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A B S T R A C T

Nontwist area-preserving maps violate the twist condition along shearless invariant curves, which act as
transport barriers in phase space. Recently, some plasma models have presented multiple shearless curves
in phase space and these curves can break up independently. In this paper, we describe the different shearless
curve breakup scenarios of the so-called biquadratic nontwist map, a recently proposed area-preserving map
derived from a plasma model, that captures the essential behavior of systems with multiple shearless curves.
Three different scenarios are found and their dependence on the system parameters is analyzed. The results
indicate a relation between shearless curve breakup and periodic orbit reconnection-collision sequences. In
addition, even after a shearless curve breakup, the remaining curves inhibit global transport.
1. Introduction

The twist condition plays an important role in Hamiltonian systems
due to its connection with important results, e.g., the Kolmogorov–
Arnold–Moser theorem, Poincaré–Birkhoff theorem, Aubry–Mather the-
ory, and Nekhoroshev theorem [1,2]. The implications of this condition
to the system dynamics range from the number of periodic orbits to its
transport behavior [3]. The violation of the twist condition generates
new phenomena that significantly change the system behavior [4].
The so-called nontwist systems present shearless invariant curves that
violate the twist condition. They are invariant curves resistant under
periodic perturbations, and they are also called shearless transport
barriers [5].

The Standard Nontwist Map (SNM) is a paradigmatic area-preserv
ing map in the study of nontwist phenomena close to the shear-
less curve [6]. It is widely studied in the context of reconnection-
collision sequences [7–10], shearless curve breakup [11–14], and trans-
port properties [15–17].

Physical systems with a nonmonotonic profile can have nontwist
dynamics. Examples of such systems include: super-conducting quan-
tum interference devices [18], traveling waves [19], sheared zonal
flows [20,21], and magnetically-confined plasmas [5,22]. In these sys-
tems, especially in fluids and plasmas, the shearless transport barrier
resembles a transport barrier in the real physical system [5,21]. For
example, experimental observations show a correlation between non-
monotonic electric or magnetic field profiles in tokamak plasma and
the reduction of transport [23].
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Many methods are used to evaluate the critical parameters asso-
ciated with the shearless curve breakup. One of them is based on
Greene’s criterion [24], modified to nontwist systems [6]. Although
very precise, its computation cost may restrain its use to compute
parameter spaces. Meanwhile, other methods produce reliable results
in this task, e.g., methods based on the escape of trajectories [25], the
convergence of rotation number [9], Slater’s criterion for the existence
of quasiperiodic orbits [26], and recurrence-based analysis [27].

Some investigations concerning plasma-transport models have non-
twist systems that admit multiple shearless tori in phase space [28–30].
Also, experimental evidence indicates that physical systems can present
multiple shearless transport barriers [31]. Despite some works in the
understanding of these systems [32,33], their shearless curve breakup
scenarios and the corresponding transport behavior are still an open
question. In addition, a recent paper proposed a new area-preserving
map, derived from a plasma-transport model, that has three shearless
curves [33]. This system, called Biquadratic Nontwist Map (BNM),
presents shearless bifurcation scenarios with the same characteristics
encountered in the original Hamiltonian flow from which it was de-
rived [29]. This area-preserving map has connections with the SNM and
shares the same symmetry and involution properties which simplifies
analytical and numerical calculations [7,33].

In this work, we progress in the study of the BNM, characterizing
its shearless curve breakup scenarios and relation with the system pa-
rameters. We determine the shearless curve breakup parameter spaces
vailable online 7 June 2023
960-0779/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.chaos.2023.113606
Received 22 March 2023; Received in revised form 18 May 2023; Accepted 19 Ma
y 2023

https://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:gabrielgrime@gmail.com
https://doi.org/10.1016/j.chaos.2023.113606
https://doi.org/10.1016/j.chaos.2023.113606
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2023.113606&domain=pdf


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 172 (2023) 113606G.C. Grime et al.
Fig. 1. (a) Phase space of the Biquadratic Nontwist Map for parameters 𝑎 = 0.3,
𝑏 = 0.05, and 𝜖 = 0.4. The associated rotation number profile is shown in (b) using
the initial angle 𝑥0 = 0.25. The shearless curves are marked in red, blue and green
color. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

concerning the breakup of each shearless curve. The structures of the
parameter space are described along with their relation with periodic
orbits reconnection collision sequences. We also investigate the ef-
fects of shearless breakup in the phase space transport, through the
computation of the transport barrier transmissivity.

This paper is organized as follows. The Biquadratic Nontwist Map
is introduced in Section 2 together with its shearless curve breakup
scenarios. In Section 3 we discuss the dependence of shearless curve
breakup configuration on the system parameters. Section 4 concen-
trates on discussing the smooth boundaries in the parameter space and
its relation with the reconnection of separatrices. The shearless partial
transport barrier transmissivity is presented in Section 5. Conclusions
are presented in the last section.

2. The Biquadratic Nontwist Map

The Biquadratic Nontwist Map (BNM) was proposed in Ref. [33],
and is given by

𝑥𝑛+1 = 𝑥𝑛 + 𝑎
(

1 − 𝑦2𝑛+1
) (

1 − 𝜖𝑦2𝑛+1
)

(mod 1) (1a)

𝑦𝑛+1 = 𝑦𝑛 − 𝑏 sin (2𝜋𝑥𝑛), (1b)

where 𝑥 ∈ [0, 1) and 𝑦 ∈ R are the angle-action like coordinates. The
parameters of the map and their ranges are 𝑎 ∈ [0, 1), 𝑏 ∈ [0,∞),
2

𝜖 ∈ [0,∞). Parameter 𝑏 is related to the perturbation of the map, and 𝑎
and 𝜖 control its twist function. In real physical systems, as in a tokamak
plasma, the perturbation parameter can be related to the amplitude of
perturbing waves, and the twist function, to spatial profiles, such as the
velocity of a fluid or electromagnetic fields in a plasma. A more specific
relation of the parameters of the map to a physical model is available
in Ref. [33].

This map violates the twist condition, |𝜕𝑥𝑛+1∕𝜕𝑦𝑛| ≠ 0, for three
sets of points 𝐳 = (𝑥, 𝑦) in phase space, called shearless curves. These
curves, as any invariant torus, are total barriers for transport in phase
space [34]. Nonetheless, they are particularly robust under periodic
perturbations, and, even after their breakup, a partial transport barrier
is still present [15].

The map has three shearless curves, 𝐶1, 𝐶2 and 𝐶3, which for the
condition 𝑏 ≪ 1 are approximately given by the expressions

𝐶1 ∶ 𝑦 = 𝑏 sin (2𝜋𝑥), (2a)

𝐶2,3 ∶ 𝑦 = ±
√

1 + 𝜖
2𝜖

+ 𝑏 sin (2𝜋𝑥), (2b)

shown in Fig. 1a, colored in red, blue, and green, respectively. To ob-
tain the shearless curves orbits, we numerically determine the rotation
number profile, that associates with each nonchaotic orbit a rotation
number

𝜔(𝑥0, 𝑦0) = lim
𝑚→∞

𝑥𝑚+1 − 𝑥0
𝑚

, (3)

which measures the average angle variation per time step. Then, the
shearless orbit is characterized by an extremum in the rotation number
profile. The corresponding rotation number profile of this map is plot-
ted in Fig. 1b, showing the three extreme points associated with the
shearless tori.

The fixed points of the BNM are the solutions of the equation
𝑀(𝑥, 𝑦) = (𝑥, 𝑦), where 𝑀 is the mapping defined by Eq. (1). They are
given by

𝐳±1 = (0,±1), 𝐳±2 =

(

0,± 1
√

𝜖

)

, (4a)

𝐳±3 =
( 1
2
, ±1

)

, 𝐳±4 =

(

1
2
, ± 1

√

𝜖

)

, (4b)

and are related to the four main islands and four hyperbolic points of
period one (Fig. 1a).

In this paper, we call central main islands those associated with the
fixed points 𝐳−1 and 𝐳+3 , also present in the SNM. The islands of the
points 𝐳+2 and 𝐳−4 are named external main islands and are typical of
the BNM. In addition, there are two possible reconnection processes
involving those four main islands. The first one occurs involving the
central main islands and has an equivalent in the SMN [6]. Further-
more, the BNM has another reconnection that involves the central and
the external main islands [33].

Another important quantity associated with area-preserving maps
is the primitive function, a generalization of the generating function of
canonical transformations [35]. The primitive function 𝑊 (𝑥, 𝑦) of the
BNM is given by

𝑊 (𝑥, 𝑦) = −
2𝑎(1 + 𝜖)

3
[𝑦 − 𝑏 sin (2𝜋𝑥)]3 +

+ 4𝑎𝜖
5

[𝑦 − 𝑏 sin (2𝜋𝑥)]5 + 𝑏
2𝜋

cos (2𝜋𝑥),
(5)

which, for 𝜖 = 0, reduces to the primitive function of the Standard
Nontwist Map [8]. Furthermore, this function can be used to find the
reconnection threshold of hyperbolic orbits [36,37].

The BNM has special properties like spatial symmetry and can be
decomposed in involutions, discussed in Appendix. These properties
simplify some numerical procedures such as finding periodic orbits [6].
One of its consequences is the presence of the indicator points, namely,

𝐏± =
(

±1 ,± 𝑏) , 𝐏± =
(𝑎 ± 1 , 0

)

, (6)
0 4 2 1 2 4
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Fig. 2. Shearless curve breakup scenarios of Biquadratic Nontwist Map. The phase space is shown for the parameters: (a) 𝑎 = 0.23, 𝑏 = 0.19 and 𝜖 = 0.29; (b) 𝑎 = 0.135, 𝑏 = 0.57
and 𝜖 = 0.11; and (c) 𝑎 = 0.14, 𝑏 = 0.9 and 𝜖 = 0.29.
which are points associated with the symmetry and involution trans-
formations, and belong to the central shearless curve if it exists [25].

The BNM has a periodic perturbation that generates chaotic orbits
starting from the hyperbolic points. The spreading of the chaotic orbits
by increasing the perturbation may destroy one or more shearless
curves [34]. Fig. 2 shows the three possible scenarios of shearless
breakup in the BNM: (a) the central shearless curve (red) remains and
the external shearless curves (blue and green) are broken; (b) the curves
𝐶2,3 remain in phase space, but the central one is broken; and (c) all the
shearless curves are broken. In the last scenario, there is no invariant
curve to prevent global transport in phase space. Due to the symmetry
of the map, the curves 𝐶2 and 𝐶3 have the same behavior, that is, if one
curve is broken the other one is too. In the next section, we present a
systematical analysis that finds the BNM parameter values that feature
each one of the above scenarios.

3. Shearless curve breakup in parameter space

The breakup of the shearless curves occurs for determined critical
values of the system parameters [6]. As mentioned in the last section,
the Biquadratic Nontwist Map (BNM) can have one or more shearless
curves broken. To analyze these scenarios of shearless curve breakup
we obtained the shearless breakup parameter space of the Biquadratic
Nontwist Map (BNM), which determines the parameters such that: (i)
the central shearless curve exists, corresponding to scenarios of Figs. 1a
or 2a, or (ii) the central shearless curve is broken. In the latter case, we
distinguish whether the external curves exist (Fig. 2b) or are broken
(Fig. 2c).

To numerically obtain the parameters for which the central shear-
less curve is broken, we applied a method proposed in Ref. [26] based
on Slater’s criterion for the existence of quasiperiodic orbits [38,39].
The method consists in counting the number of different recurrences
inside a box of size 𝛿, centered at an indicator point taken as the initial
condition of the orbit. If the number of different recurrences to the box
is equal to three and the largest recurrence is the sum of the other
two, we consider that the central shearless curve exists. Otherwise, the
shearless curve is considered broken. For numerical purposes, we use
the box size 𝛿 = 0.002 and iterate the 𝐏+

0 indicator point orbit 5 × 106

times.
The applied method to numerically compute the parameter for

which all the shearless curves are broken is the following: given a set
of parameter values (𝑎, 𝑏, 𝜖) we iterate, for a long time (106), orbits with
the four indicator points [Eq. (6)] as the initial condition. The indicator
points belong to the central shearless curve, whenever it exists. Hence,
if the orbit overtakes one of the lines 𝑦 = ±10, we assume that all
shearless curves have broken for this set of parameters value. On the
contrary, the central shearless curve exists or the external curves 𝐶
3

2,3
prevent the orbits from passing across the lines 𝑦 = ±10. This method
was extensively applied in previous works for the Standard Nontwist
Map (SNM) and provides reliable results [10,14].

Fig. 3 shows the shearless curve breakup parameter space of the
BNM for 𝜖 = 0.1 (Fig. 3a) and 𝜖 = 0.8 (Fig. 3b). These parameter spaces
are obtained by fixing the parameter 𝜖 of the map (1) and varying the
parameters 𝑎 and 𝑏. Values of (𝑎, 𝑏) for which the central shearless curve
exists are marked in red, in blue if the central curve is broken and the
external curves exist, and in white if all shearless curves are broken.

In this paper, we will call central shearless curve parameter space the
one concerning the existence of the central shearless curve, i.e., if it
exists (red region) or is broken (blue and white regions). Furthermore,
the shearless curves parameter space concerns the existence of any shear-
less curve (red and blue regions) or the breakup of all shearless curves
(white region).

The central shearless curve parameter space present in Fig. 3 has a
mixed-type boundary combining smooth and fractal-like regions, just
as in the Standard Nontwist Map [9]. The fractal ones indicate that
the shearless curve breakup has sensitive dependence on the system
parameters. In addition, the smooth boundaries are related to the
reconnection of separatrices, as we will discuss in the next section.

The red region, associated with the existence of the central shearless
curve, dominates a large portion of the parameter space. However, even
after the central shearless curve breakup, the external shearless curves
can persist, see the blue region in the parameter space. Finally, in the
white remaining portion of parameter space, all the shearless curves
have broken and global transport takes place in the phase space.

Fig. 3 shows the breakup of the central shearless curve of BNM for
𝜖 = 0.1, which is similar to the parameter space of the SNM, presented
in Refs. [9,14,27]. In the regime of small values of 𝜖, the islands 𝐳+2
and 𝐳−4 are distant from the central region of the phase space and have a
small interference in the central shearless curve breakup. This indicates
that, in this regime, the SNM and the BNM have a central shearless
curve with similar breakup properties. The major difference resides in
the structure marked by the left box, associated with the reconnection
of the external main islands of the BNM, and the SNM does not have
it. More details are discussed in the next section.

For 𝜖 = 0.8 (Fig. 3b), the parameter space is modified. The struc-
ture associated with the external main islands does not exist and the
shearless curves tend to break up for small values of the perturbation
parameter 𝑏. In addition, the parameter space still has smooth and
fractal-like boundaries.

Fig. 4 shows a magnification of the rectangles highlighted in Fig. 3a.
Especially for Fig. 4b, we find the same general behavior of the param-
eter space as in Fig. 3a: smooth and fractal-like boundaries. In addition,
the distinction between red and blue regions is more evident.
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Fig. 3. Parameter space of shearless curve breakup of the Biquadratic Nontwist Map, for (a) 𝜖 = 0.1 and (b) 𝜖 = 0.8. For each (𝑎, 𝑏) value, the red color represents the existence of
the central shearless curve, blue the existence of the external shearless curves, while in the white region, all shearless curves are broken. The bifurcation curve of the 𝑚∕𝑛-periodic
orbit in symmetry curve 𝑠𝑗 is denoted by bc𝑗 𝑚∕𝑛. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Magnification of the highlighted rectangles on Fig. 3. Red regions represent
the existence of the central shearless curve, in blue the central curve is broken and
the external curve persists, while in dark-green regions all shearless curves are broken.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
4

Table 1
Dimension of the parameter space using the un-
certain fraction method. The central curve breakup
refers to the boundary of the red region and the
breakup of all curves denotes the red and white
boundary in parameter space.
Breakup Fig. 4a Fig. 4b

Central curve 1.812 ± 0.006 1.800 ± 0.008
All curves 1.802 ± 0.010 1.772 ± 0.009

As mentioned before, the parameter space boundary of the BNM has
regions with fractal-like structures, a signature of chaotic systems. One
method to quantify this fractality is based on the final state sensitivity
and is known as the uncertain fraction method [40]. Small errors in the
parameter value generate uncertainty in the system phase space, like
the existence, or not, of the shearless curve. The numerical procedure
of this method consists in calculating the fraction of uncertain points
in parameter space for a given error 𝛿 and analyzing how this fraction
scales with 𝛿.

More precisely, we randomly choose a large number (104) of points
in the parameter space and check the existence of the central (or all)
shearless curve(s). Then, we randomly choose another point (𝑎′, 𝑏′)
in a disk of radius 𝛿 centered at (𝑎, 𝑏) and verify the shearless curve
behavior. If the outcome is different from the unperturbed point, the
value (𝑎, 𝑏) is considered uncertain. The fraction of uncertain points
scales with 𝛿 as 𝑓 (𝛿) ∼ 𝛿𝛼 , where 𝛼 = 2−𝑑 and 𝑑 is the dimension of the
parameter space boundary [40]. More details about the application of
this method to determine fractal dimensions of shearless curve breakup
parameter spaces are presented in Ref. [14].

We applied the uncertain fraction method to determine the fractal
dimension of the parameter space boundary in Fig. 4, and the results
are given in Table 1. We considered two boundaries to determine the
dimension: (i) the boundary of the central shearless curve breakup
parameter space (red region) and the boundary of all shearless curves
breakup parameter space (red and blue regions together). The dimen-
sions obtained confirm that the parameter space boundary has fractal
dimensions close to the reported universal behavior 𝑑 = 1.8 [40], with
some deviation. The different results obtained for the fractal dimension
can be related to the mixed character of the shearless curve parameter
space, i.e., the boundaries have smooth and fractal portions depending
on the parameter space region.
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Fig. 5. Central shearless curve breakup due to the reconnection of separatrices between twin islands 0∕1. Phase spaces of biquadratic nontwist map for parameters 𝜖 = 0.1, (a)
𝑎 = 0.14 and 𝑏 = 0.45, (b) 𝑎 = 0.125 and 𝑏 = 0.514, and (c) 𝑎 = 0.11 and 𝑏 = 0.55.
4. Reconnection of periodic orbits

Previous works indicate a relation between smooth boundaries in
shearless curve breakup parameter space and the reconnection-collision
sequences of periodic orbits [8–10]. In the Standard Nontwist Map
(SNM), due to its symmetry, there are two standard scenarios of sep-
aratrix reconnection depending on the parity of the orbit period. In
the even scenario, the separatrix reconnection is simultaneous to the
collision of periodic orbits, and in the odd scenario, the collision
is subsequent to reconnection [6]. However, in both scenarios, the
separatrix collides with the shearless curve and takes its place.

In the BNM, the separatrix reconnection also implies the central
shearless curve breakup, as illustrated in Figs. 5 and 6. Fig. 5 shows
an odd scenario of period-one reconnection involving the central main
islands, and Fig. 6 an even scenario involving twin islands of period
two. The periodic points are marked by red crosses. Both figures cor-
respond to the parameter space points marked in Fig. 3a. In these two
scenarios, before the reconnection, the central shearless curve exists,
Figs. 5a and 6a. At the critical parameter of separatrix reconnection,
the separatrix chaotic layers collide with the central shearless curve and
break it, Figs. 5b and 6b. In the even scenario, the period two orbits
(red crosses) bifurcate in two distinct periodic orbits with the same
period, Fig. 6c. Finally, after the reconnection, the central shearless
curve returns, Figs. 5c and 6d.

To investigate the relation between separatrix reconnection and the
smooth boundaries on the Biquadratic Nontwist Map (BNM) parame-
ter space, we determine its bifurcation and reconnection curves. By
definition, the bifurcation curve is the locus of points in parameter
space for which two orbits of equal rotation number 𝜔 = 𝑞∕𝑝, on
the same symmetry line 𝑠𝑗 , are at the point of collision [6]. Such
a bifurcation curve is denoted as bc𝑗 𝑞∕𝑝. In addition, reconnection
curves have a similar definition but are related to critical parameters
for the reconnection of separatrices between twin islands [8]. Finally,
like in the even-period scenario, the periodic points collision occurs
simultaneously with the separatrix reconnection, its bifurcation curves
coincide with the reconnection curves.

To obtain the bifurcation curves for the BNM, we applied a method
based on the numerical search for the periodic orbits and the param-
eters for which these points collide [41]. The periodic orbits search
used a one-dimensional root-finding thanks to the map involutions
properties [6], given in Appendix.

Furthermore, the reconnection threshold can be found by a criterion
proposed in Ref. [36]. In this work, the author proves, for a class
of standard-like maps, that hyperbolic points belonging to periodic
orbits with the same period have the same action at the reconnection
threshold. Hence, given the action of the BNM, Eq. (5), the threshold
5

of the reconnection between the central main islands occurs when
𝑊 (𝐳+1 ) = 𝑊 (𝐳−3 ), that is, for

𝑏 = 4𝜋𝑎
3

(1 − 𝜖∕5) . (7)

For a given 𝜖, this functional relation 𝑏 = 𝛹 (𝑎), provides the recon-
nection curve rc 0/1. There is a similar reconnection curve associated
with separatrix reconnection relative to fixed points 𝐳+1 and 𝐳+2 , whose
bifurcation curve is given by

𝑏 = 2𝜋𝑎
(−1 + 5𝜖 − 5𝜖3∕2 + 𝜖5∕2)

15𝜖3∕2
. (8)

This reconnection is also related to orbits with rotation number 0∕1, so
it is denoted as rc* 0/1.

In Fig. 3, we plot the bifurcation and reconnection curves together
with the shearless curve breakup parameter space of the BNM. Indeed,
the smooth boundaries of the central shearless breakup parameter space
correspond, approximately, with the reconnection curves.

Typically, at the points below a specific bifurcation/reconnection
curve, the periodic orbits are separated and have not collided/
reconnected yet. The points marked with the letter ‘‘a’’ in parame-
ter space represent such a situation. The points ‘‘b’’ correspond to
the reconnection threshold. Finally, for the parameters above the
curves, marked with the letter ‘‘c’’ in parameter space, the colli-
sion/reconnection has occurred. The phase spaces of those points are
shown in Figs. 5 (odd scenario) and 6 (even scenario). As we can see,
the reconnection of separatrices in both scenarios leads to the breakup
of the central shearless curve. In addition, in the even scenario, the
reconnection is identified by the collision of the associated period orbits
(marked by red points).

The reconnection of separatrices shown in Fig. 5 involves the central
main islands. This reconnection, denoted as rc 0/1, is present in both
parameter spaces of Fig. 3. However, the BNM has a reconnection in-
volving the external and central main islands [33], whose reconnection
curve is denoted by rc* 0/1. This reconnection curve is present only in
Fig. 3a and is responsible for the structure marked by the left box in this
Figure. In summary, the value of the 𝜖 parameter affects the external
main island positions, which can influence the reconnection of main
resonances and, consequently, modify the associated parameter space
boundaries.

5. Transmissivity of the transport barrier

In the previous section, we study the shearless curve breakup pa-
rameter space of the Biquadratic Nontwist Map (BNM). That dynamical
characterization provides the parameters of the system in which one,
or more, shearless curves exist or are broken. However, even after all
shearless curves breakup, an effective transport barrier in phase space
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Fig. 6. Central shearless curve breakup due to the 1∕2 periodic orbit collision. Phase spaces of the biquadratic nontwist map are shown for 𝜖 = 0.1, (a) 𝑎 = 0.53 and 𝑏 = 0.25, (b)
𝑎 = 0.515 and 𝑏 = 0.3259, (c) 𝑎 = 0.51 and 𝑏 = 0.46, and (d) 𝑎 = 0.49 and 𝑏 = 0.45.
may persist depending on the system parameters [15]. To take into
account this phenomenon, dynamic quantities related to transport can
be used.

The transmissivity of a transport barrier is defined as the ratio of
the number of orbits that cross the barrier, over the total number
of orbits. It was used before to measure the strength of the partial
transport barrier of the Standard Nontwist Map (SNM) [15–17]. To
numerically determine this quantity, we set a large number of initial
conditions (we use 105) on the line {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 < 1, 𝑦 = −5} (below
the inferior shearless curve) and iterate each of them 5×103 times. The
transmissivity was determined as the fraction of orbits that reach the
line {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 < 1, 𝑦 = +5} (above the superior shearless curve).

The transmissivity parameter space of the BNM, using 𝜖 = 0.5, is
shown in Fig. 7. The colorbar represents the fraction of orbits that pass
the barrier. In the black regions, this fraction of orbits is zero, that
is, the system has a total barrier. The colored regions vary from red
(strong partial barrier) to purple (weak partial barrier). The general
behavior is similar to the result for the SNM: regions close to the
shearless curve breakup have small transmissivity due to the partial
transport barrier formed after the shearless curve breakup. Further-
more, in some regions, the transmissivity may increase significantly
with small variations in system parameters. Other works indicate that
this variation in the transmissivity is related to the resonance overlap
and manifold crossing between twin islands. As mentioned in Ref. [15],
small variations in the parameters of the SNM can change between
intracrossing and intercrossing of the stable and unstable manifolds
determining the escape channels between the islands.

6. Conclusions

This work presented a study of the shearless curve breakup in the
Biquadratic Nontwist Map (BNM). This map, derived as an approxima-
tion of a plasma-transport model, presents three shearless curves, one
central curve, and two external curves, which can break up indepen-
dently in different configurations. The main contribution of this paper
is to present a numerical study of the destruction of multiple shearless
6

Fig. 7. Transmissivity, the fraction of escaping orbits, parameter space of the Bi-
quadratic Nontwist Map for 𝜖 = 0.5. In the black regions, there is a total barrier
(shearless curves exist) and the colorbar represents the barrier transmissivity. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

curves in a nontwist area-preserving map, the so-called Biquadratic
Nontwist Map. The shearless curve has physical importance since it
is a transport barrier, and its breakup represents a reduction in the
confinement of chaotic orbits. Specifically, shearless transport barriers
clarify the properties of transport and confinement in plasmas and fluid
systems.

We found three different shearless breakup scenarios that influence
the transport in phase space. They are: (a) only the external curves
broken, (b) only the central curve broken, and (c) all the shearless
curves broken. In the first two scenarios, (a) and (b), there is at least
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one shearless curve in phase space preventing global transport. In the
last scenario, (c), global transport takes place.

We performed a systematic study of these breakup scenarios by
determining the shearless curve breakup parameter space that asso-
ciates with each parameter value (𝑎, 𝑏, 𝜖) the corresponding shearless
breakup scenario. Our results indicate a relation between periodic
orbits reconnection-collision sequences and the breakup parameters of
the central shearless curve, just as in the Standard Nontwist Map.

Besides the smooth boundaries, the parameter space also has regions
with fractal boundaries, indicating a sensitive dependence of transport
on the system parameters.

Moreover, even after all shearless curves are broken, a partial
transport barrier persists in phase space. To investigate the strength
of these partial barriers, we determined the transmissivity parameter
space of the BNM. As transmissivity is the fraction of orbits that can
overcome the barrier, the obtained results indicate that the strength of
the partial barrier is sensitively dependent on the system parameters
value.

However, there are some open questions about transport in the
BNM. The behavior of the fractal dimension needs a more detailed
study to analyze the difference between the dimension in the parameter
spaces. Moreover, a deep study of the transport on BNM is needed, like
analyzing the escape channels and manifold crossing.
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Appendix. Symmetry properties of the BNM

In this appendix, we review the symmetry properties of the Bi-
quadratic Nontwist Map (BNM), as well as define and determine its
indicator points. The BNM has spatial symmetry, i.e., let 𝑀 be the BNM
and 𝑆 the transformation

𝑆(𝑥, 𝑦) = (𝑥 + 1∕2, −𝑦) , (A.1)

the map 𝑀 is invariant under 𝑆, so, 𝑀 = 𝑆−1𝑀𝑆. Another property of
the BNM is the time-reversal symmetry [6], that is, we can decompose
the map as a product of two involutions, in the way
7

𝑀 = 𝑅1𝑅0 (A.2)
where

𝑅0(𝑥, 𝑦) = (−𝑥, 𝑦 − 𝑏 sin (2𝜋𝑥)) , (A.3a)

1(𝑥, 𝑦) =
(

−𝑥 + 𝑎(1 − 𝑦2)(1 − 𝜖𝑦2), 𝑦
)

. (A.3b)

Each involution (A.3) has a set of invariant points, defined by

𝐼𝑗 =
{

𝐳 | 𝑅𝑗𝐳 = 𝐳
}

, 𝑗 = 0, 1, (A.4)

which are one-dimensional sets called symmetry sets of the map. The
set 𝐼0 is formed by the union 𝑠1 ∪ 𝑠2, and 𝐼1 = 𝑠3 ∪ 𝑠4, where 𝑠𝑖 is the
th symmetry line given by

1 = { (𝑥, 𝑦) | 𝑥 = 0 } , (A.5a)

2 = { (𝑥, 𝑦) | 𝑥 = 1∕2 } , (A.5b)

3 =
{

(𝑥, 𝑦) | 𝑥 = 𝑎(1 − 𝑦2)(1 − 𝜖𝑦2)∕2
}

, (A.5c)

4 =
{

(𝑥, 𝑦) | 𝑥 = 𝑎(1 − 𝑦2)(1 − 𝜖𝑦2)∕2 + 0.5
}

. (A.5d)

As the standard nontwist map, the BNM central shearless curve is
nvariant under the symmetry transformation 𝑆, and by the involutions
𝑗 . Shearless invariant curves that have those properties have indicator
oints, defined as fixed points of the transformation 𝑆𝑅𝑗 , that is,

𝑅𝑗 (𝑥, 𝑦) = (𝑥, 𝑦), 𝑗 = 0, 1, (A.6)

hich belong to the shearless curve, if it exists [25]. Performing the
alculation for the BNM, we obtain the indicator points

±
0 =

(

±1
4
,± 𝑏

2

)

and 𝐏±
1 =

(𝑎
2
± 1

4
, 0
)

, (A.7)

which are exactly the same as the SNM indicator points.
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