
Brazilian Journal of Physics, vol. 32, no. 1, March, 2002 85

Statistics of Turbulence Induced by Magnetic Field
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Using the TCABR tokamak facility, we analyze turbulent electrostatic 
uctuations in a stationary
toroidal magnetoplasma, created by radio-frequency waves and con�ned by two di�erent toroidal
magnetic �elds. The increase of toroidal magnetic �eld leads to gradients in the mean plasma radial
pro�les and the onset of electrostatic turbulence. For the turbulent 
uctuations, we show that the
statistics of data collected using �xed sampling time is the same than the statistics of the time
in which measurements of the data return to a speci�ed reference interval of values. With these
statistical analyses we �nd special invariant probability distributions, power-scaling laws for some
average quantities, and long-range correlation for their oscillations. These observations suggest that
turbulence has recurrent properties, as those observed in recurrent fully chaotic low-dimensional
systems. Therefore, evolution of measurements of low-dimensional dynamical systems can be used
to describe the recurrence observed in the tokamak edge turbulence.

I Introduction

Fluctuations excited in plasma physics can lead to
turbulence [1, 2]. Experimental works carried out on a
linear device showed that drift waves can destabilize the
plasma and generate a turbulent spectrum [3]. Another
experimental investigation showed that turbulence de-
velops in a toroidal magnetoplasma due to drift waves
desestabilization by a large magnetic con�nement �eld
[4]. On the other hand, in another experiment in a
toroidal device without plasma current, anomalous tra
nsport was associated to intermittent coherent struc-
tures [5].

The onset of temporal electrostatic turbulence was
experimentally investigated in a stationary toroidal
magnetoplasma, created by radio frequency waves [6],
con�ned by a toroidal magnetic �eld. To character-
ize turbulence and intermittency, spectral analyses were
applied to 
oating potential and ion saturation current

uctuations obtained with electric probes at the plasma
edge. The increase of magnetic �eld leads to gradients
in the mean pl asma radial pro�les and a continuous
power spectrum of higher frequency waves coupled to
the driven radio frequency waves.

The understanding of chaos in deterministic systems
suggests that a probabilistic description of turbulence
can be applied to describe the previous results [7]. Here,
we use a tool of analysis that measures the recurrence of
the turbulent data, in accordance with structures vary-
ing on space-time [8]. This tool gives information about
the statistics of the turbulent oscillations. Moreover, we
use a recurrent measure of chaotic dynamics, the �rst
Poincar�e return time [8, 9] to simulate the statistical

behavior of the turbulent electrostatic measurements.
The applied dynamical system theory explains also the
existence of scaling laws for the average values of data
distributions.

II Experimental Data

The experiment [6] was performed with a hydro-
gen magnetized circular plasma in the toroidal device
of the TCABR tokamak (major radius R0=0.610m and
minor radius a = 0.175m. The stationary plasma was
obtained by a (16 kHz) radio-frequency oscillator with
pulse length of 25 ms. Hydrogen pressure 10�4Pa. Typ-
ically obtained plasma edge parameters were T < 30 eV
and n < 5x1016m�3. In order to study the turbulence
onset we applied two di�erent toroidal magnetic �elds,
namely, B'= 0.04 T and 1.00 T.

The data were collected from a multipin Langmuir
probe that measures the 
oating potential and the ion
saturation current 
uctuations, mean density, electron
temperature, and plasma potential. T he probe signals
were digitally recorded at a sampling frequency of 1
MHz. Here, we analyze the ion saturation current 
uc-
tuations, I , for intervals of 20 ms during the recorded
pulses, with frequencies higher than 20 kHz.

Density and temperature for the magnetic �eld of
1 T were n � (2 � 7) � 1017m�3 and Te=(12-30)eV.
In the scrape-o�-layer, the radial decay coeÆcients are
�n=-n= 5 n � 2:9 � 10�2m, for density, and �Te =
�Te=5 Te � 4:0� 10�2m for electron temperature.
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Figs. 1(a)-(b) show samples of 
uctuating ion sat-
uration current, I , at r=a = 0.85 for the two applied
magnetic �elds, B' = 1.00 T (a) and B'= 0.04 T (b).
The 
uctuation amplitude increases with the magnetic
�eld. Fig. 2 presents the frequency power spectra of the
same 
uctuations for magnetic �elds of 1 T and 0.04 T.
This �gure shows a continuous broad band of frequen-
cies from 20 kHz to 60 kHz (the 16 kHz frequency of
the radio-frequency oscillator does not appear in these
�gures). For all frequencies the 
uctuation amplitudes
increase with the magnetic �eld.
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Figure 1. Samples of 
uctuating ion saturation current, I,
at r=a = 0.85 for the two applied magnetic �elds, B' = 1.00
T (a) and B'= 0.04 T (b).

Figure 2. The frequency power spectra of the same 
uctu-
ations for magnetic �elds of 1 T (higher amplitude power
spectra) and 0.04T (lower amplitude power spectra).

III Statistical Analysis of Turbu-

lence

We de�ne In for the value of the 
uctuating ion
saturation current I(n�) at the time t = n� , where �

is the sampling rate. Fig. 3 shows the evolution of the
di�erence

Rn = In+1 � In: (1)

These 
uctuating di�erences are recurrent, i.e., their
amplitudes eventually come back to a reference inter-
val of values with size of 2Æ at �=0. Next, in this �gure,
we de�ne the returning time, Tn, as the interval of time
in which Rn repeats a value inside the chosen reference
interval. The procedure to obtain these returning time
is illustrated in Fig. 3, where we show a schematic rep-
resentation of the Tn. The probability distribution of
Tn in normalized units �(Tn), obtained for the turbu-
lent 
uctuations, can be seen in Fig. 4. For B= 1T
the distribution corresponds to a Poisson (Fig. 4a) [9].
However, the distribution of Fig. 4b, for B= 0.04T, is
not a Poisson distribution.
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Figure 3. The di�erence Rn and the returning time Tn for
the 
uctuation to return to the interval of size 2Æ.
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Figure 4. The probability distribution of Tn in normalized
units �(Tn), obtained for the turbulent 
uctuations with
1.00 T (a) and 0.04 T (b).

The average return time < Tn > depends on the
width 2Æ of the reference interval and on the position �
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of this interval. Figs. 5 and 6 show these dependence
for the two magnetic �elds. For �= 0, the exponen-
tial decay of < T > with Æ, for small Æ, is almost the
same for these two �elds (Fig. 5). So this variation is
not sensitive to the increase of turbulence. However, for
the high magnetic �eld, < Tn > increases exponentially
with �, but this variation is not exponential for the low
magnetic �eld (Fig. 6).
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Figure 5. The exponential decay of < T > with Æ, for small
Æ, with �=0.
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Figure 6. The exponential law of < Tn > in respect with �
for the 1.00 T. For the lower �eld, the law between < Tn >
and � is not exponential.

On the other hand for the series Rn we obtain its
probability distribution �(Rn) shown in Figs. 7(a-b).
These distributions can be represented as [9]

�[Rn(�)] =
1

2 < R+
n >

exp�(jRn�<Rn>j=<R+
n
>); (2)

which corresponds to a sum of two Poisson distribu-
tions, where < Rn > is the average of the Rn's and R+

n

represents Rn bigger than < Rn >. This Poisson-like
is characterized by the average width of the distribu-
tion which is equal to < R+

n >. Figs. 7(c-d) show the
simulation of the distributions of Figs. 7(a-b). Next,
we show how to simulate these distributions using the
recurrence of a low-dimensional deterministic model.

0 1 2 3 4 5
δ(arb. units)

0

10

20

30

<
T

n>
 (

µs
)

1.00 T
0.04 T

Figure 7. Probability distribution of the di�erence Rn for
1.00 T (a) and 0.04 T (b). The probability distribution of
a combination of the Poincar�e �rst return time of a chaotic
trajectory (c-d).

We simulate the reported statistical behavior using
a low-dimensional deterministic model, namely the lo-
gistic map [11, 12].

xn+1 = bxn(1� xn) (3)

with the control parameter b=4. The recurrence is in-
troduced through the �rst Poincar�e return time, Pn,
of the chaotic orbit, i.e., the number of map iterations
required for the orbit to reach twice a speci�ed small
interval of width 2� [10]. Fig. 7c shows that the ex-
perimental distribution of Fig. 7a is reproduced by the
distribution of values calculated for Rn given by a linear
combination of two �rst Poincar�e return time:

Rn = Pn(�; x0)� Pn(�; x
0
0) (4)

noindent where x0 and x00 are two di�erent initial con-
ditions of the chaotic trajectory. Using the same pro-
cedure to obtain Fig. 7b we obtain Fig. 7d that does
not reproduce so well the experimental distribution.

Recurrence appears in statistical analyses of 
uctu-
ation di�erence, Rn=In+1 � In, collected using �xed
sampling time, as in Figs. 7(a-b), and also in analyses
obtained from the return time to a speci�ed reference
interval of In (Fig. 4).

Fig. 8 shows, for both magnetic �elds, the varia-
tions of the average width of the Poisson-like distribu-
tion, < R+

n >, obtained each 1�s, along the plasma
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discharge, for previous time intervals of 250�s. The
width changes in time for the turbulent data of the
higher magnetic �eld and is more stable for the lower
magnetic �eld.
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Figure 8. The variations of the average width of the Poisson-
like distribution, < R+n >, obtained each 1�s, along the
plasma discharge, for previous time intervals of 250�s.

IV Conclusions

Increasing the toroidal magnetic �eld, we observe
gradients in the plasma pro�les. Spectral compo-
nents, with frequencies higher than those injected in
the plasma, are excited generating broader continuous
frequency spectra that indicate the onset of turbulence.

We present evidences that, increasing the magnetic
�eld, characteristics of the probability distribution of
the plasma 
uctuations approach those obtained by sta-
tistical analyses of the �rst Poincar�e return time of the
logistic map. Thus, two di�erent f luctuation regimes
and the transition between them are identi�ed. In the

turbulent regime, for 1T, the 
uctuation is recurrent
and its statistics is the one presented by a fully chaotic
dynamic system. However, the 
uctuation observed be-
fore the onset of turbulence has another kind of statis-
tics.
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