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Optical lattices

e Dipole induction in neutral atoms via a
laser electrical field

dt) = p(w) E(F, 1)

e Average interaction potential? e Restoring force trapping particles in
. wave minima
Viip = —(d(t) - E(7, 1))

= ==
Fip = 5p()VIE(7)

[1l R. Grimm et al. Advances in Atomic, Molecular and Optical Physics 42 (2000) 1/ 21



Optical lattices

e Dipole induction in neutral atoms via a
laser electrical field

dt) = p(w) E(F, 1)

e Superposition of orthogonal beams in 2D

1 _ 1
e Average interaction potentiall (cigar-shaped cells’)

Viip = —(d(t) - E(7, 1))

—

1 L
Vit = —5plw) | E(7)]

[1l R. Grimm et al. Advances in Atomic, Molecular and Optical Physics 42 (2000) 1/ 21



Optical lattices

e Dipole induction in neutral atoms via a
laser electrical field

dt) = p(w) E(F, 1)

e Superposition of orthogonal beams in 3D

. . . 1 1
e Average interaction potentiall (crystal shaped lattice”)

t)- E(F,t))
E

1 =
Vit = —5plw) | E(7)]

=
o

|
—~
~l
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Hamiltonian — square lattice

e Superposition of orthogonal waves (x-y plane)

<
éx x/u Ey

e Superposed electrical fields
E(7,t) = Eyy cos(kpz+gz)e oty + By, cos(kyy + dye Wt e,
e Conservative potential (nhormalized units)
V(r)=U ((3082(:6) + cos?(y) + 20 cos() cos(y))

with laser coupling as a = (éx : éy) cos(¢z — Py) o



Hamiltonian — square lattice

e Ignoring particles interaction, trajectories e Energy scale (laser intensity)?
are regarded as classical
U =20

H(x,y,pepy) = p2 + 0, + V(z,y)

e e Particle energy H(g;, y,px7py)
V(z,y) = U (cos®(x) + cos*(y) + 2a cos(x) cos(y)) E €0, Vo]
Y max

e \Wave coupling (perturbation)

a € [0,1]

S\

[1] E. Horsley et al. Physical Review E 89 (2014) 3/21



Minimum

A Maximum

Equilibrium points % Saddie

V(z,y) = U (cos*(z) + cos®(y) + 2 cos(x) cos(y))

Vinin = 0
e Global maxima
Vemax = 2U(1 + «)
e Local maxima
Vimax = 2U(1 — a)

e Saddle
Viad = U(1 — &)



Minimum
. _ A  Maximum
Symmetries a = 0.00 . Saddle

2 2 U
V(z,y) = U (cos*(z) + cos*(y) + 2a cos(x) cos(y))
e Symmetric under rotations: -
(5-,n € Z) 2|
25
e Symmetric under translations: Y 0 20
(2mm, m € Z) .
15
e Square tiling symmetry —%
—T
—1
4 /2
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Minimum
A Maximum

Symmetries + Saddle
TT 5 g 7N \

V(z,y) = U (cos*(z) + cos®(y) + 2 cos(x) cos(y))

e Symmetric under rotations:

(5-,n € Z)

STE

e Symmetric under translations: Y 0

(2mm, m € Z)

e Square tiling symmetry —

e Dynamical effect of symmmetries

[ Island myriad phenomenon ] —TT
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Low energies - Periodic orbit bifurcation
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Low energies - Unstable periodic orbit bifurcation

min

==

e The stable orbits in red and orange allow for direct diffusion between cells
when E > Viaqdie



Manifolds

Disruption of separatrix
invariant into a chaotic
layer

Infinite tangle between
stable and unstable
branches induces chaotic
motion, densely filling a
2D area as a fractal

Numerical calculation from
periodic orbit eigenvectors:
Ws*, Ws™, Wa™, Wu*

Heteroclinic

Homoclinic

Integrable

Chaotic




Manifolds for diffusion onset

e Slightly above diffusion onset, manifolds from orbits over saddle points
describe the transport of particles between lattice cells.

e Small superposition between the inner (green) and outer (red) layers.




Manifolds for diffusion onset

e Soon after diffusion onset, manifolds from orbits over saddle points
describe the transport of particles between lattice cells.

e Small superposition between the inner (green) and outer (red) layers.
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SALI method

e Smaller Alignment Index (SALI)®: a quick method for orbits discrimination.
Two deviation vectors w; are evolved in tangent space in parallel to an orbit:
SALI(t) = min (||w1(¢) — @2(t)]], [[w1(¢) + @2(2)]])
e Chaotic case (SALI(t) » O):

w1(8) R

[1] C. Skokos. Journal of Physics A: Mathematical and General 34 (2001) 5/21



SALI method

e Smaller Alignment Index (SALI)*: quick method for orbits discrimination.
Two deviation vectors w; are evolved in tangent space in parallel with an orbit:
SALI(t) = min ([|@1 (¢) — w2(2)|], [|@1(¢) + w2(2)]])

e Chaotic case (SALI(t) » 0): e Regular case (SALI(t) = cte z 0):

&

W1(t) .o? @1(0)4: @2(0)

[1] C. Skokos. Journal of Physics A: Mathematical and General 34 (2001) 5/21



Stability area measurement
Chaotic/

p

areas calculated when summed over a grid mesh

Analogous to Lyapunov exponent methods but usually with faster convergence

SALI map

0.0 j

Poincaré Section (y = Z,p, > 0)

1.0

= 0.0

=10°
<1072
=10~
10=6
10-8
1010
1012
=
1010
'IO—L\‘
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Chaotic area

80.0 1.0 e Small predominance of chaos
for energies below saddle
points.

0.8 . ..

60.0 e Ergodic Ilimit above the
instability lines induced by
maxima points.

0.6
[ 40.0 [
0.4

20.0

0.2
0.00O 0.0

a 7/21



Chaotic area

80.0 1.0 e Small predominance of chaos
Global maximum e for energies below saddle
mm [ ocal maximum - | pOintS'
m= Saddle - 0.8
60.0 | -~ e Ergodic limit above the
instability lines induced by
maxima points.
0.6
e Emergence of stable structures
R 40.0 over local and mMaxima
0.4 energy lines.
20.0 Vg_max — 2U(1 _|_ Oé)
0.2
e Vimax = 2U(1 — )
2
O'OOO 0.0 saddle — U(]- — )

a 7/21



Chaotic area

80.0

Global maximum

B mm [ ocal maximum

- mm Saddle

60.0

=) 40.0 [l

20.0




1.0

0.8}

04}

0.2

0.6 |

SALI

e Area measurement by SALI

ra = 0.1
: ----- Total
Regular
. e Chaotic

0.0

1

11

22
E

33

44

results

e At the energy level of local maxima,
particles can reach unstable points

o wn
NS

™
- —3 0 3 T
X

SIE

Sudden peak (drop) in stable (chaotic) area at F = 36.0
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Phase space
E

= 0.10

R (Y
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Island myriad bifurcation

Set of island chains in an onion-like
structure

o Even periodicity

o Centered around the unstable
UPO over local maxima points

o Isochronous chains
(independent periodic orbits)

Prominent fractal structure.

Existence for short energy interval
(AE = 0.5).




Fractality
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Fractality
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Fractality
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Fractality
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Fractality

10V

1073

1070

1077

10—12

10—15

10'*
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Fractality

10V

1073

1070

1077

10—12

10—15

10'*
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-0.69 /8

Fractality
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-0.69 /8

Fractality
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-0.705 gy

-0.708

Fractality
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Isochronous chains
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Isochronous chains

/21



Escape time

e Alternating layers with either trapped orbits or quick escape through the lattice.

12/ 21



Escape time — spatially closed orbits

e Trapped orbits present spatial closure — return to its initial position without PBC

10!

Libration (closed orbit)

PBC (On) PBC (Off)

T 4 :
Yy D) ( / q o
_% ,4’/,,'—277 \
_7r§\ - ///\i\ % . '

=7 4 2 s 2T 47 6 Rl

.SU
e Periodic return to original state
(z(t),y(t) = (=t +7),ylt+7) & =z,y€R

12/ 21



Escape time — spatially open orbits

e Direct flights lack spatial closure — return to initial position only when considering PBC

Rotation (open orbit)

PBC (On) PBC (Off)

N
127
N 107

27 4w omr 8w 10w 127
X

Periodic return to an identical site in neighbor cell
(z(t),y(t) = (x(t +7),y(t + 7))

&

(x,y) € (—m, 7] X (=7, 7] 12 /21




Separatrix reconnection

80.0

60.0

K 40.0

20.0




Separatrix reconnection

1.0

S
Z 0.0
<
0.5
_1'00 4 —:TT B 1 3 —:77 70 1 5 —:7r T
X T X
e Topological inversion between outer and inner island chains (separatrix reconnection)
e Myriad ‘peeling’ - repeated collision of islands as inner chains move outwards
13/ 21

Local non-twist winding number profile



How resilient is the myriad structure
under symmetry break...?



Symmetry break — Rectangular lattice

[V(m, y) = U (cos®(z) + cos®(kyy) + 2a cos(z) cos(kyy)) ]

llllllllllllllllllllllll

10 0.6
[ —— k, = 1.0000
| —— &, =1.0005
0.8F — K =10050
L —— k, = 1.0100
F—— &, = 1.0500

0 10




Periodic orbits calculation - Monodromy method
Near a periodic orbit, displacements are linearly described by the
monodromy matrix?:

55(1) = M 65(0)

Numerically, displacements §5; = (5:1: 5y 5pm,5py) around a near
periodic orbit § = {51, ..., SN}, Where §; = {x ,Y' Dy Dy} are

05N+1 = AN41051 + v

Imposing the orbit's closure condition (§5x, = 651), returns a linear
system for the first displacement correction:

(It —An+1) 051 =T'npa

The corrected orbit is iterated until convergence: |I‘N+1| — 0 (Newton-Raphson)

[1] M. Baranger et al. Annals of Physics 186 (1988) 15/ 21



Periodic orbits calculation - Monodromy method
Near a periodic orbit, displacements are linearly described by the
monodromy matrix?:

55(1) = M §5(0)

Numerically, displacements §5; = (5:1: 5y 5px,5py) around a near
periodic orbit §= {51, ..., Sn}, where §; = {x ,Y' Dy Dy} are

05N+1 = AN+1051 + T'npq

Imposing the orbit's closure condition (§5x, = 651), returns a linear
system for the first displacement correction?

<I4 — AN+ %ANH X @> 051 = FN+1+%AN+1

Besides [, the scalar ] iIs now used for energy convergence.

[1] M. Baranger et al. Annals of Physics 186 (1988) [2] N. S. Simonovic, Chaos 9(4), (1999) 15/ 21



Periodic orbits calculation - Monodromy method

As shown previously, the converged orbit will have the same period as the initial
guess. For a PO with a given energy, the new linear system considers the time step

(i.e. the period) as a new variable and the conservation of energy as extra equation?
1 —
<I4 — Ay + QANH %Y @) 051 = I‘N+1+%AN+1

Besides [, the scalar N Is now used for energy convergence.
e The converged matrix A 41 becomesthe monodromy M

e For 2D systems, M immediately provides the orbit stability from its trace:
stable — tr(M) = 2 & (97 + e7%7) = 2(1 £ cos(d7)) € [0, 4]
unstable — tr(M) = 2 £ (" +e797) = 2(1 £ cosh(d7)) € (—o0,0] U [4, 00)

[1] N. S. Simonovic, Chaos 9(4), (1999) 15/ 21



Periodic orbits - Energy x Period diagram
44.0

e Periodic orbits search over phase
space (for fixed parameters) — map
period 1to 4.

33.0
2207

11.0 ¢

00— 100 200 ~3.00
16/ 21



Periodic orbits - Energy x Period diagram
44.0

e Periodic orbits search over phase
space (for fixed parameters) — map
period 1to 4.

33.0

e Horizontal lines mark the energy
level for saddle equilibria (E=19.8)
and local maxima (E=306).

220}

o s s . s — ——— ———

| Saddle point

e A periodic orbit approaching an

L) unstable equilibrium point diverges
in  period (classic pendulum
analog).

"0 100 200 T 3.00

16/ 21
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Hamiltonian model - Hexagonal Lattice

e Investigation of the myriad

phenomenon for a hexagonal
lattice

e Lattice setup with three
co-planar waves

Vig,y)=U ( cos” (k) +cos” (51’ + gy> + cos? <2x + \[ky>

2
3k
+20v19 cos (kx) cos (255 + \/2_y>

+2ar13 cos (kx) cos <2x + my)

2
V/3k k V/3k
+2a93 cos (533 + —5 Y jeos| —or + — Y

Single coupling condition
12 = (]3 = 93 = &

2

V(x,y,«a) = 1+cos (\/§y> (a4 cos(x))+ cos(x) <4a oS (g) COS (fy) + a + cos(x ))

17 / 21



Honeycomb potential — Equilibrium points

e Set of equilibrium points with fixed
position as the coupling changes

e Conservation of hexagonal symmetry
required by the myriad orbits

Reference points for energy levels
where the myriad is expected

Island myriad found only near a &= ()

9.0
® Pp B = Maximum
® L, L i Minimum
e ] wees Saddle
6.0
Island
— & Myriad
S 30} ]
m -
0.0}
3.0

L0 05 0.0 05 10



Honeycomb potential — island myriad (a = 0)

1.0 : ; . ; ; : : ‘ ; . '
[ =3.04 . @=—0.021 207
- Smm———N 1 167
157 |
127t Q
0.5 107 ar
= om 4
Yy 0
Z 0.0 g <
= —5m —dm (
) 107 oo
-0).5 — 127
— 157 1
| —167 |
| —207 - : = : = ; = ; = : = :
—OoT 0 5 107 157 200 =157 =107 —om 0 T 107
-1.0 1 T

IS
SECIE]S

e Fractality is attenuated due to additional sources of instability within the potential surface

e Isochronous chains with triple multiplicity
19/ 21




Honeycomb potential

e Partial transport barrier from strong
stickiness

— Island myriad

e Existence of the myriad for a short
coupling interval

=1 S

- o

o=

19 pe Ir 270

13| =

%’/T 27()



Triangular lattice — Equilibrium points

V =3+ cos(vV3z —y) + %sin(\/gw -y + <2 cos ( a




Conclusions Acknowledgements

e Emergence of stable structures (island
myriads) over unstable equilibrium points [1] MESO CA EMN “T R E

e Conjecture: Expected for any potential with

tiling symmetry... P i' m
( N
Pq

ﬂ w Qcw

e Must result fromm a combination of
resonances + symmetry

[1] M. Lazarotto et al. “Island myriads in periodic potentials”, Chaos, 34, (2024)
[2] M. Lazarotto et al. “Diffusion transitions in a 2D periodic lattice”, CNSNS, 112, (2022)
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e Hexagonal unit cell

S bt

= [N (8] [N [}¥]

=1

e Single coupling condition:

o Geometrical restriction:

1
o € —57 1
o Reduction of parameter
space

o Transformations keep
equilibrium points fixed
in space and preserve
hexagonal symmetry




Viz,y)=U (0032(:13) + cos*(y) + 2o cos(z) cos(y))
a = 0.25

Minimum | 7

A Maximum

+ Saddle

ol

Symmetric under rotations:
(%5, n € Z)

Symmetric under translations:
(2mm, m € Z)



Viz,y)=U (0082(33) + cos*(y) + 2o cos(z) cos(y))

a = 1.00
Minimum | 7 §
A Maximum
+ Saddle
3
Yo
-5
—Tr
e Global maxima and minima points e Ata=1.0, saddle and local maxima

remain fixed as oo changes. merge (minimum trench line)



Diffusion trajectories

e Short range chaotic displacement — tens or hundreds of lattice cells

e Normal diffusion regime u ~ 1

3.00

240

1.80 f

frequency

1.20 |

0.60 |

—1207 | ) ) ‘ ) ) ‘ ‘ e |
0 30 60x %0x 1207 150% 180w 210 240% 2707 0-0%. 0 .
’ tﬂight




Diffusion trajectories

e Long range chaotic displacement (Lévy flights) — a thousand lattice cells

e Free diffusion regime u ~ 2

4007 ¥Ry

=200m

—4007 [

frequency

(@) =\/smmppe =P

2.00

1.60

1.20

0.80

0.40

0.0%.0

Ophr = 2F
a=1.0
E=176 |
B =-0.03]
c=0.18

20 50

tﬂight



Appendix — Isochronous chains with higher multiplicity

e Isochronous chain with single
period 12

[NIE]

e Three-fold isochronicity
o Fixed point period 3

o Fixed point period 3

o Fixed point period 6




— Island myriad near max energy

Appendix



Monodromy method for numerical calculation
of periodic orbits

e Excerpts from N. S. Simonovic, ‘Calculations of periodic orbits: The
monodromy method and application to regularized systems’, Chaos
9(4), (1999); DOI: 10.1063/1.166457



https://doi.org/10.1063/1.166457

7
S(tk) = sk = (quk *** Gnk PLE *** Dnk)
where the discrete time step evolution is performed as:

Pik
Qik+1 = ik + Al apiH(p7 Q) = Qik T+ ANy A -

Dik+1 = Dik — At aqu(p: q) = Dik — At ‘/i(Qk+1)

for i € [0,n] and k € [0, K] as coordinate and time discrete step index, respectively;
V; is the partial derivative 0,V (q). Taking small displacements around a solution orbit
(q°, p°), we have the linear form:

linear 5pi,k
Qi = q‘?,k + 0Gi k 8i k1 = 0qix + C;:,k: LAt o
0 linear ; n . (2)
Pi = Pip+ 0P OPik+1 = OPik + Cipnp — At Z Vi (Qi41)0Gi 41
Jj=1
for
0
Pi k
C;;’k = q?.k - q‘?,k+l + At ﬁ)

/

Citnk = p?,k - p?,k+1 — At V;(q2+1) for i € [0,n]



Simplifying system 2 to matrix form yields:

A-k‘—}-l(ssk-i-l = B(SSk T C;\,

where
I'n On .
Akt = (AthH 1,,) b=
for
Vir(ap) -+ Vin(ay)
P = : : m~'
an(qk) Vnn(qk)

Expressing ds;,1 alone, we get the system:

081 = Urdsi + ¢



for

I, At m!
UA o AA+1B (_At Pk—}-l In == At2Pk+1m_1)

J
( Clk \

/

Cn k

—Afzvh qu ik Tl

=~ ~

1
Cr = Ay 1€y

\ —AtZ‘/}z'i(qg+l)C§,,k A C‘Iz-n.k )

Successively applying equation 3 from a initial displacement ds; yield the k-th itera-
tion:
0Skt1 = Ap1081 + T (4)



Ak+1 - UkAk (Al - 1271)
i1 = Ul + ¢ (IT'; = 09y,)

From all the possible solutions to system 4, we look for the periodic ones, that is, those
whose after K + 1 steps go back to its initial point:

O0sg41 = Ag41081 + Ty for Agy1 =Ug---Up (5)

As shown in the previous section, the matrix A g, will then be the monodromy M in
case the orbit is the periodic solution, but in its discretized form. The Newton-Raphson
fashion algorithm arises when one wants to solve system 4 for I' . ; = 05,,, in order to get
a periodic orbit (0sg ., = ds; = Mds,).

The linear equation system to be solved is then:

(1 —Agq1)0s; =Tk py (6)



3 Calculation of periodic orbits — constant energy

The monodromy algorithm previously shown consider a fixed time step At and number
of steps K. However, it can be desired to perform the calculation keeping the energy
constant instead of the period. Thereunto, the monodromy algorithm must include a
variation for the time step either At = At +§At. The full discretized equations now are:

Spii. Do
Pik +P.A5At
m m

0Gik+1 = Oqix + C;p + At

5Pz‘,k+1 = 5Pz‘,k + C;+7l,k - Atz Vz‘j (q2+1)5q-i,k+1 - Vz‘(qgﬂ)‘SAt

j=1
yielding the following linear system:

0sk4+1 = Ugdsg + didAt 4 ¢



where

0
( Py
m

.0
Pr.k

m

()
dk : —AtZ‘/h k+l . ‘/l(q(liﬂ—l)

n . 0
\—AtZVm(q2+1)% - Vn(q(lztﬁ-l))

and Uy, ¢, are the same as previous. The iterated system in its kth-iteration will be given
by:

0Skr1 = Urds + ARoAt + Ty (7)
with the following relations and initial conditions:
Ak—H == UnAk for Al = I2‘n,
Ak+1 = UnAk + dk for A1 - 0211

= U,y + ¢ for I'y = 0y,



2m
1=1
F
b Pl At Py
iz =3 | Thopia + Vi P Rt SAt
(linearization) n 2 [ i1+ (qg/z) ( g1+ 5 OPi1 t 5

where 7 is the unperturbed term

‘ 12.1
= El ZQTII V(q3/2)

1=

The time displacement can then be eliminated by:

€00At =n— 0 - Js;

n . ()
here €y = ]2)’ = V(q3/2) and © = (€, -+ €y,) with:
1, I
0 pol At
= Vi(q: i = — e — for i=1,....,m
v(qs/z) €i+ = 8 v o ((h/?) l ;

Eliminating dAt, the final system to be solved is thus:

1
(IZn - AK+1 + 6—{A}(+1,@}) (551 = FK+1 + gAK-H
0 -0



