Island myriads in periodic potentials

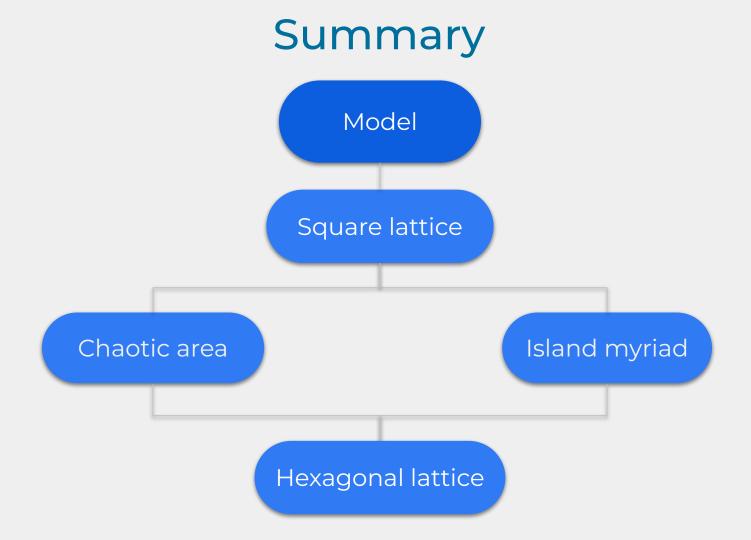
Matheus Lazarotto

Iberê Caldas

Yves Elskens

PGF5005 - Mecânica Clássica

Segundo semestre – 2025

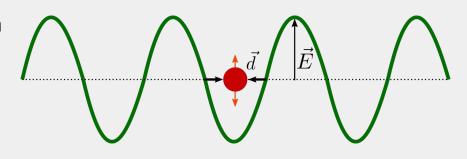


Summary Model

Optical lattices

• Dipole induction in neutral atoms via a laser electrical field

$$\vec{d}(t) = \rho(\omega)\vec{E}(\vec{r}, t)$$



Average interaction potential¹

$$V_{\text{dip}} = -\langle \vec{d}(t) \cdot \vec{E}(\vec{r}, t) \rangle$$
$$V_{\text{dip}} = -\frac{1}{2} \rho(\omega) |\vec{E}(\vec{r})|^2$$

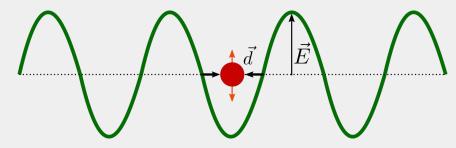
Restoring force trapping particles in wave minima

$$\vec{F}_{\rm dip} = \frac{1}{2}\rho(\omega)\vec{\nabla}|\vec{E}(\vec{r})|^2$$

Optical lattices

 Dipole induction in neutral atoms via a laser electrical field

$$\vec{d}(t) = \rho(\omega)\vec{E}(\vec{r}, t)$$

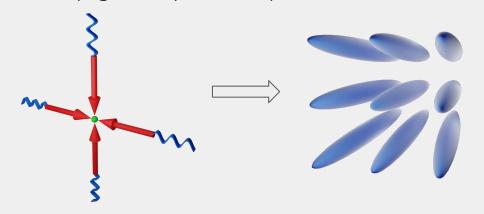


Average interaction potential¹

$$V_{\mathrm{dip}} = -\langle \vec{d}(t) \cdot \vec{E}(\vec{r}, t) \rangle$$

$$V_{\rm dip} = -\frac{1}{2}\rho(\omega)|\vec{E}(\vec{r})|^2$$

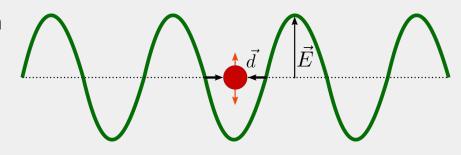
 Superposition of orthogonal beams in 2D (cigar-shaped cells¹)



Optical lattices

Dipole induction in neutral atoms via a laser electrical field

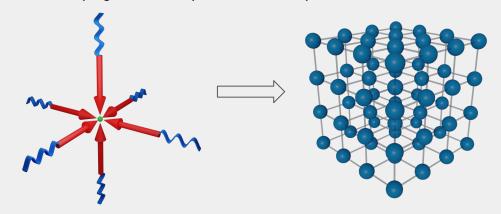
$$\vec{d}(t) = \rho(\omega)\vec{E}(\vec{r},t)$$



Average interaction potential¹

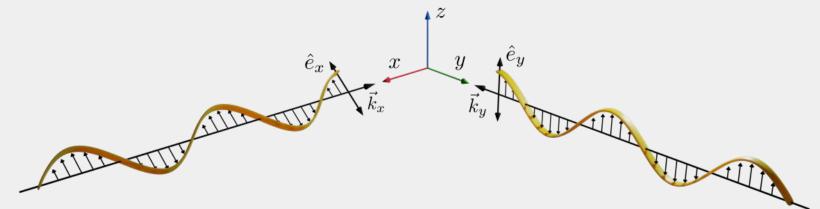
$$V_{\text{dip}} = -\langle \vec{d}(t) \cdot \vec{E}(\vec{r}, t) \rangle$$
$$V_{\text{dip}} = -\frac{1}{2} \rho(\omega) |\vec{E}(\vec{r})|^2$$

 Superposition of orthogonal beams in 3D (crystal shaped lattice¹)



Hamiltonian - square lattice

• Superposition of orthogonal waves (x-y plane)



Superposed electrical fields

$$\vec{E}(\vec{r},t) = E_{0x}\cos(k_x x + \phi_x)e^{-i\omega_x t}\,\hat{e}_x + E_{0y}\cos(k_y y + \phi_y)e^{-i\omega_y t}\,\hat{e}_y$$

Conservative potential (normalized units)

$$V(\vec{r}) = U\left(\cos^2(x) + \cos^2(y) + 2\alpha\cos(x)\cos(y)\right)$$

with laser coupling as $\alpha = (\hat{e}_x \cdot \hat{e}_y) \cos(\phi_x - \phi_y)$

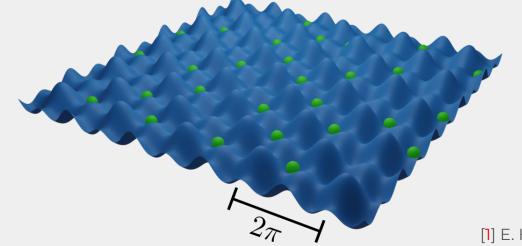
Hamiltonian – square lattice

 Ignoring particles interaction, trajectories are regarded as classical

$$H(x, y, p_x, p_y) = p_x^2 + p_y^2 + V(x, y)$$

where

$$V(x,y) = U\left(\cos^2(x) + \cos^2(y) + 2\alpha\cos(x)\cos(y)\right)$$



• Energy scale (laser intensity) 1 U=20

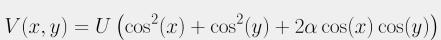
• Particle energy $H(x,y,p_x,p_y)$

$$E \in [0, V_{\max}]$$

Wave coupling (perturbation)

$$lpha \in [0,1]$$

Equilibrium points



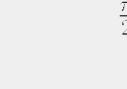
Local maxima

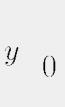
$$V_{\text{l-max}} = 2U(1-\alpha)$$

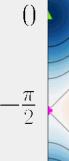
Global maxima $V_{\text{g-max}} = 2U(1+\alpha)$

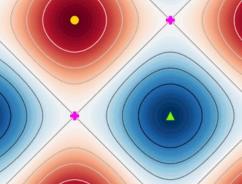
 $V_{\rm sad} = U(1 - \alpha^2)$

Global minima
$$V_{
m min}=0$$

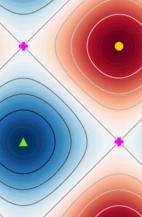








 $\alpha = 0.00$



Minimum Maximum

40

35

30

25

20

15

10

Saddle

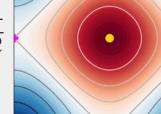
Symmetries

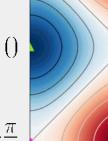
$$V(x,y) = U\left(\cos^2(x) + \cos^2(y) + 2\alpha\cos(x)\cos(y)\right)$$

Symmetric under rotations:

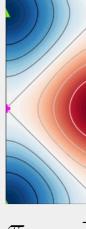
$$(\frac{n\pi}{2}, n \in \mathbb{Z})$$

- Symmetric under **translations**:
- $(2m\pi, m \in \mathbb{Z})$
- Square **tiling** symmetry





y



 $\alpha = 0.00$

Minimum Maximum

40

35

30

25

20

15

10

Saddle

Symmetries

$$T\left(\cos^2(x) + \cos^2(y) + \right)$$

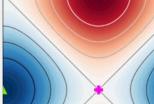
 $V(x,y) = U\left(\cos^2(x) + \cos^2(y) + 2\alpha\cos(x)\cos(y)\right)$

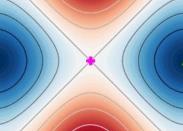
$$(\frac{n\pi}{2}, n \in \mathbb{Z})$$

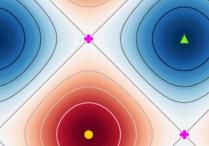
- $(2m\pi, m \in \mathbb{Z})$
- Square **tiling** symmetry

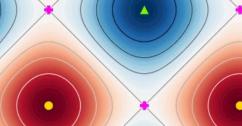
Dynamical effect of symmetries Island myriad phenomenon

Symmetric under **rotations**:
$$\frac{\pi}{2}$$
 ($\frac{n\pi}{2}, n \in \mathbb{Z}$)
Symmetric under **translations**: y () $(2m\pi, m \in \mathbb{Z})$

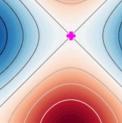


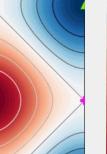






 $\alpha = 0.00$





Minimum Maximum

40

35

30

25

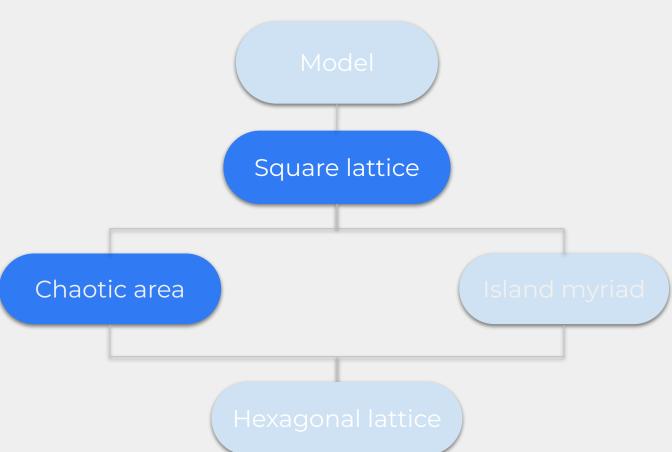
20

15

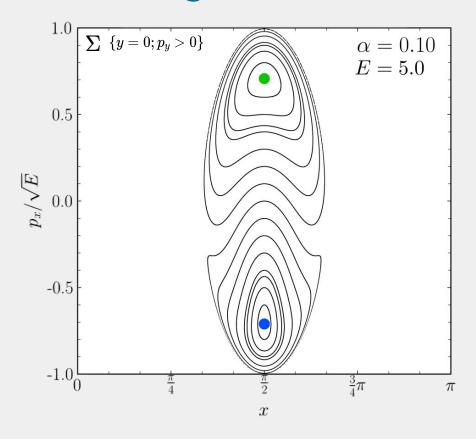
10

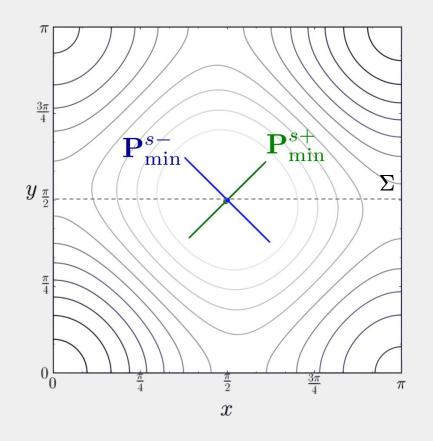
Saddle

Summary

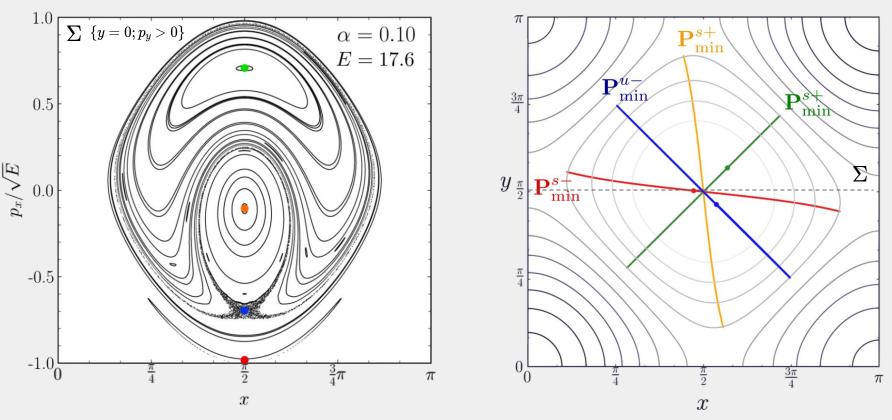


Low energies - Periodic orbit bifurcation





Low energies - Unstable periodic orbit bifurcation



• The stable orbits in red and orange allow for direct diffusion between cells when $E > V_{
m saddle}$

Manifolds

- Disruption of **separatrix** invariant into a chaotic layer
- Infinite tangle between stable and unstable 2D area as a fractal

UPO

branches induces chaotic Homoclinic motion, densely filling a Numerical calculation from periodic orbit eigenvectors: W_s^+ , W_s^- , W_u^- , W_u^+

 W_n

Heteroclinic

Integrable

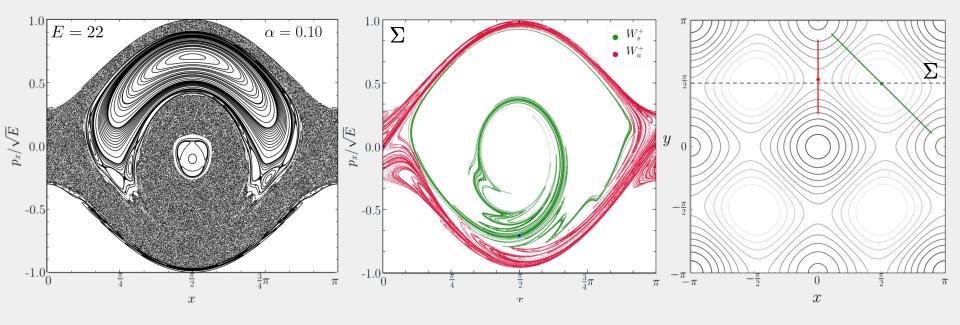
UPO

Chaotic

 M_s

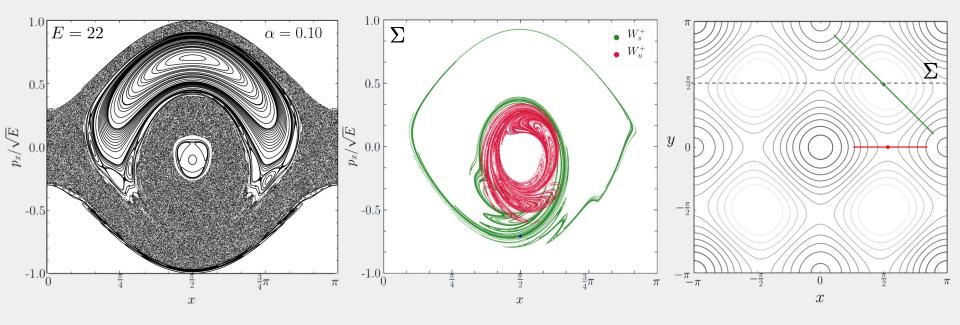
Manifolds for diffusion onset

- Slightly above diffusion onset, manifolds from orbits over saddle points describe the transport of particles between lattice cells.
- Small superposition between the inner (green) and outer (red) layers.



Manifolds for diffusion onset

- Soon after diffusion onset, manifolds from orbits over saddle points describe the transport of particles between lattice cells.
- Small superposition between the inner (green) and outer (red) layers.



SALI method

• Smaller Alignment Index (SALI)¹: a quick method for orbits discrimination.

Two deviation vectors $\hat{\omega}_i$ are evolved in tangent space in parallel to an orbit:

SALI(t) = min (
$$||\hat{\omega}_1(t) - \hat{\omega}_2(t)||, ||\hat{\omega}_1(t) + \hat{\omega}_2(t)||$$
)

Chaotic case (SALI(t) → 0):



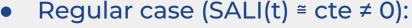
SALI method

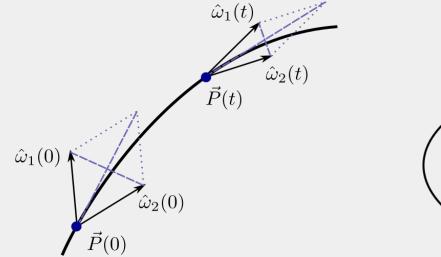
• Smaller Alignment Index (SALI)¹: quick method for orbits discrimination.

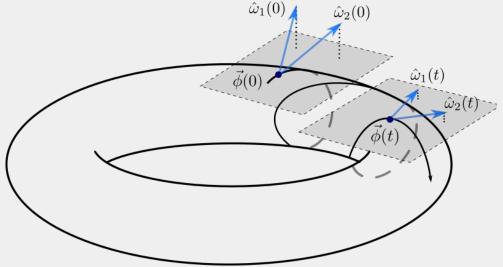
Two deviation vectors $\hat{\omega}_i$ are evolved in tangent space in parallel with an orbit:

$$SALI(t) = min(||\hat{\omega}_1(t) - \hat{\omega}_2(t)||, ||\hat{\omega}_1(t) + \hat{\omega}_2(t)||)$$

• Chaotic case (SALI(t) → 0):

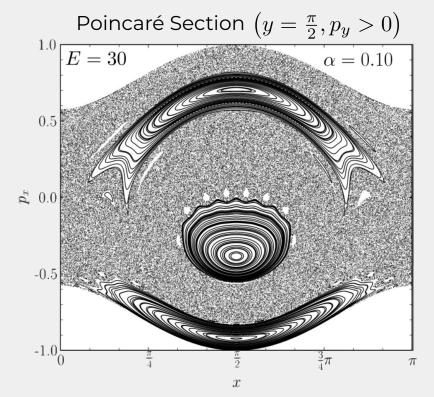


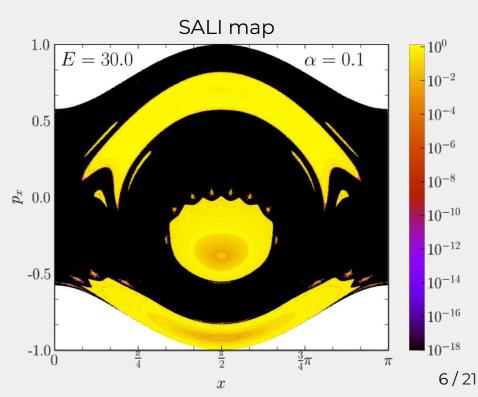




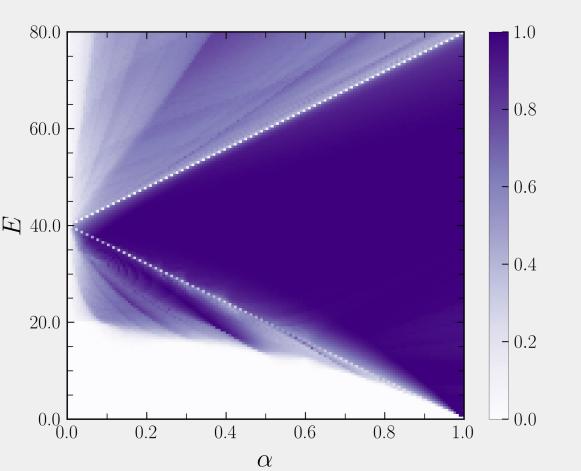
Stability area measurement

- Chaotic/Regular areas calculated when summed over a grid mesh
- Analogous to Lyapunov exponent methods but usually with faster convergence



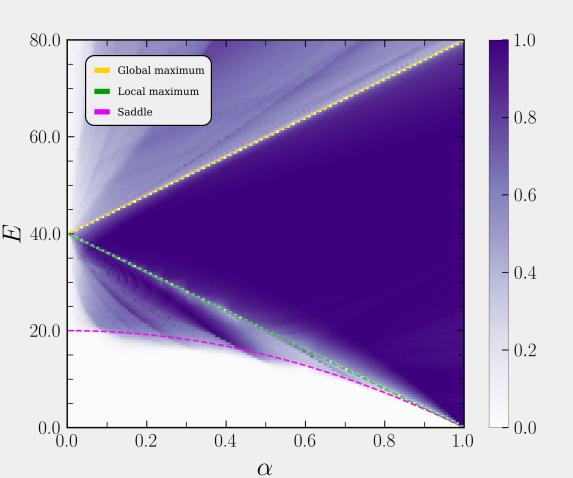


Chaotic area



- Small predominance of chaos for energies below saddle points.
- **Ergodic limit** above the instability lines induced by maxima points.

Chaotic area



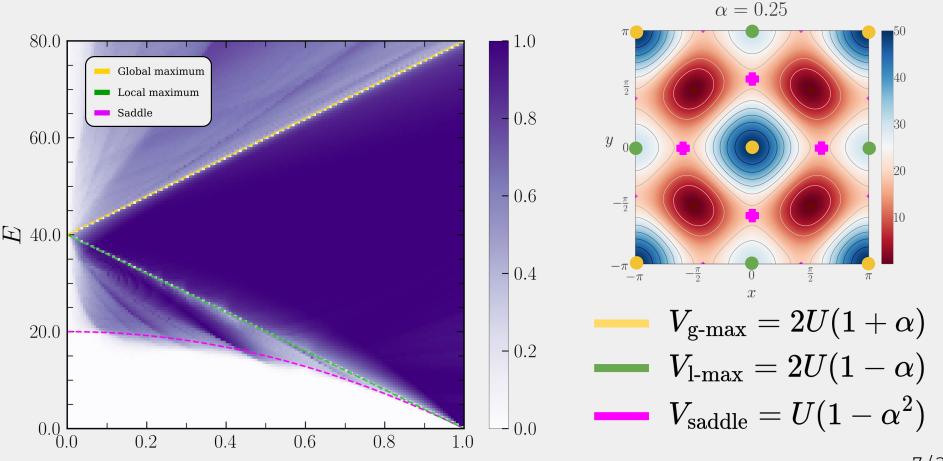
- Small predominance of chaos for energies below saddle points.
- **Ergodic limit** above the instability lines induced by maxima points.
- Emergence of stable structures over local and global maxima energy lines.

-
$$V_{ ext{g-max}} = 2U(1+lpha)$$

$$V_{ ext{l-max}} = 2U(1-lpha)$$

$$V_{\rm saddle} = U(1-\alpha^2)$$

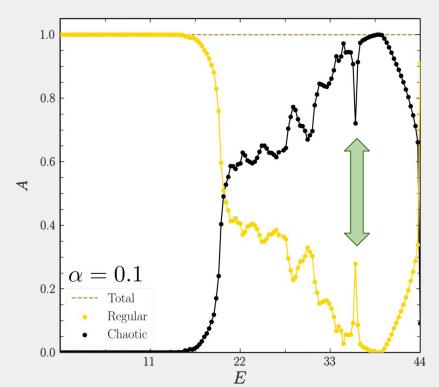
Chaotic area



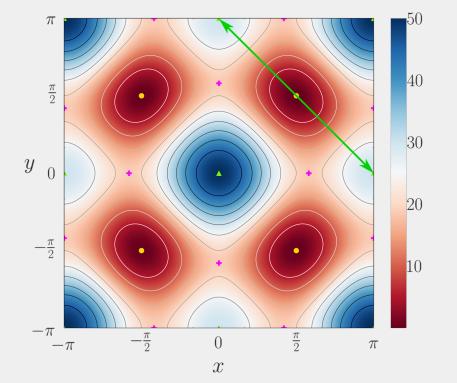
 α

SALI results

Area measurement by SALI

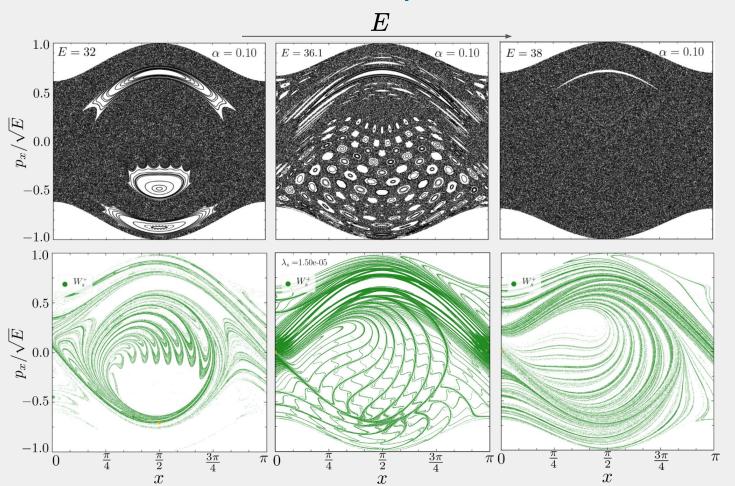


 At the energy level of local maxima, particles can reach unstable points

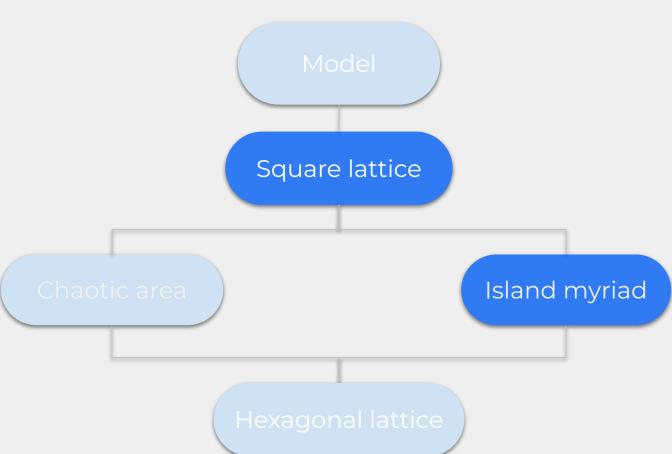


ullet Sudden ${f peak}$ (${f drop}$) in ${f stable}$ (${f chaotic}$) area at E=36.0

Phase space

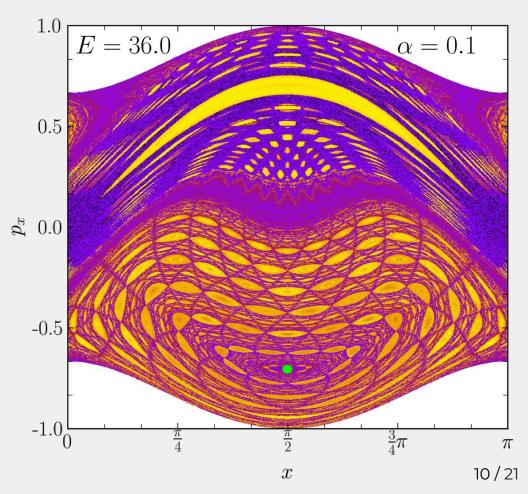


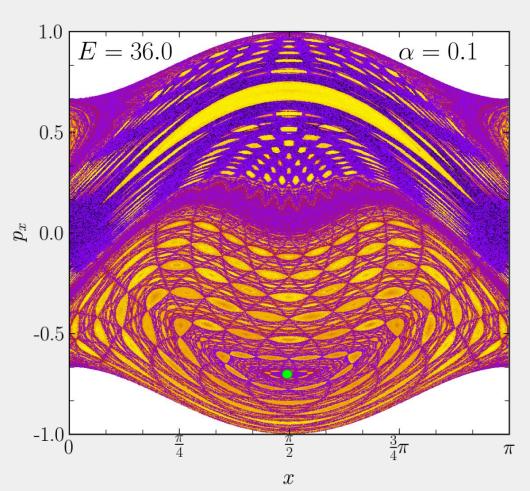
Summary

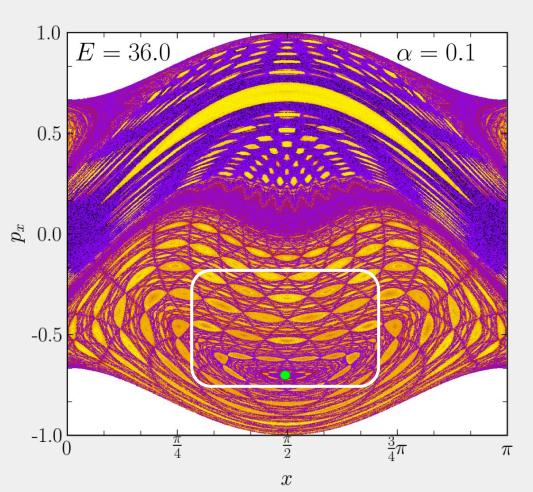


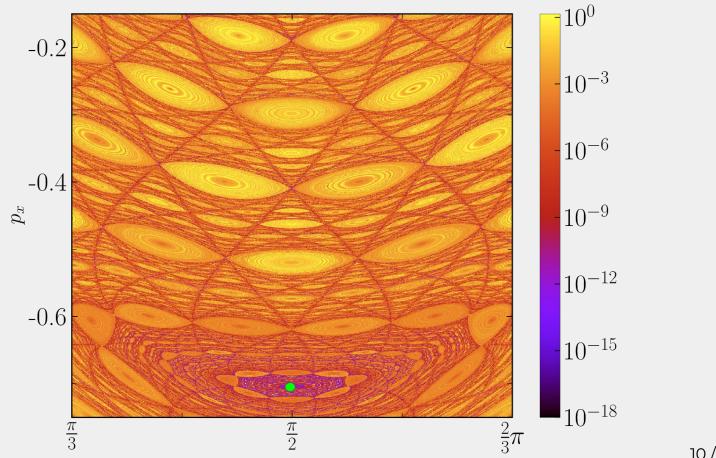
Island myriad bifurcation

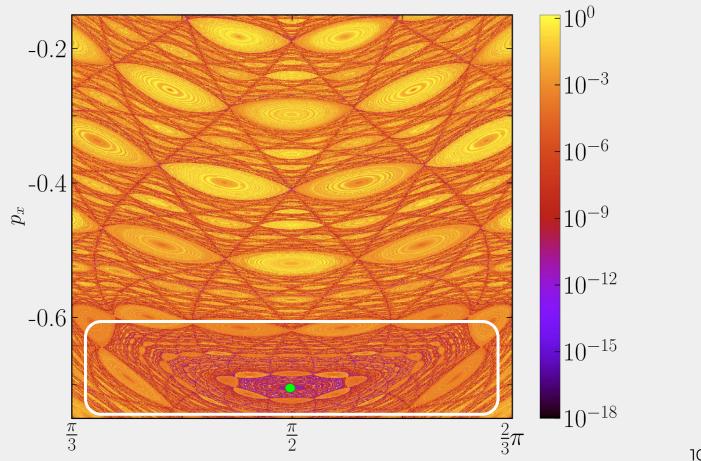
- Set of island chains in an onion-like structure
 - Even periodicity
 - Centered around the unstable UPO over local maxima points
 - Isochronous chains (independent periodic orbits)
- Prominent fractal structure.
- Existence for short energy interval $(\Delta E \approx 0.5)$.

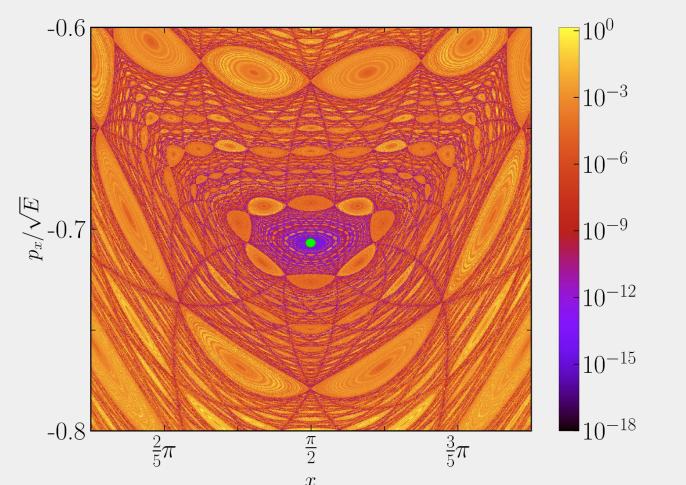


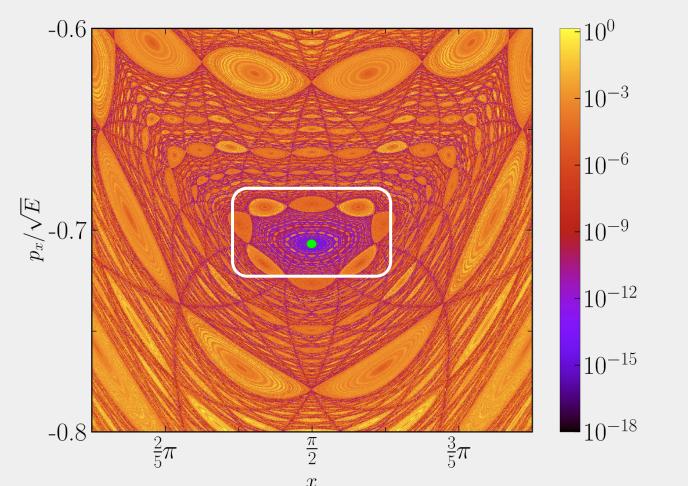


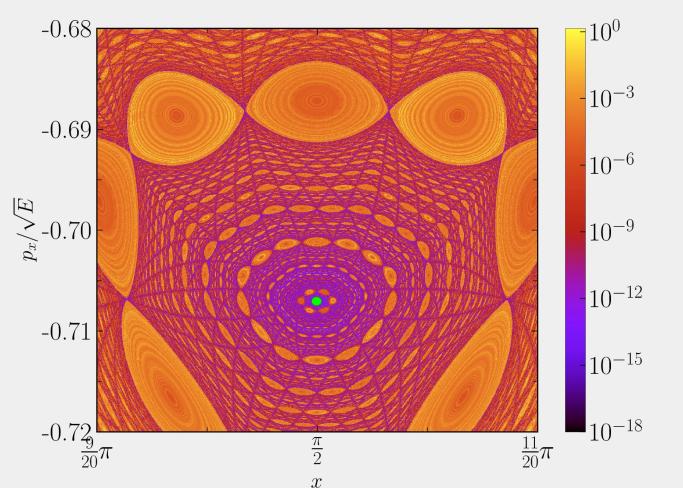


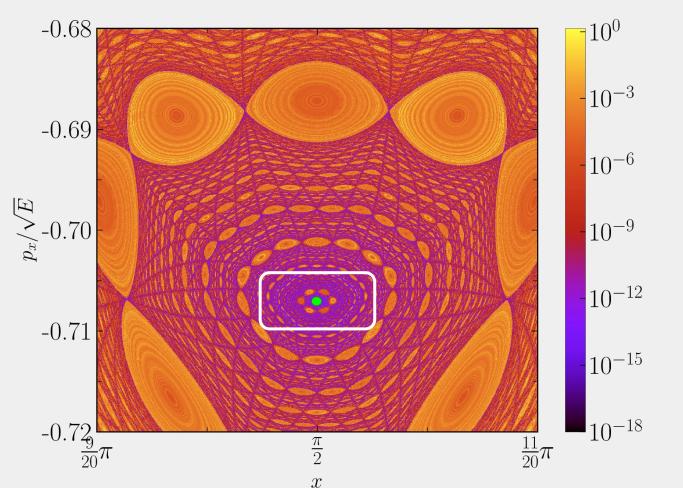


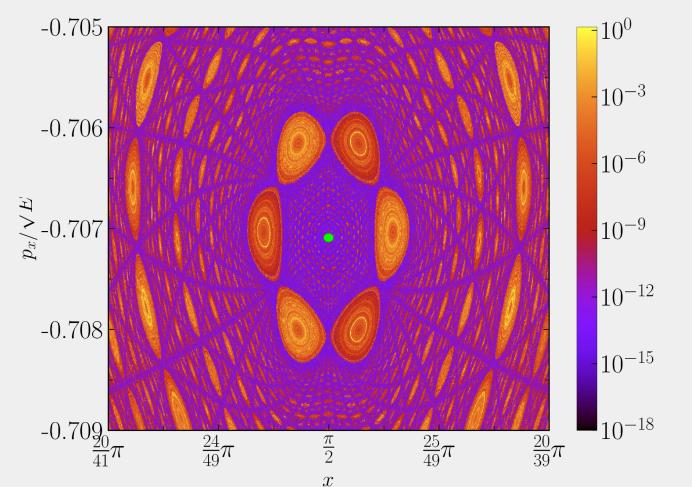




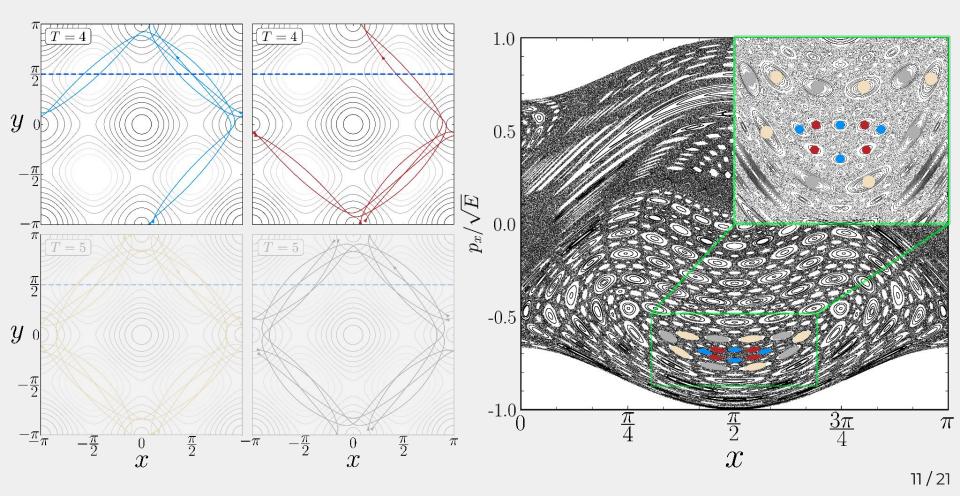




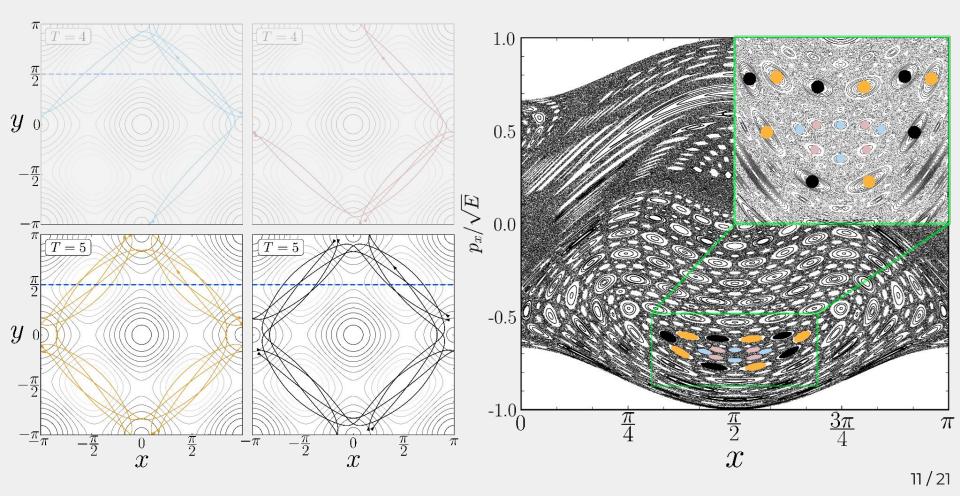




Isochronous chains

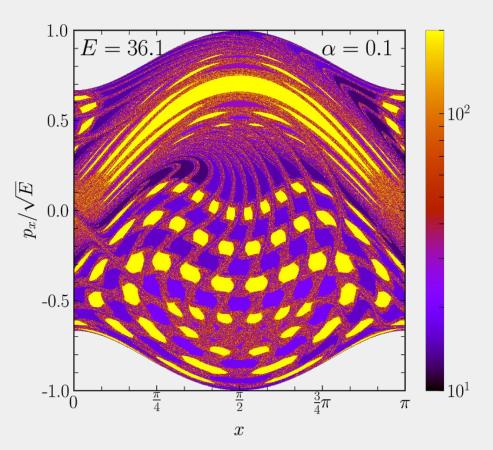


Isochronous chains



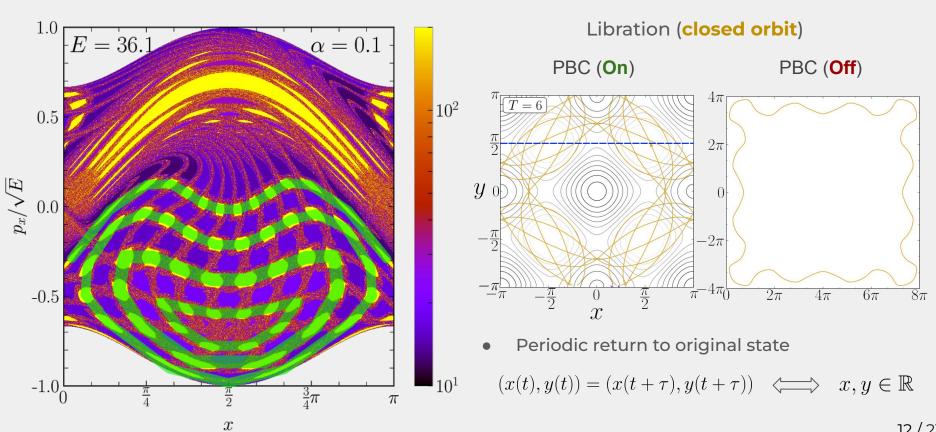
Escape time

Alternating layers with either trapped orbits or quick escape through the lattice.



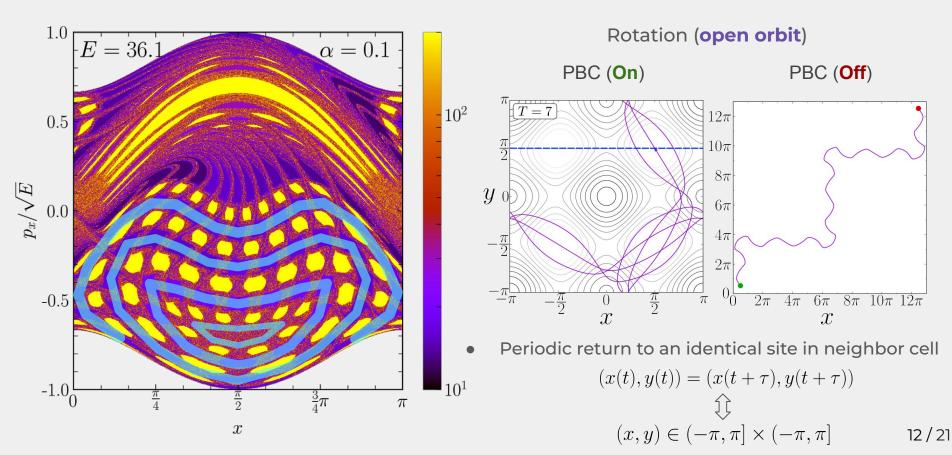
Escape time – spatially closed orbits

Trapped orbits present spatial closure — return to its initial position without PBC

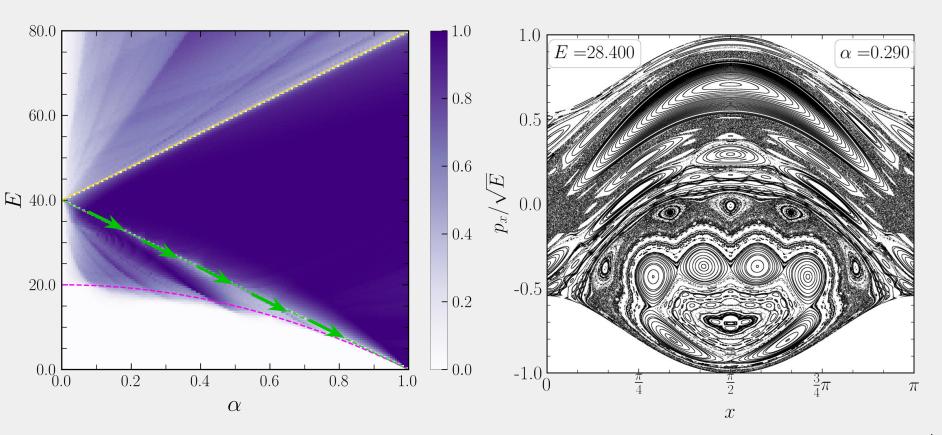


Escape time – spatially open orbits

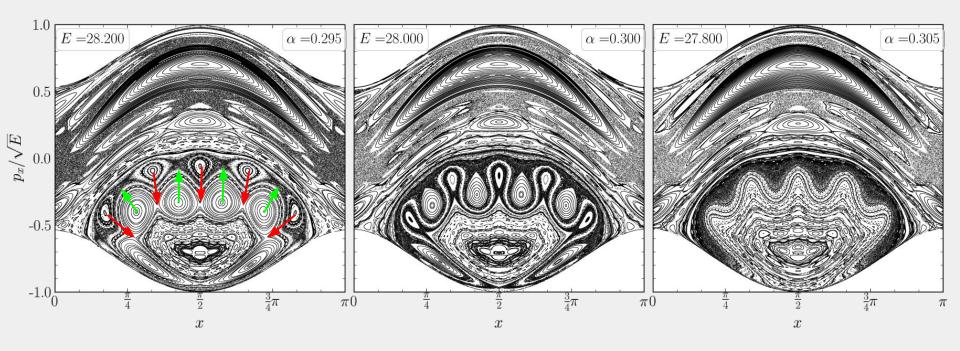
• Direct flights lack spatial closure — return to initial position only when considering PBC



Separatrix reconnection



Separatrix reconnection

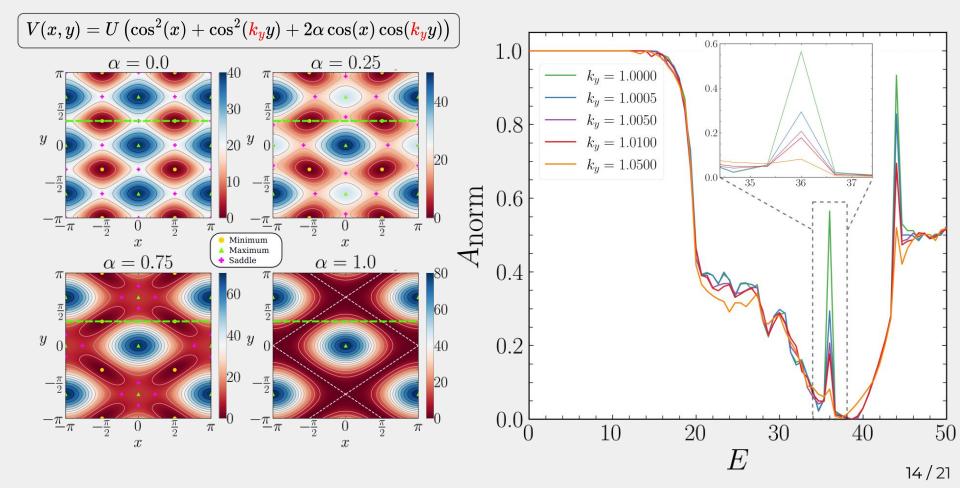


- Topological inversion between outer and inner island chains (separatrix reconnection)
- Myriad 'peeling' repeated collision of islands as inner chains move outwards
- Local **non-twist** winding number profile

How resilient is the myriad structure

under symmetry break...?

Symmetry break – Rectangular lattice



Periodic orbits calculation - Monodromy method

Near a periodic orbit, displacements are linearly described by the **monodromy matrix**¹:

$$\delta \vec{s}(\tau) = \mathbf{M} \ \delta \vec{s}(0)$$

Numerically, displacements $\delta \vec{s}_i = (\delta x^i, \delta y^i, \delta p_x^i, \delta p_y^i)$ around a near periodic orbit $\vec{s} = \{\vec{s}_1,...,\vec{s}_N\}$, where $\vec{s}_i = \{x^i, y^i, p_x^i, p_y^i\}$, are

$$\delta \vec{s}_{N+1} = \mathbf{\Lambda}_{N+1} \delta \vec{s}_1 + \mathbf{\Gamma}_{N+1}$$

Imposing the orbit's closure condition $(\delta \vec{s}_{N+1} = \delta \vec{s}_1)$, returns a linear system for the first displacement correction:

$$(\mathbf{I}_4 - \mathbf{\Lambda}_{N+1}) \, \delta \vec{s}_1 = \mathbf{\Gamma}_{N+1}$$

The corrected orbit is iterated until convergence: $|\Gamma_{N+1}| o 0$ (Newton-Raphson)

Periodic orbits calculation - Monodromy method

Near a periodic orbit, displacements are linearly described by the **monodromy matrix**¹:

$$\delta \vec{s}(\tau) = \mathbf{M} \ \delta \vec{s}(0)$$

Numerically, displacements $\delta \vec{s}_i = (\delta x^i, \delta y^i, \delta p_x^i, \delta p_y^i)$ around a near periodic orbit $\vec{s} = \{\vec{s}_1,...,\vec{s}_N\}$, where $\vec{s}_i = \{x^i, y^i, p_x^i, p_y^i\}$, are

$$\delta \vec{s}_{N+1} = \mathbf{\Lambda}_{N+1} \delta \vec{s}_1 + \mathbf{\Gamma}_{N+1}$$

Imposing the orbit's closure condition $(\delta \vec{s}_{N+1} = \delta \vec{s}_1)$, returns a linear system for the first displacement correction²:

$$\left(\mathbf{I}_4 - \mathbf{\Lambda}_{N+1} + \frac{1}{\epsilon_0} \mathbf{\Delta}_{N+1} \otimes \Theta\right) \delta \vec{s}_1 = \mathbf{\Gamma}_{N+1} + \frac{\eta}{\epsilon_0} \mathbf{\Delta}_{N+1}$$

Besides Γ , the scalar η is now used for energy convergence.

Periodic orbits calculation - Monodromy method

As shown previously, the converged orbit will have the same period as the initial guess. For a PO with a given energy, the new linear system considers the time step (i.e. the period) as a new variable and the conservation of energy as extra equation ¹

$$\left(\mathbf{I}_4 - \mathbf{\Lambda}_{N+1} + \frac{1}{\epsilon_0} \mathbf{\Delta}_{N+1} \otimes \Theta\right) \delta \vec{s}_1 = \mathbf{\Gamma}_{N+1} + \frac{\eta}{\epsilon_0} \mathbf{\Delta}_{N+1}$$

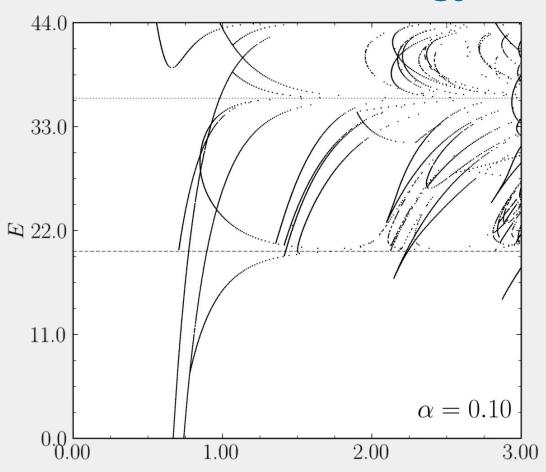
Besides Γ , the scalar η is now used for energy convergence.

- ullet The converged matrix $oldsymbol{\Lambda}_{N+1}$ becomes the monodromy ${f M}$
- ullet For 2D systems, ${f M}$ immediately provides the orbit stability from its trace:

stable
$$\longrightarrow \operatorname{tr}(\mathbf{M}) = 2 \pm (e^{i\theta\tau} + e^{-i\theta\tau}) = 2(1 \pm \cos(\theta\tau)) \in [0, 4]$$

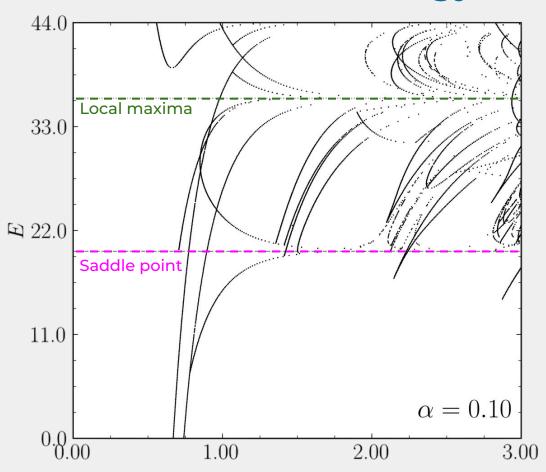
unstable $\longrightarrow \operatorname{tr}(\mathbf{M}) = 2 \pm (e^{\theta\tau} + e^{-\theta\tau}) = 2(1 \pm \cosh(\theta\tau)) \in (-\infty, 0] \cup [4, \infty)$

Periodic orbits - Energy x Period diagram



Periodic orbits search over phase space (for fixed parameters) – map period **1** to **4**.

Periodic orbits - Energy x Period diagram



 Periodic orbits search over phase space (for fixed parameters) – map period 1 to 4.

 Horizontal lines mark the energy level for saddle equilibria (E=19.8) and local maxima (E=36).

 A periodic orbit approaching an unstable equilibrium point diverges in period (classic pendulum analog).

Summary

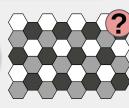
Model

Square lattice

Chaotic area

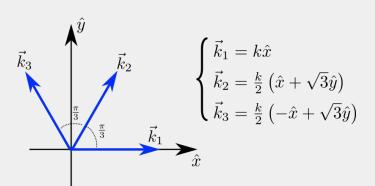
Island myriac

Hexagonal lattice



Hamiltonian model - Hexagonal Lattice

- Investigation of the myriad phenomenon for a hexagonal lattice
- Lattice setup with three co-planar waves



$$V(x,y) = U\left(\cos^2(kx) + \cos^2\left(\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right) + \cos^2\left(-\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right)\right)$$
$$+2\alpha_{12}\cos(kx)\cos\left(\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right)$$
$$+2\alpha_{13}\cos(kx)\cos\left(-\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right)$$
$$+2\alpha_{23}\cos\left(\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right)\cos\left(-\frac{k}{2}x + \frac{\sqrt{3}k}{2}y\right)$$

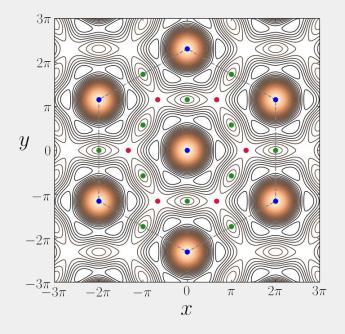
Single coupling condition
$$\alpha_{12}=\alpha_{13}=\alpha_{23}=\alpha$$

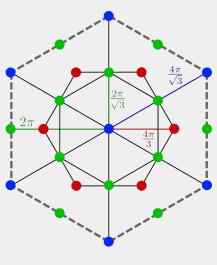
$$V(x, y, \boldsymbol{\alpha}) = 1 + \cos\left(\sqrt{3}y\right)(\boldsymbol{\alpha} + \cos(x)) + \cos(x)\left(4\boldsymbol{\alpha}\cos\left(\frac{x}{2}\right)\cos\left(\frac{\sqrt{3}y}{2}\right) + \boldsymbol{\alpha} + \cos(x)\right)$$

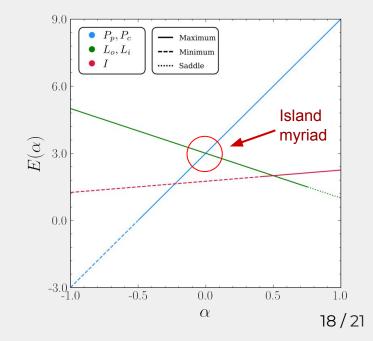
Honeycomb potential - Equilibrium points

- Set of equilibrium points with fixed position as the coupling changes
- Conservation of hexagonal symmetry required by the myriad orbits

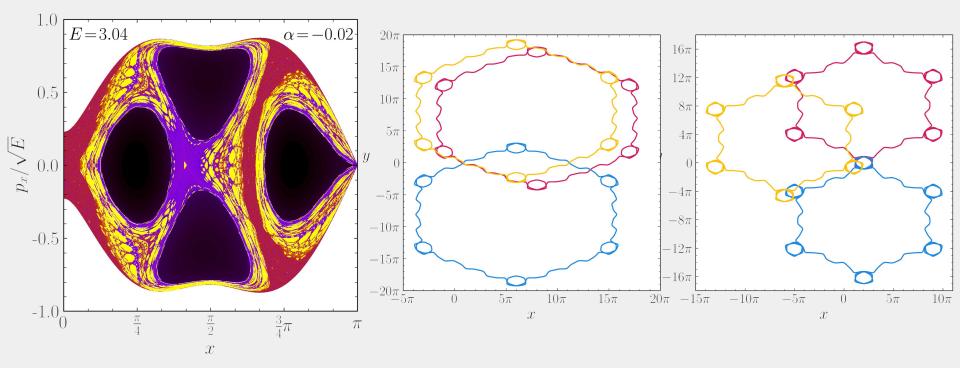
- Reference points for energy levels where the myriad is expected
- Island myriad found only near lphapprox 0







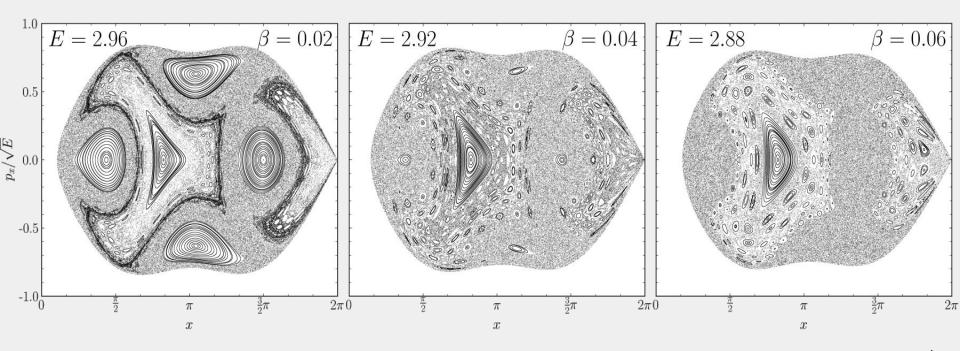
Honeycomb potential – island myriad ($\alpha \ge 0$)



- Fractality is attenuated due to additional sources of instability within the potential surface
- Isochronous chains with triple multiplicity

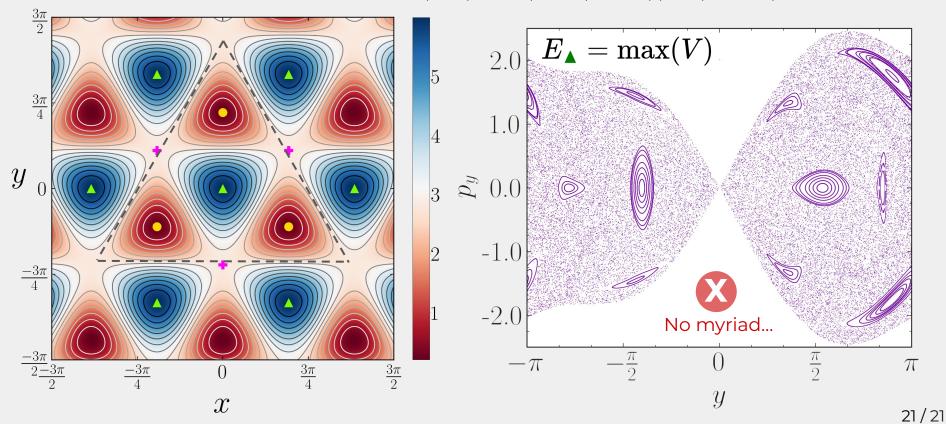
Honeycomb potential – Island myriad

Partial transport barrier from strong stickiness Existence of the myriad for a short coupling interval



Triangular lattice – Equilibrium points

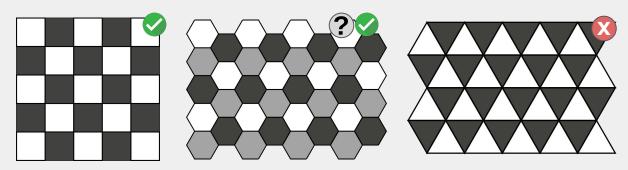
$$V=3+\cos(\sqrt{3}x-y)+\frac{1}{2}\sin(\sqrt{3}x-y)+\left(2\cos\left(\frac{\sqrt{3}x}{2}-\frac{y}{2}\right)-\sin\left(\frac{\sqrt{3}x}{2}-\frac{y}{2}\right)\right)\cos\left(\frac{\sqrt{3}x}{2}+\frac{3y}{2}\right)$$



Conclusions

Acknowledgements

- Emergence of <u>stable</u> structures (**island** myriads) over <u>unstable</u> equilibrium points [1]
- Conjecture: Expected for any potential with tiling symmetry...



 Must result from a combination of resonances + symmetry

- [1] M. Lazarotto et al. "Island myriads in periodic potentials", Chaos, 34, (2024)
- [2] M. Lazarotto et al. "Diffusion transitions in a 2D periodic lattice", CNSNS, 112, (2022)

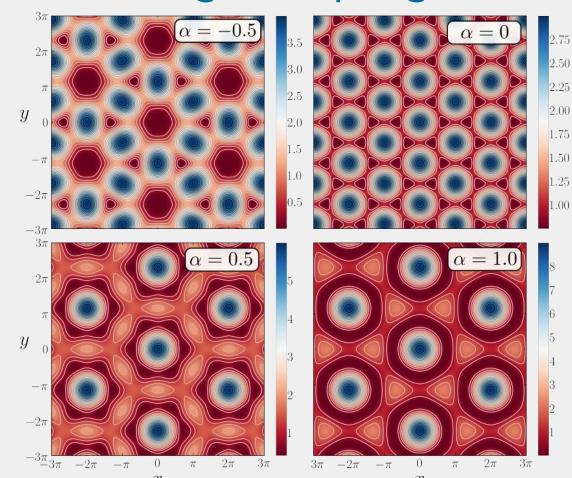
Appendix

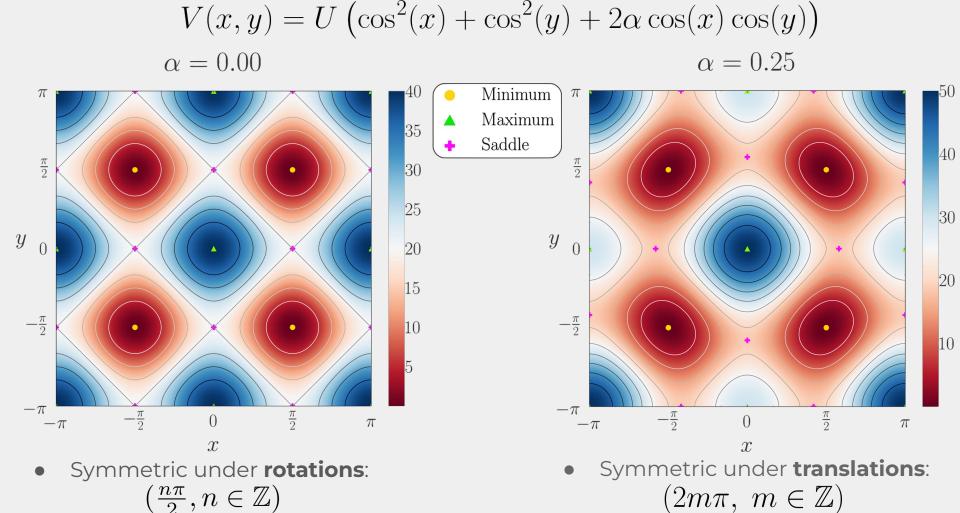
Honeycomb potential - single coupling

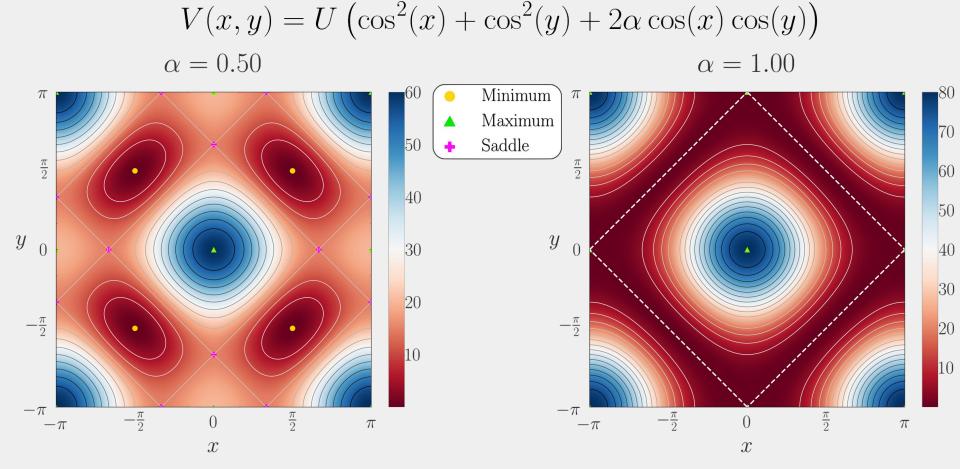
- Hexagonal unit cell
- Single coupling condition:
 - Geometrical restriction:

$$\alpha \in \left[-\frac{1}{2}, 1 \right]$$

- Reduction of parameter space
- Transformations keep equilibrium points fixed in space and preserve hexagonal symmetry



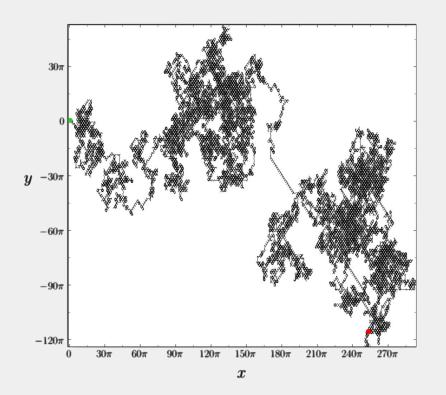


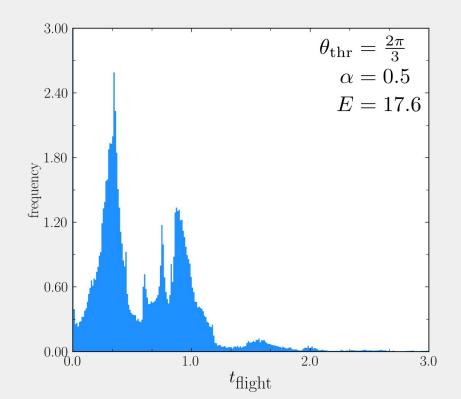


Global **maxima** and **minima** points • At $\alpha = 1.0$, saddle and local maxima remain fixed as α changes. • merge (minimum trench line)

Diffusion trajectories

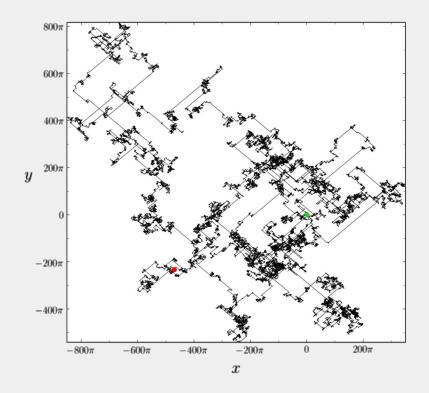
- Short range chaotic displacement → tens or hundreds of lattice cells
- Normal diffusion regime $\mu pprox 1$

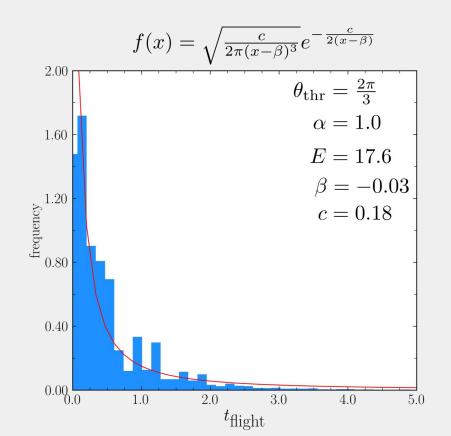




Diffusion trajectories

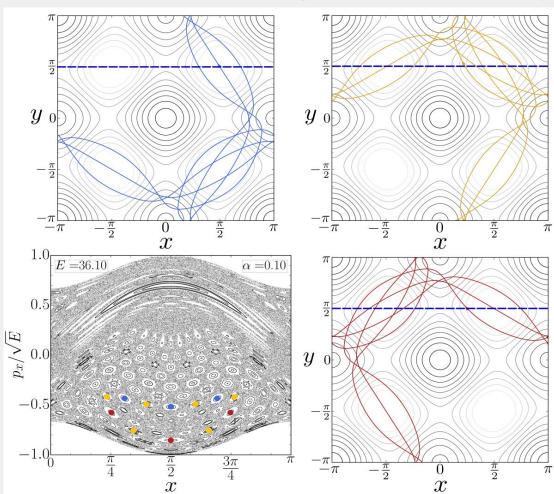
- Long range chaotic displacement (Lévy flights) → a thousand lattice cells
- Free diffusion regime $\mu \approx 2$



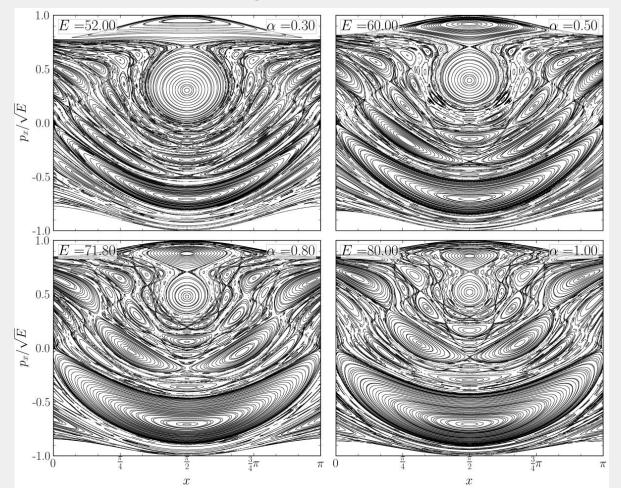


Appendix – Isochronous chains with higher multiplicity

- Isochronous chain with single period 12
- Three-fold isochronicity
 - Fixed point period 3
 - Fixed point period 3
 - Fixed point period 6



Appendix – Island myriad near max energy



Monodromy method for numerical calculation of periodic orbits

 Excerpts from N. S. Simonovic, 'Calculations of periodic orbits: The monodromy method and application to regularized systems', *Chaos* 9(4), (1999); DOI: 10.1063/1.166457

$$q_{i,k+1} = q_{i,k} + \Delta t \ \partial_{p_i} H(\mathbf{p}, \mathbf{q}) = q_{i,k} + \Delta t \ \frac{p_{i,k}}{m}$$
$$p_{i,k+1} = p_{i,k} - \Delta t \ \partial_{q_i} H(\mathbf{p}, \mathbf{q}) = p_{i,k} - \Delta t \ V_i(\mathbf{q}_{k+1})$$

for $i \in [0, n]$ and $k \in [0, K]$ as coordinate and time discrete step index, respectively; V_i is the partial derivative $\partial_{q_i}V(\mathbf{q})$. Taking small displacements around a solution orbit $(\mathbf{q}^0, \mathbf{p}^0)$, we have the linear form:

 $\mathbf{s}(t_k) = \mathbf{s}_k = (q_{1,k} \cdots q_{n,k} \ p_{1,k} \cdots p_{n,k})^T$

$$q_{i,k} = q_{i,k}^{0} + \delta q_{i,k} \quad \xrightarrow{\text{linear}} \quad \delta q_{i,k+1} = \delta q_{i,k} + c'_{i,k} + \Delta t \frac{\delta p_{i,k}}{m}$$

$$p_{i,k} = p_{i,k}^{0} + \delta p_{i,k} \quad \xrightarrow{\text{linear}} \quad \delta p_{i,k+1} = \delta p_{i,k} + c'_{i+n,k} - \Delta t \sum_{j=1}^{n} V_{ij}(\mathbf{q}_{k+1}^{0}) \delta q_{i,k+1}$$

$$(2)$$

for
$$p_{i,k}^0$$

$$c'_{i,k} = q_{i,k}^0 - q_{i,k+1}^0 + \Delta t \, \frac{p_{i,k}^0}{m}$$

$$c'_{i+n,k} = p_{i,k}^0 - p_{i,k+1}^0 - \Delta t \, V_i(\mathbf{q}_{k+1}^0) \qquad \text{for} \qquad i \in [0, n]$$

(2)

Simplifying system 2 to matrix form yields:

$$\mathbf{A}_{k+1}\delta\mathbf{s}_{k+1} = \mathbf{B}\delta\mathbf{s}_k + \mathbf{c}_k'$$

where

$$\mathbf{A}_{k+1} = \begin{pmatrix} \mathbf{I}_n & \mathbf{0}_n \\ \Delta t \mathbf{P}_{k+1} & \mathbf{I}_n \end{pmatrix} \qquad \qquad \mathbf{B} = \begin{pmatrix} \mathbf{I}_n & \Delta t \ \mathbf{m} \\ \mathbf{0}_n & \mathbf{I}_n \end{pmatrix}$$

for

$$\mathbf{P}_k = \begin{pmatrix} V_{11}(\mathbf{q}_k) & \cdots & V_{1n}(\mathbf{q}_k) \\ \vdots & \ddots & \vdots \\ V_{n1}(\mathbf{q}_k) & \cdots & V_{nn}(\mathbf{q}_k) \end{pmatrix} \qquad \mathbf{m}^{-1} = \begin{pmatrix} m^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & m^{-1} \end{pmatrix}$$

Expressing $\delta \mathbf{s}_{k+1}$ alone, we get the system:

$$\delta \mathbf{s}_{k+1} = \mathbf{U}_k \delta \mathbf{s}_k + \mathbf{c}_k \tag{3}$$

for

$$\mathbf{U}_{k} = \mathbf{A}_{k+1}^{-1} \mathbf{B} = \begin{pmatrix} \mathbf{I}_{k} & \Delta t \ \mathbf{m}^{-1} \\ -\Delta t \ \mathbf{P}_{k+1} & \mathbf{I}_{n} - \Delta t^{2} \mathbf{P}_{k+1} \mathbf{m}^{-1} \end{pmatrix}$$

$$\mathbf{c}_{k} = \mathbf{A}_{k+1}^{-1} \mathbf{c}_{k}' = \begin{pmatrix} c_{1,k}' \\ \vdots \\ c_{n,k}' \\ -\Delta t \sum_{i}^{n} V_{1i}(\mathbf{q}_{k+1}^{0}) c_{i,k}' + c_{n+1,k}' \\ \vdots \\ -\Delta t \sum_{i}^{n} V_{ni}(\mathbf{q}_{k+1}^{0}) c_{i,k}' + c_{2n,k}' \end{pmatrix}$$

Successively applying equation 3 from a initial displacement $\delta \mathbf{s}_1$ yield the k-th iteration:

$$\delta \mathbf{s}_{k+1} = \mathbf{\Lambda}_{k+1} \delta \mathbf{s}_1 + \mathbf{\Gamma}_{k+1} \tag{4}$$

$$egin{aligned} oldsymbol{\Lambda}_{k+1} &= \mathbf{U}_k oldsymbol{\Lambda}_k & (oldsymbol{\Lambda}_1 &= \mathbf{I}_{2n}) \ oldsymbol{\Gamma}_{k+1} &= \mathbf{U}_k oldsymbol{\Gamma}_k + \mathbf{c}_k & (oldsymbol{\Gamma}_1 &= \mathbf{0}_{2n}) \end{aligned}$$

From all the possible solutions to system 4, we look for the periodic ones, that is, those whose after K + 1 steps go back to its initial point:

$$\delta \mathbf{s}_{K+1} = \mathbf{\Lambda}_{K+1} \delta \mathbf{s}_1 + \mathbf{\Gamma}_{K+1}$$
 for $\mathbf{\Lambda}_{K+1} = \mathbf{U}_K \cdots \mathbf{U}_1$ (5)

As shown in the previous section, the matrix Λ_{K+1} will then be the monodromy \mathbf{M} in case the orbit is the periodic solution, but in its discretized form. The Newton-Raphson fashion algorithm arises when one wants to solve system 4 for $\Gamma_{K+1} = \mathbf{0}_{2n}$, in order to get a periodic orbit $(\delta \mathbf{s}_{K+1} = \delta \mathbf{s}_1 = \mathbf{M} \delta \mathbf{s}_1)$.

The linear equation system to be solved is then:

$$(1 - \mathbf{\Lambda}_{K+1}) \, \delta \mathbf{s}_1 = \mathbf{\Gamma}_{K+1} \tag{6}$$

3 Calculation of periodic orbits – constant energy

The monodromy algorithm previously shown consider a fixed time step Δt and number of steps K. However, it can be desired to perform the calculation keeping the energy constant instead of the period. Thereunto, the monodromy algorithm must include a variation for the time step either $\Delta t = \Delta t^0 + \delta \Delta t$. The full discretized equations now are:

$$\delta q_{i,k+1} = \delta q_{i,k} + c'_{i,k} + \Delta t \frac{\delta p_{i,k}}{m} + \frac{p_{i,k}^0}{m} \delta \Delta t$$

$$\delta p_{i,k+1} = \delta p_{i,k} + c'_{i+n,k} - \Delta t \sum_{j=1}^n V_{ij}(\mathbf{q}_{k+1}^0) \delta q_{i,k+1} - V_i(\mathbf{q}_{k+1}^0) \delta \Delta t$$

yielding the following linear system:

$$\delta s_{k+1} = \mathbf{U}_k \delta \mathbf{s}_k + \mathbf{d}_k \delta \Delta t + \mathbf{c}_k$$

where $\mathbf{d}_{k} = \begin{pmatrix} \frac{p_{1,k}^{0}}{m} \\ \vdots \\ \frac{p_{n,k}^{0}}{m} \\ -\Delta t \sum_{i}^{n} V_{1i}(\mathbf{q}_{k+1}^{0}) \frac{p_{i,k}^{0}}{m} - V_{1}(\mathbf{q}_{k+1}^{0}) \\ \vdots \\ -\Delta t \sum_{i}^{n} V_{ni}(\mathbf{q}_{k+1}^{0}) \frac{p_{i,k}^{0}}{m} - V_{n}(\mathbf{q}_{k+1}^{0}) \end{pmatrix}$

and \mathbf{U}_k , \mathbf{c}_k are the same as previous. The iterated system in its kth-iteration will be given by:

by:
$$\delta \mathbf{s}_{k+1} = \mathbf{U}_k \delta \mathbf{s}_k + \mathbf{\Delta}_k \delta \Delta t + \mathbf{\Gamma}_k \tag{7}$$

with the following relations and initial conditions:

$$egin{aligned} oldsymbol{\Lambda}_{k+1} &= \mathbf{U}_n oldsymbol{\Lambda}_k & ext{ for } & oldsymbol{\Lambda}_1 &= \mathbf{I}_{2n} \ oldsymbol{\Delta}_{k+1} &= \mathbf{U}_n oldsymbol{\Delta}_k + \mathbf{d}_k & ext{ for } & oldsymbol{\Delta}_1 &= \mathbf{0}_{2n} \ oldsymbol{\Gamma}_{k+1} &= \mathbf{U}_n oldsymbol{\Gamma}_k + \mathbf{c}_k & ext{ for } & oldsymbol{\Gamma}_1 &= \mathbf{0}_{2n} \end{aligned}$$

(linearization)
$$\eta = \sum_{i=1}^{F} \left[\frac{p_{i,1}^{0}}{m} \delta p_{i,1} + V_{i}(\mathbf{q}_{3/2}^{0}) \left(\delta q_{i,1} + \frac{\Delta t^{0}}{2m} \delta p_{i,1} + \frac{p_{i,1}^{0}}{2m} \delta \Delta t \right) \right]$$
where η is the unperturbed term
$$\eta = E_{1} - \sum_{i=1}^{n} \frac{p_{i,1}^{0}}{2m} - V(\mathbf{q}_{3/2}^{0})$$
(8)
The time displacement can then be eliminated by:

 $E_1 = \sum_{i=1}^{n} \frac{p_{i,1}^2}{2m} + V\left(\mathbf{q}_1 + \frac{\Delta t}{2m}\mathbf{p}_1\right)$

here
$$\epsilon_0 = \sum_{i=1}^n \frac{p_{i,1}^0}{V(\mathbf{q}_0^0, \mathbf{q}_0)}$$
 and $\Theta = (\epsilon_1, \cdots, \epsilon_{2n})$ with:

here
$$\epsilon_0 = \sum_{i=1}^n \frac{p_{i,1}^0}{2m} V(\mathbf{q}_{3/2}^0)$$
 and $\Theta = (\epsilon_1 \cdots \epsilon_{2n})$ with:

here
$$\epsilon_0 = \sum_{i=1}^{p_{i,1}} V(\mathbf{q}_{3/2}^0)$$
 and $\Theta = (\epsilon_1 \cdots \epsilon_{2n})$ with:
$$\epsilon_i = V_i(\mathbf{q}_{3/2}^0) \qquad \epsilon_{i+n} = \frac{p_{i,1}^0}{2} + \frac{\Delta t}{2} V_i(\mathbf{q}_{3/2}^0) \qquad \text{for } i = 1, ..., n$$

$$\epsilon_i = V_i(\mathbf{q}_{3/2}^0) \qquad \epsilon_{i+n} = \frac{p_{i,1}^0}{2m} V_i(\mathbf{q}_{3/2}^0) \qquad \text{for} \quad i=1,...,n$$

 $\epsilon_i = V_i(\mathbf{q}_{3/2}^0)$ $\epsilon_{i+n} = \frac{p_{i,1}^0}{m} + \frac{\Delta t}{2m} V_i(\mathbf{q}_{3/2}^0)$ for i = 1, ..., n

Eliminating
$$\delta \Delta t$$
, the final system to be solved is thus:

 $\left(\mathbf{I}_{2n} - \mathbf{\Lambda}_{K+1} + \frac{1}{\epsilon_0} \{\mathbf{\Delta}_{K+1}, \Theta\}\right) \delta \mathbf{s}_1 = \mathbf{\Gamma}_{K+1} + \frac{\eta}{\epsilon_0} \mathbf{\Delta}_{K+1}$ (9)