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The development of new divertor configurations is 
crucial on the road to a fusion reactor 

• Steady-state power handling in DEMO and future fusion reactors will only 
be possible with plasmas operated with high core radiation fraction 
- About 90% of the heating power has to be radiated [M. 

Kotschenreuther, Phys. Plasmas (2007)] 

• Alternative solutions have to be researched to mitigate the risk that 
highly radiating regimes may not be extrapolated towards DEMO 
- The snowflake (SF) is one of several alternative divertor 

configurations [D.D. Ryutov, Phys. Plasmas (2007)] 

• In Demo and future fusion reactors, ELMs will not be tolerated 
- Solution for ELMs come in the form of applied 3D magnetic 

perturbations [A. Loarte, Nucl. Fusion (2014)] 
- The effect of 3D magnetic perturbations in the SF configuration has 

to be investigated

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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High heat flux in a reactor will require a new strategy to 
reduce the power loads onto the divertor targets

• Heat flux expected to increase significantly 
with the toroidal magnetic field 

• Increase heat flux capability of divertor 
material

P   α (1 – f    ) R     B00
1.65 1.65

raddiv
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High heat flux in a reactor will require a new strategy to 
reduce the power loads onto the divertor targets

• Heat flux expected to increase significantly 
with the toroidal magnetic field 

• Increase heat flux capability of divertor 
material 

• Increase the radiation fraction 
- Impurity seeding, increase divertor 

volume, connection length 
• Increase the power distribution 

- Major radius, SOL width, number of legs
Modify the 

conventional divertor 
configuration
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Snowflake configuration proposed as a possible solution 
to reduce target power loads

• Snowflake ≡ second order null point [D.D. Ryutov, Phys. Plasmas (2007)]
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• Two additional divertor legs
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Snowflake configuration proposed as a possible solution 
to reduce target power loads

• Two additional divertor legs 

• Lower poloidal field near the 
null point 
- Larger flux expansion 
- Larger divertor volume 
- Longer connection 

length

• Snowflake ≡ second order null point [D.D. Ryutov, Phys. Plasmas (2007)]
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In practice any snowflake has two nearby x-points

Proximity to SF: 
σ = dx-pointt / a

• Snowflake plus (SF+):  Secondary x-point is in the private flux region 
• Snowflake minus (SF-):  Secondary x-point is in the common flux region

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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dxpt

a

σ = dxpt/a

The TCV was the first machine to create and investigate 
the various snowflake configurations

• Snowflake plus (SF+):  Secondary x-point is in the private flux region 
• Snowflake minus (SF-):  Secondary x-point is in the common flux region

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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High confinement mode is the most promising 
operational mode for achieving thermonuclear fusion

• Main signature of an H-mode is a transport 
barrier in the plasma edge causing steeper 
plasma density and temperature profiles than 
those in L-mode

G.P. Canal, IFUSP, São Paulo, May 10th, 2018

1R. Pánek, Plasma Phys. Control. Fusion  (2016)

COMPASS 
in the Czech Republic

Pedestal
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H-mode plasmas are found to be unstable to Edge 
Localized Modes

• Ideal MHD stability calculations show that the 
observed instabilities (ELMS) are caused by 
coupled Peelling-Ballooning modes

G.P. Canal, IFUSP, São Paulo, May 10th, 2018

ELM filaments in MAST Ideal MHD calculations 
of ELMs in DIII-D



 16

H-mode plasmas are found to be unstable to Edge 
Localized Modes

• Ideal MHD stability calculations show that the 
observed instabilities (ELMS) are caused by 
coupled Peelling-Ballooning modes 

- Solution for ELMs come in the form of 
applied 3D magnetic perturbations[A. 
Loarte, Nucl. Fusion (2014)]

G.P. Canal, IFUSP, São Paulo, May 10th, 2018

ITER 3D coils for ELM supression
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The snowflake configuration is more sensitive to 
magnetic perturbations than a single-null configuration

• The effect of magnetic perturbations in the plasma is expected to be 
magnified in the SF configuration due to its lower Bθ near the null-point

B
θ (

T
)

Single-Null Configuration Snowflake Configuration

G.P. Canal, IFUSP, São Paulo, May 10th, 2018

Improved physics understanding & modeling of 3D fields in the SF divertor 
are needed in order to extrapolate towards larger devices
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Outline: M3D-C1 simulations of the snowflake divertor

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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NSTX discharge provides the equilibrium profiles for the 
ISOLVER calculations of the NSTX-U SF divertor

• Reference Discharge (#132543 @ 700 ms) 
- IP = 1.0 MA 

- BT = -0.44 T 

- PNBI = 6.0 MW 

- κ = 2.1 
- δtop = 0.37 

- δbot = 0.71

Plasma density Plasma Temperature

NSTX

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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ISOLVER calculations of the NSTX-U SF divertor assume 
approximately the same total plasma pressure profile

• SF configurations generated by ISOLVER have 
approximatly the same P’, FF’ and total plasma 
pressure of the reference NSTX discharge 
- Total pressure profile does not depend on 

divertor configuration [V.A. Soukhanovskii, Phys. 
Plasmas (2012)]

NSTX-U

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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NSTX-U will operate without the PF1BL coil in the 
initial run of experiments

• PF1BL coil was not used in these 
calculations 
- Not used in the first runs of NSTX-U

PF1BL coil 

λq = 3 mm

NSTX-U

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Configuration is varied from a SN reference to a SF

• An exact SF configuration (σ = 0) features  
→            is a measure of the “proximity” of a divertor configuration 

from an exact SF

SN (σ = 1.11)

nptB ,θ∇
!

0, =∇ nptBθ
!

ρ
npt

λq = 3 mm
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Configuration is varied from a SN reference to a SF

• An exact SF configuration (σ = 0) features  
→            is a measure of the “proximity” of a divertor configuration 

from an exact SF

SN (σ = 1.11)
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Configuration is varied from a SN reference to a SF
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Configuration is varied from a SN reference to a SF
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Configuration is varied from a SN reference to a SF

• An exact SF configuration (σ = 0) features  
→            is a measure of the “proximity” of a divertor configuration 

from an exact SF

SN (σ = 1.11)
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Outline: M3D-C1 simulations of the snowflake divertor
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Estimate the Plasma Response to Externally Applied 
Non-Axisymmetric Magnetic Fields Using Modelling

• The M3D-C1 code is a two-fluid, 
resistive MHD code1 

• The M3D-C1 computational 
domain includes the confined 
plasma,  the separatrix and the 
open field-line region 

• Unstructured mesh allows 
increased spatial resolution near 
rational surfaces and x-point

1N. Ferraro, Phys. Plasmas (2010)
G.P. Canal, IFUSP, São Paulo, May 10th, 2018



 31

Estimate the Plasma Response to Externally Applied 
Non-Axisymmetric Magnetic Fields Using Modelling

1N. Ferraro, Phys. Plasmas (2010)

• The M3D-C1 code is a two-fluid, 
resistive MHD code1 

• The M3D-C1 computational 
domain includes the confined 
plasma,  the separatrix and the 
open field-line region 

• Unstructured mesh allows 
increased spatial resolution near 
rational surfaces and x-point 

• Two-fluid effects governed by ion 
inertial length, di 
- Electron and ion fluids 

decouple at finite di

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Outline: M3D-C1 simulations of the snowflake divertor
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Two-fluid effects significantly enhance resonant field 
components in the plasma edge of the SF configuration

• Plasma response in a SF is 
not significantly different 
than in a SN 
- Differences come from 

slightly different q-
profiles 

- Differences in q-profile 
come from change in 
poloidal current

Vacuum

Two-Fluid

Single-Fluid

Vacuum

Two-Fluid

Single-Fluid

Snowflake Single-Null

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Enhancement of resonant field components is caused 
by low electron fluid rotation in the plasma edge

Plasma Rotation Profiles

• Region of enhancement of resonant components coincides with region of low 
electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)] 

G.P. Canal, IFUSP, São Paulo, May 10th, 2018

Resonant Magnetic 
Perturbation (Single-Null)

Low electron fluid rotation 
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Enhancement of resonant field components is caused 
by low electron fluid rotation in the plasma edge

• Region of enhancement of resonant components coincides with region of low 
electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)] 

Resonant Magnetic 
Perturbation (Snowflake)

Resonant Magnetic 
Perturbation (Single-Null)

Low electron fluid rotation 

G.P. Canal, IFUSP, São Paulo, May 10th, 2018



• Region of enhancement of resonant components coincides with region of low 
electron fluid rotation [N. Ferraro, Phys. Plasmas (2012)] 

• Enhanced resonant fields indicate the formation of magnetic islands 
- Two-fluid calculations predict stochastic layer in the plasma edge as large 

as in the vacuum field approach
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Enhancement of resonant field components is caused 
by low electron fluid rotation in the plasma edge

Chirikov Parameter (SF) Chirikov Parameter (SN)

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Vacuum (IC = 0.5 kA) Vacuum (IC = 1.0 kA) Vacuum (IC = 1.5 kA)

Calculations show no difference between edge 
stochastization in SN and SF configurations 

• As in a SN, vacuum, two-fluid and single-fluid calculations predict an 
increasing of the edge stochasticity with IC in a SF configuration 

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Two-Fluid (IC = 0.5 kA) Two-Fluid (IC = 1.0 kA) Two-Fluid (IC = 1.5 kA)
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Single-Fluid (IC = 0.5 kA) Single-Fluid (IC = 1.0 kA) Single-Fluid (IC = 1.5 kA)

Calculations show no difference between edge 
stochastization in SN and SF configurations 

• As in a SN, vacuum, two-fluid and single-fluid calculations predict an 
increasing of the edge stochasticity with IC in a SF configuration 

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Lower poloidal field in the null-point region of the SF 
configuration leads to the formation of longer lobes

• The SF configuration magnifies the effect of magnetic perturbations 
- More striations in the divertor may lead to lower peak heat fluxes

Single-Null Configuration Snowflake Configuration

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Lower poloidal field in the null-point region of the SF 
configuration leads to the formation of longer lobes

Single-Null Configuration

1

2

3

4

Snowflake Configuration

1
2

3

4

• The SF configuration magnifies the effect of magnetic perturbations 
- More striations in the divertor may lead to lower peak heat fluxes

Magnetic field lines in the null-point region of the 
SF divertor remain close to the edge

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Outline: M3D-C1 simulations of the snowflake divertor

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Effect of 3D magnetic perturbations on secondary 
manifolds is negligible

• Vacuum approach calculations show 
that C-coil currents have no significant 
effect on secondary manifolds

➢ Magnetic field lines in the private flux 
region are too far from the C-coil

Very short lobes
G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Secondary manifolds become apparent when 
perturbation coil is placed close to secondary x-point

• Vacuum approach calculations show 
that only field lines passing close to the 
perturbation coil are affected 
- Manifolds are affected by radial 

(non-tangential) perturbed field

➢ Primary manifolds and left hand secondary 
manifolds are too far from the perturbation coil

Very short lobes

Very short lobes

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Primary and secondary manifolds are visible 
when both perturbation coils are used

• Calculations show that, for a sufficiently 
close perturbation coil, both primary and 
secondary manifolds can be manipulated

➢ Left hand secondary manifolds are 
still too far from the perturbation coil

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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Primary and secondary manifolds interact at sufficiently 
short distance between x-points

• Vacuum approach calculations show 
that primary and secondary manifolds 
may interact at 
- sufficiently close perturbation coils 
- sufficiently large perturbation coil 

currents  
- small distance between x-points 

• Interaction between manifolds may 
- affect the edge plasma transport 
- improve the power repartition 

between plasma legs (reduction of 
peak heat flux) 

- increase divertor volume (radiated 
power fraction and easier access 
to detachment)

dxpt

G.P. Canal, IFUSP, São Paulo, May 10th, 2018
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• No significant differences are observed between the SN and SF plasma 
responses (Good News!!!!) 

• Plasma lobes in the SF are longer than in the SN configuration 

• Interaction between primary and secondary manifolds may have impact on 
plasma edge transport and, therefore, on the divertor heat flux deposition

Summary: Improved physics understanding & modeling of 3D fields 
in the SF divertor are needed to extrapolate towards larger devices

G.P. Canal, IFUSP, São Paulo, May 10th, 2018


