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● Dipole induction in neutral atoms via a 
laser electrical field

[1] R. Grimm et al. Advances in Atomic, Molecular and Optical Physics 42 (2000)

● Average interaction potential¹

Optical lattices

● Restoring force trapping particles in 
wave minima
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Optical lattices
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● Superposition of orthogonal beams in 2D 
(cigar-shaped cells¹)



● Dipole induction in neutral atoms via a 
laser electrical field

[1] R. Grimm et al. Advances in Atomic, Molecular and Optical Physics 42 (2000)

● Average interaction potential¹

Optical lattices
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● Superposition of orthogonal beams in 3D 
(crystal shaped lattice¹)



Hamiltonian – square lattice
● Superposition of orthogonal waves (x-y plane)

● Superposed electrical fields

● Conservative potential (normalized units)

with laser coupling as  2 / 21



● Energy scale (laser intensity)¹

● Particle energy

● Wave coupling (perturbation)

[1] E. Horsley et al. Physical Review E 89 (2014)

● Ignoring particles interaction, trajectories 
are regarded as classical

where

Hamiltonian – square lattice

3 / 21



● Local maxima

● Saddle

● Global maxima

● Global minima

Equilibrium points
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● Symmetric under rotations: 

● Symmetric under translations: 

Symmetries

● Square tiling symmetry 
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● Symmetric under rotations: 

● Symmetric under translations: 

Symmetries

● Dynamical effect of symmetries

Island myriad phenomenon

● Square tiling symmetry 
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Low energies - Periodic orbit bifurcation



● The stable orbits in red and orange allow for direct diffusion between cells 
when                        

Low energies - Unstable periodic orbit bifurcation



● Disruption of separatrix 
invariant into a chaotic 
layer

● Infinite tangle between 
stable and unstable 
branches induces  chaotic 
motion, densely filling a 
2D area as a fractal

Manifolds

● Numerical calculation from 
periodic orbit eigenvectors:
Ws⁺, Ws⁻, Wu⁻, Wu⁺



Manifolds for diffusion onset 
● Slightly above diffusion onset, manifolds from orbits over saddle points 

describe the transport of particles between lattice cells.

● Small superposition between the inner (green) and outer (red) layers.



● Soon after diffusion onset, manifolds from orbits over saddle points 
describe the transport of particles between lattice cells.

● Small superposition between the inner (green) and outer (red) layers.

Manifolds for diffusion onset 



● Smaller Alignment Index (SALI)¹: a quick method for orbits discrimination. 

Two deviation vectors        are evolved in tangent space in parallel to an orbit:

SALI method

[1] C. Skokos. Journal of Physics A: Mathematical and General 34 (2001)

● Chaotic case (SALI(t) → 0):
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● Smaller Alignment Index (SALI)¹: quick method for orbits discrimination. 

Two deviation vectors        are evolved in tangent space in parallel with an orbit:

SALI method

[1] C. Skokos. Journal of Physics A: Mathematical and General 34 (2001)

● Chaotic case (SALI(t) → 0): ● Regular case (SALI(t) ≅ cte ≠ 0):
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Stability area measurement

Poincaré Section SALI map

● Chaotic/Regular areas calculated when summed over a grid mesh

● Analogous to Lyapunov exponent methods but usually with faster convergence
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Chaotic area
● Small predominance of chaos 

for energies below saddle 
points.

● Ergodic limit above the 
instability lines induced by 
maxima points.
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Chaotic area
● Small predominance of chaos 

for energies below saddle 
points.

● Ergodic limit above the 
instability lines induced by 
maxima points.
 

● Emergence of stable structures 
over local and global maxima 
energy lines.
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Chaotic area
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SALI results
● Area measurement by SALI

● Sudden peak (drop) in stable (chaotic) area at

● At the energy level of local maxima, 
particles can reach unstable points
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Phase space
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Island myriad bifurcation
● Set of island chains in an onion-like 

structure

○ Even periodicity

○ Centered around the unstable 
UPO over local maxima points

○ Isochronous chains 
(independent periodic orbits)

● Prominent fractal structure.

● Existence for short energy interval
(ΔE ≈ 0.5).
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Fractality
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Fractality
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Isochronous chains
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Isochronous chains
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Escape time
● Alternating layers with either trapped orbits or quick escape through the lattice.
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Escape time – spatially closed orbits
● Trapped orbits present spatial closure — return to its initial position without PBC

Libration (closed orbit)

PBC (On) PBC (Off)

● Periodic return to original state
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● Direct flights lack spatial closure — return to initial position only when considering PBC

Escape time – spatially open orbits

Rotation (open orbit)

● Periodic return to an identical site in neighbor cell

PBC (On) PBC (Off)
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Separatrix reconnection
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Separatrix reconnection

● Topological inversion between outer and inner island chains (separatrix reconnection)

● Myriad ‘peeling’ – repeated collision of islands as inner chains move outwards

● Local non-twist winding number profile
13 / 21



How resilient is the myriad structure 
under symmetry break…?



Symmetry break – Rectangular lattice
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Periodic orbits calculation - Monodromy method
Near a periodic orbit, displacements are linearly described by the 

monodromy matrix¹:

Numerically, displacements       around a near 
periodic orbit                                , where                                        , are 

Imposing the orbit’s closure condition (                     ), returns a linear 
system for the first displacement correction:

The corrected orbit is iterated until convergence:                            (Newton-Raphson)

[1] M. Baranger et al. Annals of Physics 186 (1988) 15 / 21



Periodic orbits calculation - Monodromy method
Near a periodic orbit, displacements are linearly described by the 

monodromy matrix¹:

Numerically, displacements       around a near 
periodic orbit                                , where                                        , are 

Imposing the orbit’s closure condition (                     ), returns a linear 
system for the first displacement correction²:

[1] M. Baranger et al. Annals of Physics 186 (1988)

Besides     , the scalar      is now used for energy convergence. 

[2] N. S. Simonovic, Chaos 9(4), (1999) 15 / 21



As shown previously, the converged orbit will have the same period as the initial 
guess.   For a PO with a given energy, the new linear system considers the time step  
(i.e. the period) as a new variable and the conservation of energy as extra equation¹

Besides     , the scalar      is now used for energy convergence. 

● The converged matrix     becomes the monodromy 

Periodic orbits calculation - Monodromy method

[1] N. S. Simonovic, Chaos 9(4), (1999)

● For 2D systems, immediately provides the orbit stability from its trace:
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● Periodic orbits search over phase 
space (for fixed parameters) – map 
period 1 to 4.

Periodic orbits - Energy x Period diagram
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● Periodic orbits search over phase 
space (for fixed parameters) – map 
period 1 to 4.

● Horizontal lines mark the energy 
level for saddle equilibria (E=19.8) 
and local maxima (E=36).

● A periodic orbit approaching an 
unstable equilibrium point diverges 
in period (classic pendulum 
analog).

Periodic orbits - Energy x Period diagram

Saddle point

Local maxima
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Hamiltonian model - Hexagonal Lattice

Single coupling condition

● Investigation of the myriad 
phenomenon for a hexagonal 
lattice

● Lattice setup with three 
co-planar waves
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Honeycomb potential – Equilibrium points
● Set of equilibrium points with fixed 

position as the coupling changes

● Conservation of hexagonal symmetry 
required by the myriad orbits

● Reference points for energy levels 
where the myriad is expected

● Island myriad found only near 

Island 
myriad
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Honeycomb potential – island myriad (α ≳ 0)

● Fractality is attenuated due to additional sources of instability within the potential surface

● Isochronous chains with triple multiplicity
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Honeycomb potential – Island myriad

● Partial transport barrier from strong 
stickiness

● Existence of the myriad for a short 
coupling interval 
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Triangular lattice – Equilibrium points

No myriad…
X
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Conclusions

[1] M. Lazarotto et al. “Island myriads in periodic potentials”, Chaos, 34, (2024)

● Emergence of stable structures (island 
myriads) over unstable equilibrium points [1]

● Conjecture: Expected for any potential with 
tiling symmetry…

X

● Must result from a combination of 
resonances + symmetry

Acknowledgements

[2] M. Lazarotto et al. “Diffusion transitions in a 2D periodic lattice”, CNSNS, 112, (2022)





Appendix



Honeycomb potential – single coupling

● Hexagonal unit cell

● Single coupling condition:

○ Geometrical restriction:

○ Reduction of parameter 
space

○ Transformations keep 
equilibrium points fixed 
in space and preserve 
hexagonal symmetry



● Symmetric under rotations: ● Symmetric under translations: 



● At α = 1.0, saddle and local maxima 
merge (minimum trench line)

● Global maxima and minima points 
remain fixed as α changes.



Diffusion trajectories
● Short range chaotic displacement  ⟶  tens or hundreds of lattice cells

● Normal diffusion regime 



● Long range chaotic displacement (Lévy flights) ⟶ a thousand lattice cells

● Free diffusion regime

Diffusion trajectories



Appendix – Isochronous chains with higher multiplicity
● Isochronous chain with single 

period 12 

● Three-fold isochronicity

○ Fixed point period 3

○ Fixed point period 3 

○ Fixed point period 6



Appendix – Island myriad near max energy



Monodromy method for numerical calculation 
of periodic orbits

● Excerpts from N. S. Simonovic, ‘Calculations of periodic orbits: The 
monodromy method and application to regularized systems’, Chaos 
9(4), (1999); DOI: 10.1063/1.166457

https://doi.org/10.1063/1.166457















