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Evidences of internal particle transport barriers have been observed in plasma discharges with reversed 
plasma flow. To investigate the influence of the radial electric field profile on these barriers, we apply a 
drift wave map that describe the plasma particle transport and allows the integration of particle drift in 
the presence of a given electrostatic turbulence spectrum. With this procedure we show that transport 
barriers due to the shearless flow invariant lines are created inside the plasma. Moreover, by varying 
the radial electric field profile, we observe the formation and destruction of internal transport barriers 
constituted by shearless invariant lines, as well as its effects on the transport in the map’s phase space. 
Applicability of our results are discussed for the Texas Helimak, a toroidal plasma device in which the 
radial electric field can be changed by application of bias potential.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

In fusion devices, as tokamaks and stellarators, plasma confine-
ment is limited by the anomalous particle transport at the plasma 
edge driven by the electrostatic turbulence observed at this re-
gion [1]. Meanwhile, several experiments have shown that such 
turbulence and transport could be reduced by imposing an exter-
nal electric potential that changes the radial electric field profile 
[2,3]. Furthermore, several experiments show that this transport 
can be reduced by properly changing the shear radial profile of 
the radial electric field component (the shear is proportional to 
the radial gradient of the field component) [3]. In this context, 
one experimental procedure to change the shear and reduce the 
transport is to apply a bias voltage to properly modify the radial 
electric field profile. On the other hand, the radial electric field and 
the toroidal magnetic field give rise to a poloidal plasma drift flow 
in the same direction of the drift waves propagation. The shear of 
this flow is essentially determined by the electric field shear. Thus, 
electrode biasing has been applied to verify the influence of the 
electric shear on the plasma transport and the formation of edge 
transport barriers [3].

To interpret particle transport at the tokamak plasma edge, 
non-integrable drift models with chaotic dynamics have been pro-
posed for large aspect ratio tokamaks [4]. Following this approach, 
a model has been proposed to describe the transport by drift 
waves propagating in the plasma edge of tokamaks with equilib-
rium �E × �B poloidal flow, for uniform magnetic fields. Moreover, 
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local symplectic drift wave maps have been derived from these 
models [4] to numerically investigate the transport dependence on 
shear spatial profiles. In particular, a non monotonic plasma equi-
librium with reversed shear flow may generate a shearless invari-
ant, in the radial position where the shear changes signal, acting 
as a transport barrier.

In this context, a model to describe drift wave test particle 
transport in reversed shear plasmas was considered to explain 
the reduction of turbulence-induced transport by the formation of 
shearless internal transport barriers in TCABR Tokamak (University 
of São Paulo, Brazil) [5] and Texas Helimak (University of Texas at 
Austin) [6].

To improve the experimental knowledge of turbulence and 
transport control, experiments have also been performed in de-
vices confining plasmas with selected characteristics of a fusion 
plasma in a simpler geometry and with better diagnostics than 
those possible in major confinement devices. Thus, the external 
electric potential dependence of particle transport have been in-
vestigated in the Large Plasma Device (LAPD) [7], and in the heli-
maks BLAAMANN [8], TORPEX [9], and Texas Helimak [10].

In Texas Helimak a large set of diagnostic probes is used to 
measure average parameters and fluctuations, and an independent 
spectroscopic diagnostic of the plasma flow is used to evaluate 
plasma flow shear’s influence on particle transport [10]. Moreover, 
some of the analyzed discharges present a reversed shear plasma 
flow and are especially adequate to investigate shearless transport 
barrier onset predicted to this kind of flow.

An important technique that allows the long-time integration 
of particle orbits is to replace the actual guiding-center orbits 
with those of a symplectic map derived for a large aspect ratio 
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plasma configuration [4]. Individual orbits obtained from the map 
can differ qualitatively from those obtained from the differential 
equations, but statistically maps tend to give correct quantitative 
predictions [4]. Although the exact ion orbits can be followed by 
integrating differential equations, maps are preferred to follow or-
bits accurately for the long time required to transport analysis.

We apply a map that describes particle orbits in drift waves to 
investigate the dependence of transport upon radial electric field 
with shear. This map reveals that the improved confinement for 
the reversed shear profile arises from a change in the topology of 
electric field and the concomitant persistence of invariant curves 
in a layer in the vicinity of the point where the shear reverses, the 
shearless point. Away from the shearless point, the transport de-
grades to that given by a monotonic twist map. Near the shearless 
point, however, the map characterizing the motion is a nontwist 
map. Thus, the transport is substantially reduced for the reversed 
shear profile. We also show how these internal shearless transport 
barriers are created and change as the electric field radial profile 
is modified by the applied bias voltage. We give examples of the 
transport barriers dependence on the bias voltage showing that 
the barriers can be created or annihilated by small changes of this 
control parameter. Applicability of our results are discussed for the 
Texas Helimak.

In Section 2 we present basic information about the Texas Heli-
mak discharges with reversed plasma flow and the symplectic map 
applied in Section 3 to predict the transport barriers and their de-
pendence on the applied bias voltage. Conclusions are in Section 4.

2. Test particle simulations

2.1. Reversed flow plasmas

In Texas Helimak a plasma toroidal device generates a low den-
sity and temperature plasma with a sheared cylindrical slab [10]. 
The equipment disposes of a large set of diagnostic probes used to 
measure average parameters and fluctuations, as well as an inde-
pendent spectroscopic diagnostic used to measure the plasma flow 
profiles [11]. Moreover, some Texas Helimak discharges present a 
reversed shear plasma flow [6], a condition which is especially ad-
equate to investigate shearless transport barrier onset predicted to 
this kind of flow.

Texas Helimak consists of a toroidal vacuum vessel with rect-
angular cross section of height H = 2.0 m, internal radius Rint =
1.0 m and external radius Rext = 1.6 m, as shown in Fig. 1a. The 
magnetic field has a toroidal component, Bϕ , generated by a set 
of sixteen toroidal field coils, and a vertical field, Bz , generated by 
a set of three vertical field coils. The toroidal field has magnitude 
of order 0.1 T and the ratio Bz/Bϕ can be adjusted with resistors 
added to the vertical coils, so that the magnitude of the vertical 
field can reach values up to 10% of Bϕ . Its main characteristics 
vary only with the radial coordinate, in a good approximation to 
one-dimensional plasma experiments.

One of the main characteristics of the Texas Helimak is the 
possibility to control the electric field radial profile by imposing 
an external electric potential through a set of bias plates. There 
are sixteen bias plates distributed at the bottom and at the top 
of the vessel, and a set of them is connected to a bias voltage, 
while the others remain connected to the vessel ground (Fig. 1). 
Thus, with these plates, the unperturbed electric field radial pro-
file can be modified by choosing the applied bias voltage fixed for 
each discharge. In particular, the data used as a reference for the 
present study were obtained from shots performed with positive 
bias voltages [12]. Studies on the effects of the bias potential in-
dicate modifications on the power spectrum and turbulence of the 
plasma [11]. In Texas Helimak, a spectrometer is used for measur-
ing the vertical velocity flow (V z) profile of the plasma through 
Fig. 1. (a) Schematic of the Texas Helimak and (b) plasma flow radial profile, for 
several applied positive bias voltage, in Texas Helimak [11,6]. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Doppler effect [11]. Fig. 1b shows the measured plasma flow ra-
dial profiles with reversed shear. These profiles will be considered 
in this work to predict the onset of shearless barriers.

For this study, data analyzed in previous works [6,12] at the 
Texas Helimak is used as a reference to calculate the parameters 
of the proposed drift wave map. For parameters similar to those 
observed in Texas Helimak discharges with positive bias, we inves-
tigate the shearless transport barriers dependence on the applied 
bias voltage. Our investigation, based on a map model introduced 
in the next section, allows to understand the origin of the shear-
less barriers instead of giving precise quantitative predictions of 
these barriers.

2.2. Drift wave map

We consider a model for drift wave maps [4] which assumes 
that the guiding center motion is governed by �E × �B drift. The 
equation of motion is then given by

d�x
dt

= v‖(t)
�B
B

+ �E × �B
B2

(1)

The electric field is considered to have a radial mean part plus 
a fluctuating part

�E = E0êr + Ẽ , Ẽ = −∇φ̃ (2)

where the perturbation electrostatic potential is given by the 
model drift wave spectrum

φ̃ =
∑
l,m,n

φl,m,n cos (mϕ − lz z − nω0t)

=
∑
l,m,n

φl,m,n [cos (mϕ − lzz) cos (nω0t)

− sin (mϕ − lz z) sin (nω0t)]

= 2π
∑
l,m,n

φl,m,n cos (mϕ − lzz) δ (ω0t − 2πn) (3)

since

∞∑
n=−∞

cos (nω0t) = 2π

∞∑
n=−∞

δ (ω0t − 2πn) and

∞∑
n=−∞

sin (nω0t) = 0
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with lz ≡ 2π
H l (l = 0, 1, . . . ) and φl,m,n are the waves amplitudes. 

The delta function argument introduced in the transformation con-
tains the index n, which labels the time sequence of delta pertur-
bations. Further approximations will be made for the amplitude 
and phase of the waves in the above equation.

A previous work [6] contains evidences that the �E × �B drift is 
sufficient to reproduce the alterations, observed in Texas Helimak 
discharges, of particle chaotic transport with the applied bias volt-
age and also the barriers radial position.

The physical motivation and justification for introducing a map 
in place of the differential equations follow from Texas Helimak 
plasma discharges perturbed by positive bias that show a wide fre-
quency spectrum for a wave vector. We assume that for each drift 
wave vector there is a broad spectrum nω0, n = 1, 2, . . . , N of fre-
quencies. Here ω0 is the lowest angular frequency with substantial 
amplitude in the drift wave spectrum. We idealize this spectrum 
by taking the limit N → ∞ and assuming phase coherence of 
the components. It has been shown [4] that the result of these 
assumptions was to produce maps with the well-known �E × �B
diffusivity induced by turbulent fluctuation. This albeit oversimpli-
fication of the drift wave spectrum captures the essential features 
of the �E × �B turbulent transport.

Once B ≈ Bϕ 
 Bz , the equation of motion gives

dr

dt
= 1

B

∂φ̃

∂z
(4)

r
dϕ

dt
=v‖ (5)

dz

dt
=v‖

Bz

B
+ E0

B
− 1

B

∂φ̃

∂r
(6)

The model assumes a dominant mode M/L with constant am-
plitude, so that the following change of variables is convenient

I = r2 − R2
int

R2
ext − R2

int

(7)

χ =Mϕ − 2π L

H
z (8)

The variable I is proportional to the area on the phase space and 
so is called the action variable, while χ has period 2π , being as-
signed to the angle variable. Applying this to Equation (4) gives 
the equation of motion in terms of action-angle variables. The per-
turbation term consists of periodic impulses on the action variable 
with period T = 2π/ω0. Thus the integration of the new equations 
of motion over one impulse results

In+1 = In + α sin (χn) (9)

χn+1 = χn + β√
In+1 + b2

(10)

where b2 ≡ R2
int/(R2

ext − R2
int), with parameters α and β related to 

physical variables by

α ≡ 2π

ω0

2L φ

qa2 Bz
(11)

β ≡ 2π

ω0

1

aq

[
v‖ (Mq − L) − L

E0

Bz

]
(12)

The map has two control parameters α and β which determine 
the orbit configuration in the phase space (I, χ). To obtain these 
parameters in the presented analysis investigating the influence of 
the electric field profile, we choose q and φ constants and a E0(I)
profile.
Fig. 2. Variation of the electric field radial profile and rotation number of the inte-
grable map (α = 0), with χ0 = 0.5, for various values of bias potential.

For a null perturbing amplitude wave, φ = 0, Equation (11) im-
plies α = 0 and the map is integrable, namely, each trajectory is 
regular, either periodic or quasi-periodic, and stays in an invari-
ant line with the initial action I0 being a constant of motion. In 
this case, for each map iterate, the associated helical angle χ in-
creases by a constant ω = �χ , defined as the rotation number, 
which characterizes the invariant line. In general, for other α val-
ues we may have a mixed systems with chaotic trajectories and 
regular trajectories in invariant lines. In that sense, the rotation 
number profile can be an indicative of the behavior of the trajec-
tories in any region of the phase space. For the non-integrable case 
we can still define a rotation number of an invariant line, consid-
ering an initial condition χ0, as the limit

ω(χ0) = lim
n→∞

χ̂n − χ̂0

n
(13)

where χ̂n refers to angle variable without modulo operator, that is 
mod (χ̂n, 2π) = χn , and n refers to the nth iteration. Fig. 2 shows 
the rotation number profile ω(χ0 = 0.5, I) for the non-perturbed 
map given by Equations (9)–(10). The local maximum/minimum (if 
it exists) of the rotation number profile ω(χ0) corresponds to the 
location of the shearless curve, which is an invariant line typical of 
non-twist systems.

Note that the rotation number depends on the control param-
eter β given by equation (12) and, therefore, on the electric field 
profiles E0(I). In the next section, we show the influence of the 
sheared electric field radial component, namely the profile E0(I)
shown in Fig. 2, on the particle transport. In particular, we will 
look for the invariant lines with an extremum rotation number 
value which divide the phase space in two regions and acts as 
internal transport barriers.

3. Bias dependence of internal transport barriers

It has been shown in reference [6] (see Fig. 10 in this refer-
ence) that the experimental particle transport in Texas Helimak 
changes with the applied positive bias values. Moreover, for all ap-
plied bias values the particle transport is very small where the 
velocity shear is null. This observation was interpreted as an in-
dication of a transport barrier localized in the plasma velocity (or 
electric field) shearless region. In this section we show, even for 
the simple model used, that shearless transport barriers are ex-
pected for a helimak with profiles like those observed in the Texas 
Helimak discharges analyzed in [9]. The predicted transport de-
crease is due to the non-monotonic vertical drift flow created by 
the radial electric field and the toroidal magnetic field.

In this section we consider the reference values to estimate the 
parameters of the drift wave map in Equations (9)–(10). The elec-
tric field profile E0(I) changes with the imposed bias voltage, the 
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Fig. 3. bias = 0 V: (a) Phase space and (b) rotation number for initial conditions 
with χ0 = 0.5. In (a), the blue line indicates the shearless invariant curve; in (b), 
the blue dot indicates the local maximum of the rotation number profile, which 
corresponds to the location of the shearless curve in (a).

Fig. 4. bias = 4 V: (a) Phase space and (b) rotation number for initial conditions 
with χ0 = 0.5. In (a), the blue line indicates the shearless invariant curve; in (b), 
the blue dot indicates the local minimum of the rotation number profile, which 
corresponds to the location of the shearless curve in (a).

control parameter considered in our analysis. Fig. 2 illustrates how 
the electric field changes as the bias potential is increased from 
0 to 10 V. It shows the bias potential values of 0 (dashed line) 
and 4 V (dash-dot line), as well as a continuous variation from 7 
to 10 V. Each value of the bias potential represents one shot con-
figuration in the device and defines an electric field profile E0(I). 
Hence, the parameter β of the map is estimated for each value of 
bias potential and is related to an electric field profile. The profiles 
shown in are obtained by interpolating profiles measured in Texas 
Helimak for bias potential of 0, 4, 6, 8, 10, 15 and 20 V. In Texas 
Helimak discharges with positive bias, the plasma flow profiles are 
non monotonic, as shown in Fig. 1b. The radial profiles shown in 
Fig. 2 are obtained by interpolating profiles of the radial electric 
field assuming that the velocity flow, measured in Texas Helimak 
for bias potential of 0, 4, 6, 8, 10, 15, 20 V [11,12], is equal to the 
electric drift velocity.

For the numerical estimations we use parameters chosen to 
represent the mentioned experiments with reversed shear flow in 
Texas Helimak. Accordingly, to iterate the map for the considered 
E0(I) profiles, we choose the constants φ = −10 V, for the per-
turbation amplitude, q = 2.89 for the safety factor, and M/L = 2/3
for the dominant modes. The variables I , χ values were normal-
ized to be between 0 and 1. We also consider the escape condition √

In+1 + b2 ≤ 0, i.e. iterations are interrupted if I ≤ −b2. Thus, on 
the phase space graphs we indicate the values Rext , Rint and −b2

on vertical axis, and χ → χ/2π on horizontal axis.
Initially, to show the influence of the electric field profile on the 

particles confinement, we iterate the map Equations (9) and (10), 
for 0 and 4 V and a conveniently chosen set of 10 × 10 initial 
conditions and 500 iterates for each initial condition. The obtained 
phase space of Fig. 3 and Fig. 4 show internal barriers separating 
the particles in two phase space regions. From the rotation num-
ber profiles shown in Fig. 3b and Fig. 4b, calculated numerically 
for χ0 = 0.5 and sequences of 104 iterates, we can find the ini-
Fig. 5. Phase spaces for bias voltages (a) 7.8, (b) 7.9, (c) 8.4 and (d) 8.5 V. The blue 
lines in figures (a) and (d) indicate the shearless invariant curve.

Fig. 6. Rotation number for bias voltages (a) 7.8, (b) 7.9, (c) 8.4 and (d) 8.5 V, calcu-
lated numerically for initial conditions with χ0 = 0.5. Details of figures (a) and (d) 
show the location of the shearless curve.

tial value of I0 corresponding to the rotation number minimum 
or maximum. Iterating the initial conditions (I0, χ0) we obtain the 
shearless curves (blue line) of Fig. 3 and Fig. 4.

To show how sensitive the internal shearless transport barriers 
are to small control parameter change, we compare phase spaces 
obtained for a continuous variation of the E0(I) profile, show in 
Fig. 2, as the bias voltage changes from 7.0 to 10.0 V, obtained by 
interpolating the measured profiles for 6, 8 and 10 V.

In Fig. 5, we show the phase spaces obtained for 7.8, 7.9, 8.4, 
and 8.5 V. The shearless invariant line appears in the first and in 
the last of theses figures. From the corresponding rotation number 
profiles obtained for the surviving invariant lines, we see (Fig. 6) 
that the shearless line was annihilated and reappeared as the bias 
voltage increases.
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In Fig. 6a, we see that the location of the shearless curve cor-
responds to a minimum of the rotation number profile. In fact, as 
the bias voltage increases from 4 to 7.8 V, the rotation number 
profile exhibits a minimum. For bias voltage of 7.9 V, the region of 
the phase space where once there were invariant curves gives rise 
to islands and chaotic subsets (Fig. 5b). The rotation number pro-
file for this value of bias (Fig. 6b) shows a plateau in that region, 
which was the location of the minimum in Fig. 6a.

On the other hand, as the bias voltage is increased from 7.9 V, 
the islands formed near the shearless curve moves away from it 
(Fig. 5c) and the rotation number profile tends to bend and reverse 
its concavity (Fig. 6c). Then a minimum and a maximum appear at 
value 8.5 V, as seen in Fig. 6d. These points indicate the rising of 
other shearless curves (Fig. 6d) for values of I lower than those on 
the previous cases. Further increase on the bias voltage leads to 
the destruction of the shearless curves. For 8.7 V bias voltage, one 
curve disappears, and for 10 V, the remaining curve fades and the 
chaotic orbits may spread through the whole phase space.

As we see in Fig. 5c and Fig. 6d, the variation of the electric 
field profile and, consequently, the variation of the parameter β as 
a function of the action coordinate modifies the map in such a way 
that the rotation number does not exhibit an extremum. Although 
all the maps of Fig. 5c still preserve invariant curves that may sep-
arate trajectories in the phase space, not all of them produce the 
shearless curve, which is a characteristic of the non-twist systems. 
As expected, the surviving invariant curves are not so robust as the 
shearless curves and could be easily broken by changing the wave 
amplitude [13]. In other words, the transition to global chaos is 
affected by the presence of the shearless curve [13], thus its pres-
ence should reduces the transport in Texas Helimak.

3.1. Chaotic transport

To analyze the bias influence on the chaotic particle transport 
in configurations with no remaining transport barriers, we con-
sider an ensemble of N chaotic particles randomly distributed in a 
specified domain of phase space. For each particle we consider that 
an initial state (I0, χ0) evolves to a final state (In, χn) at step n. Be-
cause of the spatial periodicity of the waves, an average over this 
region is equivalent to an average over the entire accessible phase 
space. The radial coordinate of particle i (determined by its action) 
is ri and the initial radial position is ri(0). Thus, we calculate the 
quadratic deviation of a particle’s trajectory for each initial radial 
position, for N = 10000 initial conditions evenly distributed in the 
region 0.4 ≤ χ ≤ 0.6, 0.9 ≤ I ≤ 1. The particle average quadratic 
deviation, σ , of the radial drift excursions in the chaotic region 
can be defined as

σ(n) =
√√√√ 1

N

N∑
i

(ri(n) − ri(0))2 (14)

Thus, calculating the presented quadratic deviation for a set of 
initial conditions we can follow the trajectories and estimate the 
forward particle displacement until they escape the plasma [14,
15]. This procedure is an alternative to the use of the trajectory 
standard deviation, adequate to analyze deviations from average 
values.

In Fig. 7a, we see that the average quadratic deviation of the 
radial position tends to increase for higher values of the bias volt-
age, as the remaining trajectories decrease. However, we see that, 
for high n values, the transport is not diffusive, i.e., σ 2 does not 
increase linearly with n. Therefore, in this case, we can not de-
fine the coefficient of diffusion as the limit of σ 2/2n for n going to 
infinite.
Fig. 7. (a) Standard deviation for particle radial position and (b) remaining trajecto-
ries over time for some values of bias voltage.

For the same set of the mentioned initial conditions, we plot 
the quantity of remaining trajectories over iteration time for values 
of bias that no longer preserve the barrier.

Thus, after the shearless barriers are broken, the transport in-
creases with the applied bias voltage, as expected by the destruc-
tion of invariants lines and islands as the bias increases. There-
fore, the considered drift wave map allows understanding how the 
chaotic radial particle transport develops as the bias voltage in-
creases.

4. Conclusions

We investigated the particle transport dependence on the elec-
tric field radial profile in sheared flow plasma discharges. For our 
predictions, we applied a drift wave map previously proposed to 
the integration of orbits on the long transport time scales, which is 
practically impossible for the differential equations governing the 
exact guiding-center orbits. Calculations using this map showed 
that a shearless flow transport barriers can occur for reversed 
shear flow profiles. Furthermore, we show that the shearless trans-
port barriers change as the electric field radial profile is modified 
by the applied bias voltage. These transport barriers are sensitive 
to the bias voltage and can be created or annihilated by small 
changes of this control parameter.

The numerical results, obtained for the Texas Helimak parame-
ters in discharges with positive applied bias voltage, support previ-
ous reported evidences of shearless transport barriers and allow us 
to predict the onset and annihilation of internal transport barriers 
in this device as the bias voltage is modified.

Furthermore, the procedure introduced in this article could be 
extended for modified electric field profiles due to finite Larmor 
radius [16] or due to displaced resonances predicted for plasmas 
with energetic particles [17].
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