations. F!G. 7. Forward images, after 5 and 15 iterations, of a bunch of initial
however. the field line tran.sport becomes subdiffusive _I’_hé:onditions within the chaotic region, for the same parameters as in Fig. 4.
fact that the process is not Gaussian indicates that the chaotic . . . . .
region contains islands which have a trapping effect on fiel mbedded in this chaotic sea is clearly inferred from the

lines. A chaotic field line that approaches the remnant of an.Ighly (_:onvoluted_ regions char_acterlzed by high escape
times, since these islands delay field line escape and eventual

island would stay around it for a given time before entering . -

: : : loss. The presence of white tongues indicates that the escape

in the neighborhood of another island, and so on. . . . .
pattern is more akin to a convective transport than to a dif-

In order to visualize the trapping effect caused by thefusive one, since in the latter case we would expect a more

islands embedded in the chaotic region on the field line dy- . .
. A . niform escape pattern due to the ergodic nature of the
namics, we show in Fig. 7 the forward images, after 5 and 1 )
aussian transport process.

iterations, respectively, of a bunch of initial conditions.at A field line is considered lost whenever it reaches the

=0.031 and uniformly distributed along the poloidal direc- ;o1 2mak wall at7~0.06. This causes the decrease of the

tion, with an EML current of ,=0.021,. We may observe —ean square displacement for large times. In Fig. 9, we
the stretching and folding nature of the bounded dynamlc?ﬂot the fraction of lost field lined, r (with respect to the

with positive Lyapunov exponent in the chaotic region. They,a nymper of initial conditionsi; used to iterate the field
foldings are modulated by the presence of the island remy o 1oy as a function of the number of toroidal turns, for
nants. This highly convoluted set, formed by the forwardlh:0_045 . We emphasize that, as we have four limiters,
images of the initial conditions chosen, may reach the innef,q fime is discretized corresponding to an excursion of a
wall atr,=b, after a large number of iterations, which will quarter of turn(i.e., there are four points for each complete

cause ,IOSS of field Ilnzes. ) , toroidal turn. This decay process is well fitted by an expo-
This also causes, to decrease for large times, provided antial law

the chaotic region reaches=b,, complicating an analysis

of the diffusive behavior. This is shown in Fig. 8, where we n—ng

plot in grayscale the timgin number of toroidal turnsit Nir(n)=Ny exp( T ) (41)
takes for a field line to reach the tokamak wall. The EML o

current here is increased to 5.0%Igf The darker the phase in which N+=4000, no=69, andn=2393. The process re-
space point, the larger the time required for a field line startsembles the exponential decay of a radioactive nuclei, and
ing at that point to hit the wall. The presence of islandsaccordingly we may compute its half-life;», or the time it

0.03

"70.00 1.57 3.14 4.71 6.28
9
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n 100000 T T T T
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T
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1,1, % 100

FIG. 10. Half-life of field lines as a function of limiter current for an EML
with (mg,ng) =(5,1), and\ =0.54.

1
_ A~ aT m
0 1.57 3.14 4.71 6.28 Pa(m)_ m! € (CYT) ! (42)

%
that, during the observation time (measured in number of

FIG. 8.lGrayscaIe plot of escape times for chaotic field lines generated by afyrgidal turng, m field lines are lost. For this reasom,may
EML with (mo,no) =(5,1), A =0.54, andiy=0.050,. be called a field line decay rate.
We choose each intervalto correspond to two toroidal
turns, for Ny=500 observationgor 1000 turng From the
takes to decrease the number of remaining field lines to haibtained values ofn, we make a frequency histograffiig.
of their initial values. From Fig. 9, we see tha},~1700  11), where the white bars represent the statistics obtained
for the limiter current used there. In Fig. 10, this half-life is throughN, observations of lost field lines. Denotiki) the
plottedversusthe relative limiter current. The solid line is a average value of the number of lost field lines we have, for
power-law scalingl';,=a;l, "1, wherea; =3.10<10°, and  this Poisson distribution, thatim)=aT~1.90. Black bars
r{=8.42. Since the increase of the EML current enhanceghow the Corresponding results for EqZ) We have a good
the diffusion process itself, field lines are more rapidly lost,agreement between a Poisson distribution and the numeri-
thus lowering the corresponding half-life. cally determined frequency histogram, since the statistical
As with a radioactive decay, the statistical process ofuncertainty in the latter may be estimated[&&p,(m)(1
field line loss is described by two events: a field line hits or—p_(m))]*2 and the differences between our numerical re-
does not hit the tokamak wall, and the probabifity(m) of  sults and those given by E@42) differ by less than one
hitting the wall is much lower than the probability 1 standard deviation. We have also computed higher moments
- p.(m) of not doing so. This suggests a Poisson probability
distributior?®

04

03 b

F(n} 02 L .

NN,

0.0 m 4 =l
4 5

5} 7 8

0.00
0

2000 4000 6000 8000 10000 n

n
FIG. 11. Number of observation@ach observation corresponds to two

FIG. 9. Fraction of lost field lines due to an EML witN,=4 rings, toroidal turng in which n field lines were lost, for a (5,1) limiter, with
(mg,no)=(5,1), A=0.54, andl,/I,=0.045. The dashed line corresponds =0.54 andl,/l,=0.045. White and black bars correspond to numerical
to Eq.(41). The inset shows that the decay process has a staircase behaviesesults and a Poisson distribution, respectively.
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10° . , . - region, the decay rate will change as the numerical experi-
ment goes on. As a consequence, the number of field lines
that hit the wall, over an observation intervdl does not
strictly obey a Poisson distribution law. However, if we di-
vide the total observation period inté shorter intervals, in
each of them the Poisson statistics may still hold. The corre-
sponding decay rates;, i=1,2,...N, will generally be
different, but being Poissonian the overall collision rate will
be the sum of the individual ratee:= a1+ as+ - - - ay.

F(an)

V. CONCLUSIONS

0 1 2 4 5 The ergodic magnetic limitefEML) is designed to pro-
vide a cold boundary layer of chaotic magnetic field lines in
FIG. 12. Frequency h'ist'ogram for the plateau lengths in the field .Iinc_e decayhe periphery of the tokamak plasma column. In practice this
produced gyta(g'li limiter, with =0.54 andly /1,=0.045. The solid line 0915 3 region of predominantly chaotic field lines which
corresponds to E449) comprises both the plasma edge and the vacuum scrape-off
layer that embraces it. The presence of this chaotic region is
achieved by creating adjacent chains of magnetic islands,

to be 0.84 and 3.72, respectively. These values are close ach of them with their own local chaotic region surrounding

. : . re close e separatrices. These local regions may coalesce and form
the corresponding values predicted for a Poisson distribution . ) 7 i .
namely a large-scale chaotic region through which field lines diffuse.

If the chaotic region is large enough, they may collide with
1 the tokamak inner wall and are eventually lost.
S(m)= \/:=0-73, (43 The study of field line transport in such chaotic regions
(m) and their loss due to collisions with the wall depends on
1 long-term integration of magnetic field line equation. An
K(m)=3+ my 3.53. (44 analytically obtained mapping is a convenient tool to analyze
field line behavior for a large number of turns. Using a con-
The exponential decay of chaotic field lines due to col-yenient coordinate systefpolar toroida), we derive a map
lisions with the tokamak wall may be considered in morewhose coordinate surfaces are good candidates for equilib-
detail. From the inset in Fig. 9 we see that this decay is noium flux surfaces, in the sense that they present a Shafranov
continuous, but rather is a process in which there are manyhift. Another feature of our model is the use of an equilib-
plateaus with different lengths. In Fig. 12, we show a distri-rjum field that results from an approximate analytical solu-
bution of the time intervals between successive losses afon of the Grad—Schier—Shafranov equation, and by
field lines, which is a normalized frequency histogram of theadopting a current density model that yields a parabolic
plateau lengthst-(An) denotes the relative number of pla- safety factor profile.
teaus with lengtiAn. For a given EML current we have far The EML design that we consider embodies a parameter
more small plateauéin which field line loss occurs after a ) introduced to make the distribution of external conductors
few toroidal excursionsthan long plateaus. match the actual field line paths. The magnetic field of such
This probability distribution is well fitted by an exponen- 3 configuration is obtained by using the same geometry as
tial function for the equilibrium field. The use of a nonzekoenhances
F(An)= e 4n, (45) the resonant effect of the EML. For example, a (5/1) EML
] with A # 0 and a MHD equilibrium witlg~5.0 at the plasma
from which we can compute averages, as for the plateadgge give a sizable chaotic region centered at the plasma
length edge, and reaching the inner wall.
o 1 Our results show that there are two transport regimes for
(An)=f d(An)F(An)An=—, (46)  the chaotic region at the edge. Initially, a superdiffusive re-
0 gime appears as a result of a positive Lyapunov exponent,
assuming proper normalization fér(An). From the data leading to stretching and subsequent folding of bunches of
shown in Fig. 12, we obtain an average plateau length ofield lines. After a few iterations, the existence of island
(An)~1.11, so thatc~0.90. On the other hand, comparing chains causes a trapping effect, limiting field line excursions,
this exponential fit with the Poisson distributidgd2) we  and leading to a subdiffusive regime. A similar investigation
have thatk=«=0.95. The agreement between these twofor the diffusivity of field lines in a tokamak with ergodic
estimated values of is a further evidence that the field line divertor, in a cylindrical geometry, has shown a subdiffusive
loss is a process described by a Poisson statistics. regime only®>’ In this paper we consider another kind of
One remark should be made here. If we observe for aesonant perturbation, and the mapping is obtained for a to-
long time the number of field lines that remain in the chaoticroidal geometry.

of the distribution, the asymmeti§(m) and kurtosisk(m),
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The field line loss is described by an exponential-type

. . . . . . -C — 1+ ,
decay. This decay, however, if viewed in detail is not con-C2(J) —Q(rt(j))

(A7)

tinuous, but rather occurs in plateaus, whose lengths were
found to obey a Poisson statistics. Moreover, the half-life of

a diffusing field line depends on the limiter current in a

power-law fashion.
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APPENDIX: EXPLICIT FORM OF THE FIELD LINE
MAP FUNCTIONS

In this appendix we outline the explicit form of the func-
tions f and g that appear in the field line map. The Hamil-

tonian characterizing the EML field may be Fourier-

an(m,m’)
(1 if m=0 andn=0
m’ if m=1 andn=0 or n=11

=4 (m+m’'—n-—1)!

if m>1 andnsm’

(m=n)!(m’—=n)!n!
if m>1 andn>m'.

L 0
(A8)
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