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a b s t r a c t

We study the firing rate properties of a cellular automaton model for a neuronal
network with chemical synapses. We propose a simple mechanism in which the nonlocal
connections are included, through electrical and chemical synapses. In the latter case, we
introduce a time delay which produces self-sustained activity. Nonlocal connections, or
shortcuts, are randomly introduced according to a specified connection probability. There
is a range of connection probabilities for which neuron firing occurs, as well as a critical
probability for which the firing ceases in the absence of time delay. The critical probability
for nonlocal shortcuts depends on the network size according to a power-law. We also
compute the firing rate amplification factor by varying both the connection probability and
the time delay for different network sizes.

© 2011 Elsevier B.V.

1. Introduction

The human brain is a complex network that contains approximately 1011 neurons, each of them being connected
with ∼104 other neurons, on average. For example, one neuron in the vertebrate cortex may be connected to more than
ten thousand post-synaptic neurons [1]. These properties make the brain a paradigmatic example of complex networks.
Moreover, each neuron is a unit consisting of about a hundred specialized modules with different functions, each of them
being a complex network itself, where each module receives excitatory inputs from a few thousands of other neurons [2].

In theoretical and computational studies where the Euclidean distance between neurons does not play a significant role,
the corresponding networks may be treated from a graph–theoretical point of view [3]. However, if we regard the neurons
as comprising a three-dimensional network (the brain, where they are connected by axons and dendrites), it is convenient
to use a network embedded in an Euclidean space [4]. Due to this fact, it is often necessary to use models that exhibit
spatiotemporal behavior.

Accordingly, neural networkmodels are used to study biological neurons that are spatially distributed and are connected
by both excitatory and inhibitory synaptic interactions, of both electrical and chemical nature [5]. For example, there
are theoretical studies of the dynamics of networks with sparsely connected excitatory and inhibitory integrate-and-fire
neurons [6]. It is possible to insert inhibitory connections in mathematical models through refractoriness or considering
the dynamical units as being non-responsive during resting states until at least as many excitatory as inhibitory pulses are
received [7].
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The connection architecture of the mammalian nervous systems presents a large number of nonlocal shortcuts that
connect spatially distant neurons, in such a way that the average distance between neurons is smaller than it would
be in a network in which only nearest-neighbor interactions are considered. Moreover, we have also a high clustering,
which characterizes this network as having the so-called small-world property [8,9]. Small-world networks have an average
distance between sites comparable to the value it would take on a purely random network, while retaining an appreciable
degree of clustering, as in regular networks [10]. Small-world networks have been considered asmodels of cortical networks
following a number of neurophysiological evidences [11,12].

A realization of this concept was proposed by Watts and Strogatz, who introduced a small amount of randomness in an
otherwise regular one-dimensional network with periodic boundary conditions [10]. This was done by re-wiring a small
fraction of the local connections to new nodes randomly chosen along the network, so creating the shortcuts necessary
to lessen the average distance between nodes. This procedure was proved to maintain a high amount of clustering, but
it can also generate regions disconnected from the rest of the network, what would introduce divergent contributions to
the average distance between nodes. It has been found that the small-world topology of the network connections may
spontaneously induce periodic neural activity [13].

An alternative procedure was proposed by Newman and Watts [14], by the insertion of randomly chosen shortcuts
in a regular network, instead of re-wiring local interactions into nonlocal ones. While the clustering properties of the
Newman–Watts network are similar to the Watts–Strogatz ones, the above-mentioned problem of disconnectedness and
infinite distances between nodes is circumvented. Since then, the Newman–Watts networks have been extensively used in
a variety of theoretical and numerical studies on small-world networks [15].

The local dynamics of each network unit can be described by a variety of models, ranging from differential equations like
the Hodgkin–Huxley [16] and Hindmarsh–Rose [17], to discrete-time maps [18–20]. In particular, two-dimensional maps
with a few parameters are able to reproduce the essential dynamics presented in spiking neurons and other properties of
excitable systems [20–23]. At the end of this spectrum we have cellular automata models for neural networks.

Cellular automata are simpler models than coupled map lattices and oscillator chains, since cellular automata are
characterized by discrete space, time, and state variables [24]. The state variable of a cellular automaton takes on a set
of discrete values at each spatial location and time instant. The state variables are updated simultaneously according to
the values of the variables in their neighborhood, by using deterministic or stochastic rules. Cellular automata have been
used to model a very wide variety of biological systems [25,26], such as the spread of epidemics [27], pattern formation
and developmental biology [28], forest-fire models [29], neural dynamics [30,31], and cancerous growth [32]. In this work
we choose to work with cellular automata due to their simplicity since we are to focus on small-world properties of the
connection architecture rather in the local dynamics itself.

Under suitable conditions, the neurons in a cortical brain network fire collectively in amore or less synchronousway [33].
In complex networks characterized by small-world, scale-free or other architectures, it is important to determine under
which conditions the neurons fire in a collective way. For example, since there are many randomly chosen shortcuts among
neurons, one may wonder whether or not a given number of firing neurons are able to spread this effect along the network.
We expect that the answer to this question relies on the statistical properties of the connection architecture. Moreover,
since chemical synapses among neurons usually involve some threshold, there is an interplay between two effects: the
connectivity of the network and the refractoriness characterizing the local dynamics of each neuron.

In this work we investigate a cellular automaton model for neuronal networks which include the small-world property
in the connection architecture, by including randomly nonlocal connections according to a specified probability. The local
dynamics in the cellular automaton consists of rules specifying how the state variables for each neuron are updated. We
include the refractoriness property as the time delay that it takes for an individual neuron to be ready for firing again. These
factors can be either antagonistic or cooperative due to the complex nature of the network, and our goal is to determine the
dependence of the collective firing rate with both the connection and refractoriness properties.

The rest of this paper is organized as follows: in Section 2 we introduce the cellular automaton model for the individual
neuron dynamics as well as the small-world model for the network architecture. Section 3 introduces the quantifiers we
used to measure neuron activity and their significance. Section 4 shows the results that we obtained with respect to the
dependence of the neuron activity with the time delay (refractoriness parameter). Section 5 considers the same kind of
analysis, but with respect to the probability of nonlocal connections. The last section presents our Conclusions.

2. Neuronal network model

2.1. Local dynamics

The brain encodes, decodes and processes sensory and/or cognitive information through a neural code, which refers to
the properties of a single sequence of action potentials (spike trains) or a spike train ensemble [34]. The basic mechanism
of the neuron spiking is well known: a neuron cell in its resting state spikes only when suitably stimulated. After a spike,
there is a refractory period during which further spikes cannot occur, until the cell returns to its resting state.

Hence a very simple description of the neuron activity assumes that it can be in two states: idle, when it is in a resting
state, or spiking.Moreover, after it spikes, a neuron does not return immediately to the resting state due to the refractoriness
period, which is taken to be the only parameter characterizing the local neuron dynamics.
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Given these simplifying assumptions, we can use a cellular automaton to model the local neuron dynamics. Let xi(t),
i = 1, 2, . . . ,N be the state variable characterizing the ith neuron in a network at discrete time t = 0, 1, 2, . . . . The state
variable xi is equal to zero if the neuron is in a resting (or idle) state, and different from zero if it spikes, assuming µ − 1
different possible values {1, 2, . . . , µ−1}, whereµ is an integer. Only the state with xi = 1 is considered as active, or firing,
whereas the states with 2 ≤ xi ≤ µ are refractory, i.e. they cannot fire even if the external conditions are favorable for it.

Moreover, provided the neuron is in a resting state, it spikes as long as it receives a suitable external stimulus through
its synapses, the effect of which will be modeled by the variable hi. If hi = 0(1) the ith neuron does not receive (receives)
any stimulus. After a neuron spikes, it takes a time delay τ − 2 to exit its refractory period and return to the former resting
state. A cellular automaton modeling these features is [25]
1. If xi(t) = 0, then xi(t + 1) = hi(t), where hi(t) can be equal to 0 or 1.
2. If xi(t) ≠ 0, then xi(t + 1) = [xi(t) + 1], mod µ, where xi(t) ∈ {0, 1, . . . , µ − 1} is the state of the ith cell at time t .

In other words, if there are stimuli (hi = 1) when the cell is in its resting state (xi = 0) then it spikes (xi = 1), remaining
insensitive during µ − 2 further time steps.

The stimuli is represented by an external input signal Ii(t) arriving on cell i at time t , which is modeled by a stochastic
process of supra-threshold events of stereotyped unit amplitude [25]

Ii(t) =

−
µ

δ(t, t(i)µ ), (1)

where δ(a, b) is the Kronecker delta and the time intervals t(i)µ+1 − t(i)µ are distributed exponentially according to a Poisson
distribution with average (input rate) r .

An uncoupled cell presents hi(t) = δ(Ii(t), 1), while a cellular automaton with N cells is governed by the equations

hi(t) = 1 − [1 − δ(Ii(t), 1)]
∏
j=±1


1 − δ(xi+j(t), 1)


. (2)

Summing up, the stimuli hi(t) will be nonzero whenever two of the following conditions as fulfilled: (i) one or more
neighbors of the i-th cell are spiking; (ii) the external input on this neuron is nonzero. The cell responses vanish if the
external inputs cease [31]. This representation is one variation of the mathematical model proposed by Greensberg and
Hastings, that it was initially considered to analyze pattern formation in excitable media [35].

2.2. Connection architecture

We analyze a cellular automaton in that we insert shortcuts in an otherwise regular coupling so as to yield a small-
world behavior, according to the Newman–Watts prescription, as commented in the Introduction. In our version of the
Newman–Watts network, appropriate to discuss neuronal networks, the local connections represent the electrical (gap-
junction) synapses and the shortcuts with time delay stand for the chemical synapses.

The model described by Eq. (2) and the corresponding updating rules does not consider nonlocal connections in its
original form. Henceforth we will use (2) to model electrical (gap-junction) synapses, acting on the cells with random
stimuli satisfying a stochastic process with Poisson distribution. However, for the chemical synapses the external inputs on
the neurons (nonlocal connections) do not consider a random Poisson process, so that they are described by the following
equation

hi(t) = 1 − [1 − δ(xi−1(t), 1)] [1 − δ(xi+1(t), 1)]
∏
j∈J


1 − aijδ(xj(t − τ), 1)


, (3)

where τ is the time delay and J is a set of nonlocal neighbors randomly chosen along the network according to a uniform
probability distribution.

The last product in the Eq. (3) contains a non-symmetric connectivity matrix aij, whose entries are 0 and 1, randomly
chosen according to a probability p (with uniform distribution). In Fig. 1 we represent such a network for only N =

9 neurons: the local connections among nearest-neighbors represent electrical (gap-junction) synapses, which are fast
and bidirectional. The nonlocal connections, or shortcuts, stand for chemical synapses and are unidirectional. Hence the
connectivity matrix representing chemical synapses is not symmetric.

For low values of the shortcut probability p the connectivity matrix is sparse. As an example, the nonlocal connectivity
matrix related to the network depicted in Fig. 1 is

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (4)
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Fig. 1. Schematic representation of a small-world network of the Newman–Watts time with N = 9 nodes and free boundary conditions.
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Fig. 2. (Color online) Time evolution of a a cellular automaton with N = 5 neurons with local connections only and µ = 5 refractory states. Black squares
represent xi = 1, red squares 2 ≤ xi ≤ 4, and white squares xi = 0.

We used free boundary conditions in numerical simulations: the end nodes x1 and xN have just one local link, and no
nonlocal links at all (cf. Fig. 1), or x0(t) = xN+1(t) = 0 for all times. Starting from an initial condition (xi(0)) the system
evolves in time through a sequence of patterns, which may or may not settle down into a homogeneous absorbing state
x1(t) = · · · = xN(t) = 0 characterized by the absence of neuron firing.

A typical time evolution of the cellular automaton described here is (without nonlocal connections) depicted in Fig. 2 for
a network with N = 5 neurons, µ = 5 active (firing) states and free boundary conditions. Black squares are used to paint
those cells for which xi = 1, red is used for those which have 2 ≤ xi ≤ 4, and white squares stand for idle cells where
xi = 0. The red cells are in their refractory period, during which they cannot fire, even in presence of favorable conditions.
At each step t the automaton rules are applied, such that for t > 5 there are no values with xi > 0. The convergence to the
absorbing state is typically very fast for such small cellular automata.

3. Neuron activity

Two mechanisms have been proposed to explain the measure of the stimulus intensities that can be coded by neuronal
activity. The first one is adaptation, in that neurons control their range of operation according to the statistics of the
environmental stimulus [36,37]. The second one is the intrinsic variation of firing thresholds among a population of sensory
neurons, which would allow them to cover a wide range of stimuli [38].

Both mechanisms can mainly contribute to an enhancement of the dynamic range of a neuronal network. Neither
adaptation nor threshold variation requires interactions among neurons to work, that is, the dynamical process does not
depend on the activity of other sensory neurons. Thus, if the above-mentioned mechanism were the only ones responsible
for an enhancement of sensitivity and dynamic range of neural networks, there should be no significant change in those
properties if lateral connections among neurons were blocked [39].

Deans and coworkers obtained experimental data for the response function of retinal ganglion cells of mice with respect
to the light intensity [40]. Retinal ganglion cells are neurons located near the inner surface of eye’s retina which transmit
visual information to several regions in the thalamus, hypothalamus, and mesencephalon, or midbrain [41]. There has been
found a class of retinal ganglion cells that responded with large dynamic range. When the same experiment was repeated
with cells without electrical synapses however, it has been found that both sensitivity and dynamic range were reduced.
Hence the observed effects might be due to the electrical synapses.

These experimental resultsmotivate the study of chemical synapses through nonlocal connections in neuronal networks.
The influence of chemical synapses thus may be regarded as a third mechanism to explain changes in sensitivity and
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Fig. 3. (Color online) Spatiotemporal evolution of the neuron activity xi for a cellular automatonmodel with (a) p = 0, τ = 0 and (b) p = 7×10−4 , τ = 0.
(c) and (d): density of excited neurons λt vs. time for (a) and (b), respectively. Spatiotemporal evolution of the neuron activity for (e) p = 7× 10−4 , τ = 10
and (f) p = 7 × 10−4 , τ = 100. (g) and (h) density of excited neurons vs. time for (e) and (f), respectively. Black pixels correspond to xi = 1 (firing state),
red pixels to 2 ≤ xi ≤ µ − 1 (refractory state), and white pixels to xi = 0 (idle state). The remaining parameters are N = 100 and µ = 5.

dynamical range due to neuronal activity. Recent work has indeed revealed that excitable neurons coupled via chemical
or electrical synapses present enhanced sensitivity and dynamic range, as compared to those of isolated neurons [42–44].

Since the firing neurons, in our cellular automata model, are those cells with nonzero values of the state variable xi(t), it
is useful to compute the density of excited neurons

λt ≡
1
N

N−
i

δ(xi(t), 1), (5)

in such a way that the neuron activity can be quantified by the firing rate, which is the time averaged density of firing
neurons, or

F ≡
1
T

T−
t

λt , (6)

where T is a given time window for measurements.

4. Effect of the time delay

Initiallywewill discuss only locally coupled neuronswithout nonlocal connections.Weplot in Fig. 3(a) the time evolution
of the response (i.e., the state variable x) in a networkwithN = 100 cells, with the same palette used to represent the values
of x as in Fig. 2. In this case there is no time delay τ = 0 and we consider, as an initial condition, a spatial state in which
x50 = 1, while all the other neurons are idle (xi = 0, with i ≠ 50). This corresponds to a single firing neuron located at the
‘‘midpoint’’ of the lattice.

From this initially active neuron there evolves an activity wave which dies off at the boundaries, due to the free
boundary conditions we used, after which the network settles down in a homogeneous absorbing state of idle neurons.
The corresponding density of excited neurons (Fig. 3(c)) is kept constant while this activity wave propagates through the
network, and vanishes as we achieve this absorbing state.

Now let us consider the presence of nonlocal connections randomly chosen with a small probability p = 7 × 10−4 and
a uniform distribution, but still without time delay, as before. The corresponding time evolution of the neuron activity is
plotted in Fig. 3(b), for the same initial conditions as in the previous case. The activity wave generated by the firing neuron
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no longer propagates for a long time along the network: it breaks down and suffers a series of interruptions before achieving
the network boundaries, where it dies off.

On the other hand, newactivitywaves appearwith a similar behavior, someof themwith a short timespan. These patterns
do not evolve to an absorbing state, as they did for purely local coupling. However, two activity waves can collide and
cease locally neuron firing. Moreover, for some idle neurons there spontaneously appear a pair of activity waves. In fact, the
corresponding density of excited neurons (Fig. 3(d)) presents a regular behavior exhibiting maxima and minima, as a result
of these processes of creation and annihilation of activity waves.

Nonlocal connections (representing chemical synapses in the neuronal network model) are important to ensure that
the network activity does not simply die out for long times. Furthermore the density of excited neurons in this case is
periodic enough to allow for the coding of information. Such a self-sustained periodic behavior has been observed in small-
world networks modeling the spread of infections [45,46]. Collective oscillations of this kind have been observed not only
in small-world networks of excitable cellular automata, but also in random graphs that can be obtained through a network
with small-world properties [47–49].

Now we consider the presence of time delay in the network with both local and nonlocal connections. In Fig. 3(e) we
follow the time evolution of the neuron activity for a network with the same shortcut probability as in Fig. 3(b) and (d), but
now with a time delay of τ = 20. While the activity waves are still there, with no equilibrium absorbing state, the time
evolution of the neuron activity seems to be less regular than in absence of time delay. This observation is confirmed by the
time evolution of the corresponding density of excited neurons, which presents aperiodic behavior (Fig. 3(g)).

Time delay is an ingredient which often leads nonlinear systems to display complex dynamical behavior. In particular,
the existence of negative feedback loops in physiological systems generates complex periodic and chaotic rhythms [50]. On
increasing further the time delay the previously aperiodic neuron activity appears regular again but intermittent (Fig. 3(f)),
a fact also apparent from the corresponding behavior for the density of excited neurons, which exhibits a bursting regime
characterized by repeated firing (Fig. 3(h)).

This introduces two time scales in our system: a fast timescale characterized by the spiking, or firing activity itself; and a
slow timescale related to the bursting. It is remarkable that this two-scale behavior,which is typically observed in differential
equations and map-based neural models [51] can also be mimicked by simpler models, like cellular automata.

5. Effect of the shortcut probability

The neuron responses we describe by our model do not necessarily vanish if the external inputs cease, due to the fact
that nonlocal couplings are capable to produce self-sustained activity. This result has been observed previously in a model
developed by Copelli and coworkers [31]. In addition, such self-sustained activity was studied in great detail in a model of
excitable integrate-and-fire neurons, both numerically and analytically [52,53].

When nearest-neighbor interactions are absent there is a minimum density of shortcuts such that persistent neuron
activity is possible. The dynamics of cellular automata, like that considered here, is similar to that of integrate-and-fire
neurons, provided these systems are coupled in a small-world network. We have observed a different behavior when the
probability increases for high values of the delay, inasmuch as the average firing rate presents a constant value.

The dependence of the neuron activity in the cellular automatonmodel with the probability of nonlocal shortcuts can be
quantified by using twomeasures: (i) the average firing rate per neuron ⟨F⟩ in the coupled system; and (ii) the average firing
rate per neuron (denoted by ⟨f ⟩) without the local coupling, i.e. considering only the nonlocal connections. The difference
between ⟨F⟩ and ⟨f ⟩, wherever it exists, is thus an evaluation of the effect of local connections on the neuron activity in the
entire network. If ⟨f ⟩ is greater (smaller) than ⟨F⟩, then the dominant influence on the firing rates is due to the nonlocal
(local) connections.

The influence of the shortcut probability p on the average firing rates with and without nonlocal connections is analyzed
in Fig. 4. In Fig. 4(a), obtained without time delay (τ = 0), both average firing rates take on significant values only for a
limited range of the nonlocal shortcut probability p. For small values of p the average firing rate ⟨F⟩ (black circles in Fig. 4)
is higher than ⟨f ⟩ (red squares in Fig. 4) since the dominant effect is from the local connections therein.

Higher values of p, on the other hand, stand for a stronger contribution of nonlocal shortcuts, and thus ⟨f ⟩ is typically
higher than ⟨F⟩ in such cases. Moreover, for large p there are global coupling effects that bring the system to an absorbing
idle state and, accordingly, the firing rates there asymptote to zero. We thus define a critical probability pc as the smaller
value of shortcut probability such that the average firing rate is null, provided ⟨F⟩ decreases. An inspection of Fig. 4(a) shows
that, in this case, pc ∼ 0.1, since before this value ⟨F⟩ is decreasing and, after this value ⟨F⟩ vanishes. For p > pc and τ = 0,
the average firing rate is null due to the onset of global behavior in the neuronal network.

When we consider a nonzero time delay (Fig. 4(b)) we observe that the network does not present a critical probability
due to the self-sustained activity alreadymentioned in Fig. 3. Thus even large shortcut probabilities are not able to bring the
network to an absorbing idle state, what is highly desirable from the neuroarchitectural point of view, since it represents a
robust self-sustained firing behavior for a wide range of p-values. This observation is still valid when larger time delays are
considered (Fig. 4(c)).

On the other hand, in this case the average firing rate of the local connections only (⟨f ⟩, representedby red circles) is nearly
zero for all values of p, indicating that the larger time delay has brought the system to a state where the nonlocal shortcuts
are relatively non-relevant, even though the corresponding probability pmay be large. Furthermore, since the average firing
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Fig. 4. (Color online) Average firing rate per neuron ⟨F⟩ (black circles) and average firing rate per neuron ⟨f ⟩ for nonlocal connections only (red squares) as
a function of the shortcut probability p, for 200 different realizations of the connectivity matrix and 1000 time instants. We considered a cellular automata
with N = 100, µ = 5, and: (a) τ = 0, (b) τ = 10 and (c) τ = 100.
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Fig. 5. (a) Critical probability of shortcuts as a function of network size; (b) amplification factor as a function of the shortcut probability. The full lines are
least-squares fits. The time delay is zero and the remaining network parameters are the same as in the previous figures.

rate (⟨F⟩) presents a constant value (∼0.15) there is no dependence of the critical probability pc on the shortcut density for
high values of the time delay.

We found numerically that, for a network with both local and nonlocal connections and no time delay, the critical
probability pc decreases when the network size N increases (Fig. 5(a)), showing a power-law decrease pc ∼ Nϖ , with
ϖ = −0.69± 0.03. This result is qualitatively similar to that observed in networks without nearest-neighbor interactions,
for which the onset of neuron activity arises for p ∼ 1/N , due to the reinjection of activity through shortcuts into previously
active neurons [52].

We conclude that a network with both local and nonlocal connections presents smaller values for the critical shortcut
probability than a network of the same size but with nonlocal connections only. Moreover, on considering both local and
nonlocal connections, neuron firing occurs for a shorter range of the shortcut probability p as the network size increases.

The different responses of the receptor neurons associated with the local and nonlocal connections can be quantified
by the so-called amplification factor A ≡ ⟨F⟩/⟨f ⟩ which quantifies the relative contribution of the nonlocal connections
in terms of the average firing rates. If A is greater (smaller) than 1, the firing rates are dominated by the nonlocal (local)
connections.

We obtained the amplification factor considering several values of the shortcut probability within a determined range
for a network with local and nonlocal connections, and where the average firing rate does not vanish (Fig. 5(b)). For a fixed
network size of N = 100 we observed that the amplification factor as a function of the probability obeys a power-law
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Fig. 6. Amplification factor as a function of the time delay for a network with shortcut probability p = 0.1 and different network sizes: N = 100 (circles),
N = 500 (squares) and N = 1000 (triangles). The solid line is a least-squares fit.

Fig. 7. Parameter plane (shortcut probability vs. time delay): the white region corresponds to self-sustained activity and the gray region to the vanishing
of the firing rate (no activity).

A ∼ pς , where ς = −1.90± 0.12. This reflects the increasing importance (in terms of the firing rates) of nonlocal shortcuts
as p increases, a result which is to be expected on general grounds.

The dependence of the amplification factor on the time delay is illustrated by Fig. 6 for three different values of the
network size. The amplification factor increases with the time delay, the numerical results being fitted by a linear function
(A ∼ τ ), for network sizes ranging from N = 10 to 200. This means that the influence of the nonlocal shortcuts on the
neuron firing is enhanced by the time delay, what explains why the red circles in Fig. 4(c) are more distant from the black
circles in Fig. 4(b).

A further numerical experiment consists on investigating the ranges of the shortcut probability and time delays such
that the network exhibits self-sustained firing activity (the opposite situation being the absorbing idle state in which the
network does not exhibit activity at all). In order to investigate this dependencewe considered, in Fig. 7, the parameter plane
p× τ , in which the white region stands for self-sustained neuron activity, whereas the gray region represents the vanishing
of the firing rate.

We drew in Fig. 7 a boundary line dividing such activity regions, using the following conditions: ⟨F⟩ > 0.9 or ⟨F⟩ < 0.01
for 104 time steps of the cellular automata. For small values of the shortcut probability (p . 7×10−4), self-sustained neuron
activity ceases only if the time delay is large enough, up to τ ∼ 100. For larger shortcut probabilities, however, there seems
not to exist a dependence between the probability to occur self-sustained neuron activity and the time delay, showing a
kind of saturation effect: if the time delay is too large the system effectively loses memory of the previous behavior and the
time delay effect turns not to be relevant.

6. Conclusions

In conclusion, we have presented a cellular automaton thatmodels a neuronal networkwith both electrical and chemical
synapses. The electrical (gap junction) synapses aremodeled by local (nearest-neighbor) connections, whereas the chemical
synapses are inserted in the model through shortcuts chosen in a probabilistic way so as to fulfill the properties of small-
world networks: large clustering and small average distance between connected sites. The dynamics of a neuron is reduced
to a description of its firing state, where we included a time delay which introduces a feedbackmechanism. The latter is able
to furnish a complex dynamical behavior for the model.
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Accordingly, we observed that the connectivity properties of the network change the neuron firing rates, according to the
probability of the nonlocal connections (shortcuts) that are probabilistically added to regular connections of the network.
There is a range of values of the shortcut probability forwhich the firing rate does not vanishwithout a time delay. Increasing
the shortcut probability leads to a critical value, after which neuron firing no longer occurs.

In addition, we showed that this critical probability depends on the network size. There is not a critical probability when
the time delay is nonzero due to self-sustained activity displayed by the cellular automatonmodel. The networkmay present
irregular or intermittent behavior for the density of excited neurons, depending on the coupling and dynamical properties.

An amplification factor was defined so as to measure the relative effect of the nonlocal connections on the network
activity. This amplification factor was found to decrease when the shortcut probability increases. Moreover, we observed
that the amplification factor increases with the time delay and that it does not depend on the network size, at least for the
values used in our numerical simulations.
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