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Abstract We characterized the influence of high period accelerator modes in the
global dynamics of a non-dissipative Bouncer model. The dynamics of the system
was investigated considering both complete and simplified approaches. Evaluating
the average of the velocity over large ensembles of initial conditions for the complete
mapping, we obtained particular ranges of the control parameter where high period
accelerating structures are located. The position, influence and shape of the acceler-
ator modes were obtained considering the symplectic mapping. Our results, lead us
to infer that even for high period and less influent accelerator modes, the dynamics
is globally affected for long time series, causing an anomalous diffusion, in compare
with the regular Fermi acceleration.

1 Introduction

Modelling of dynamical systems, has been one of the most embracing area of interest
among physicists and mathematicians is the past decades [1–5]. Low-dimensional
systems in particular, despite the simple modelling, are very suitable to study and to
investigate chaotic properties in their phase space [1–5]. These systems can present a
very complex dynamics leading to a rich variety of nonlinear phenomena, considering
either dissipative and non-dissipative dynamics [1–5].
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The Italian physicist Enrico Fermi [6] proposed in 1949, a mechanism as an
attempt to explain the origin of the high energies of the cosmic rays. Fermi claimed
that charged particles, which interacted with oscillating magnetic fields present in
the cosmos, would in the average exhibit a gain of energy. This unlimited growth
of energy is denominated Fermi acceleration (FA) and has many applications in
several areas of research, as Plasma Physics [7, 8], Astrophysics [9, 10], Atom-
optics [11, 12], and specially in billiard dynamics [13–18]. This unlimited energy
growth is mainly associated with normal diffusion in phase space. However, FA may
present distinct transport from the normal diffusion, as exponential [19–22], or where
stickiness phenomenon [4, 5] plays the role of a slowing mechanism for FA [22].

The Bouncer Model [23–25] will be the focus of our study in this paper, where
basically we have a free particle under the influence of a constant gravitational
field suffering elastic collisions with a vibrating platform. In the non-dissipative
version and depending on both control parameters and initial conditions, the bouncer
ball presents FA [1]. Despite the simple dynamics, applications for this model can
be found in dynamic stability in human performance, [26], vibrations waves in a
nanometric-sized mechanical contact system [27], mechanical vibrations [28, 29],
anomalous transport and diffusion [30], thermodynamics [31], chaos control [32,
33], granular materials [34–36], among others.

In this paper we investigate how resonances in the phase space, known as accel-
erator modes (AM) (or ballistic modes) [37–48], influences diffusion and transport
properties of the average velocity of theBouncerModel.We observed that in the pres-
ence of this accelerating structures, the dynamics behaves in a regular andmonotonic
increase of velocity, differing from the normal diffusion present by the “regular FA”
[22, 49]. By exploring the the non-symplectic character of the mapping, we set a
numerical search for the AMof high period and low influence on the global dynamics
[49]. We found a series of hidden AM, which accelerate more the dynamics for long
times than normal diffusion, where their shape and evolution were characterized by
stability islands in the symplectic version of the map. We observed that for sufficient
long time series, the presence of any AM, of high period or not, would affect globally
the dynamics of the system.

The paper is organized as follows: In Sect. 2, we describe the dynamics of the
Bouncer Model, in both symplectic and non-symplectic version. Section3 is devoted
to determine analytically the existence of period-1 accelerator mode. Also, we per-
form a numerical search for high period AM and characterized their period and
control parameter range of stability in a table. In Sect. 4 we use the symplectic ver-
sion of the model to reveal the accelerating structures in the the modulated phase
space. Finally, in Sect. 5 we draw some final remarks and conclusions.

2 The Model

The dynamical system used to explore the existence of AM with high period and
low influence is the Bouncer Model. The dynamical analysis of this system can be
explored considering two versions of a two dimensional mapping. The complete
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Fig. 1 Schematic view of
Bouncer model

one (non-symplectic) consists in considering the full dynamics of a bouncing ball
colliding elastically with a vibrating platform. The simplified version (symplectic), is
set by considering the position of the platformfixed. However, when occurs a colision
between the particle and the platform, they exchange momentum and energy as if
the oscillatory platform where normally moving. A schematic view of the Bouncer
Model is shown in Fig. 1.

In the complete version, the positionof the oscillatory platform is givenby xw(t) =
A [cos(ωt + ϕ) − 1], where A is the amplitude of the platform oscillation, ω is the
angular frequency and ϕ is the oscillation initial phase. The gravitational field acts
as a return mechanism which causes repeated impacts between the particle and the
platform.

The position of the particle between impacts is given by the free fall equation
x p(t) = h0 + vt − gt2/2, where h0 is the vertical position from which the particle
was previously launched by the platform, v is the launch velocity, t is the time elapsed
since the last impact and g is the gravitational acceleration. The instants of impacts are
obtained by equating the platform position and the particle position xw(t) = x p(t).

2.1 Complete Model

The velocity of the particle after each impact will be given by the negative relative
velocity between the particle and the platform just before the collision. Obtaining
the velocity of the platform and of the particle in a recurrent way at each impact, we
can write a set of discrete equations representing the particle velocity vn and of the
phase of the platform movement ϕn . The time interval tn+1 and the phase difference
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between two consecutive impacts are related by tn+1 = (ϕn+1 − ϕn)/ω. Therefore,
the discrete map that describes the complete Bouncer Model can be written as

{
A[cos(ϕn) − cos(ϕn+1)] + vn(ϕn+1 − ϕn)/ω − g(ϕn+1 − ϕn)

2/2ω2 = 0
vn+1 = −vn + g(ϕn+1 − ϕn)/ω − 2Aω sin(ϕn+1)

. (1)

The first expression in (1) must be solved numerically at each collision in order to
find the value of ϕn+1.

Defining a parameter K in terms of A, ω and g as K = ω2 A/(πg) it is possible
to write a new map dependent on a single control parameter. This parameter is inter-
preted as a ratio between accelerations of the moving platform and the gravitational
field. To perform this procedure, we rewrite the map in terms of a dimensionless
velocity given by Vn = ωvn/(πg). So, we write the new map as

{
K [cos(ϕn) − cos(ϕn+1)] + Vn(ϕn+1 − ϕn)(ϕn+1 − ϕn)

2/2π = 0
Vn+1 = −Vn + (ϕn+1 − ϕn)/π − 2K sin(ϕn+1)

. (2)

To determine the non-symplectic character of this model, we need to obtain the
determinant of Jacobian matrix associated with the mapping expressed in (2). The
volume element in phase space varies according this determinant, whose elements
are given by the partial derivatives of the mapping variables. The partial derivatives
of ϕn+1 are obtained by indirect differentiation of the first expression of the mapping
(2), followed by some algebra in order to isolate the terms. These expressions are
written as

∂ϕn+1

∂ϕn
= Vn − (ϕn+1 − ϕn)/π + K sin(ϕn)

Vn − (ϕn+1 − ϕn)/π + K sin(ϕn+1)
, (3)

∂ϕn+1

∂Vn
= −π(ϕn+1 − ϕn)

Vn − (ϕn+1 − ϕn)/π + K sin(ϕn+1)
, (4)

∂Vn+1

∂ϕn
= ∂ϕn+1

∂ϕn

[
1/π − 2K cos(ϕn+1)

] − 1/π, (5)

∂Vn+1

∂Vn
= ∂ϕn+1

∂Vn

[
1/π − 2K cos(ϕn+1)

] − 1. (6)

Therefore, the Jacobian determinant is given by

det (J ) = Vn + K sin(ϕn)

Vn+1 + K sin(ϕn+1)
. (7)

As can be seen in (7) the Jacobian has no constant value once it depends on the
dynamical variables associated with the iterations. As a consequence, the system
cannot be considered dissipative neither non-dissipative, since J can be greater or
less than the unity for distinct regions of the phase space. The phase space volume
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will contract around some regions and expand around some others. This result is
important for our purpose of searching small accelerating structures in the phase
space, represented by high period AM.

2.2 Simplified Model

We define the simplified version considering the position of the platform as fixed,
but there is an exchange of momentum and energy between the particle and the
moving platform as if the platform were moving. Assuming this approximation, the
time elapsed between consecutive impacts can be easily found depending only on
the launch velocity of the last collision. So, considering (ϕn+1 − ϕn) = 2πVn , the
simplified version of the bouncer model is written as

{
ϕn+1 = ϕn + 2πVn

Vn+1 = |Vn − 2K sin ϕn+1| . (8)

The simplified bouncer model defined by (8) is symplectic, as one can easily
check. Although the simplified model does not correspond to the full dynamics of a
ball bouncing in a moving floor, it can be useful to evaluate analytical calculations
about the position and stability of the fixed points. Also, we use the simplified model
to visualize the accelerating structures in the modulated phase space, once they will
appear as periodic islands due to the symplectic character of this mapping.

3 Accelerator Modes

In the phase space, the dynamics of an AM consists of regular and repetitive jumps
in V direction. This implies in a ballistic acceleration of the particle without chaotic
behaviour. The simplest case happenswhen themap iteration leads one point in phase
space to another at same value of ϕ and shifted in V direction by adding an integer l.
We designate this kind of dynamics as period-1 AMwith step-size l. If we impose an
artificial periodicity along V direction by modulating the phase space, the period-1
AM is indistinguishable from a period-1 fixed point. The period of the AM refers to
the number of map iterations until a repetition of coordinates in a modulated phase
space.

3.1 Stability of the Period-1 Accelerator Modes Step-Size l

In this subsectionweuse the simplifiedmapping approach to obtain the position of the
accelerating structure of period-1 and step-size l in the phase space as function of the
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control parameter K and estimate their stability. Using the symplectic map described
by (8)weobtain the relation for theAMcoordinatesVn+1−Vn = l = −2K sin(ϕn+1).
The position of the period-1 AM step-size l is provided by the mapping in (8) as

V ∗ = l , (9)

ϕ∗ = arcsin (−l/2K ) . (10)

In order to determine the stability of the period-1 AM step-size l, we linearize the
system around the position (ϕ∗, V ∗) by calculating the Jacobian matrix at this point.
The calculation of the eigenvalues leads to a characteristic expression as follows

P(λ) = det

(
1 − λ 2π

−2K cosϕ∗ 1 − 4π K cosϕ∗ − λ

)
,

P(λ) = λ2 − λ(2 − 4π K cosϕ∗) + 1 = 0 . (11)

Since the eigenvalues are complex, the coordinate (ϕ∗, V ∗) corresponds to an
elliptical fixed point, which satisfy the stability condition of the AM. So, we obtain

|2 − 4π K cosϕ∗| < 4 → 0 < 4π K cosϕ∗ < 4. (12)

Replacing the (10) on the expression given by (12) we can express the stability
condition of the period-1 AM step-size l as a function of parameter K

√
l2/4 < K <

√
l2/4 + 1/π2. (13)

Although the interval of stability of period-1 AM step-size l was calculated by
the simplified version model, the results can be extended to the complete bouncer
model, where the match of their positions has a good agreement. The obtainment of
analytical expressions for high order AM are extremely complicated, even using the
simplified model. So, we perform a numerical approach to determine their existence,
and the estimation of their stability interval and position in the phase space, as will
be explained better in the next subsection.

3.2 Searching for Accelerator Modes of High Period

To determine the existence of the high period AM,we obtain numerically the average
velocity of a great number of random initial condition merged in the chaotic sea
during long time iterations (where each iteration corresponds to one impact) of the
complete dynamics for different values of K . This procedure is efficient due to
the non-symplectic character of the mapping. As a consequence, the map does not
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preserve the area in phase space. So, even that the location of the random initial
conditions could be different from the location of accelerating structure, eventually
some of themcan be “attracted” to theAM[49]. If anAMexists in the non-symplectic
mapping, it affects globally the dynamics of the system and the average velocity of
the total ensemble will present anomalous diffusion [49].

To perform this analysis, we define the average velocity as

〈V 〉N = 1

M

M∑
j=1

Vj (N , K ) , (14)

where M represents an ensemble of random initial conditions merged in the chaotic
sea, and Vj (N , K ) is expressed by

Vj (N , K ) = 1

N

N∑
i=1

Vi , (15)

with N representing the total iteration (impact) number,
Although the dynamics is globally affected by the existence of the AM, the high

period ones, present low influence on the initial conditions far from their location. To
reveal the existence of these high period AM, we set up two distinct averages over the
dynamics. First the average was considered for an ensemble of M = 5× 104, over a
time N = 5× 103 for (14). Then, we also perform the average over a sub-ensemble
of m = 500 initial conditions selected in M that exhibit the highest values of the
quantity expressed by (15).

The result obtained by this procedure is shown in Fig. 2, where the black line
corresponds to the average over the first ensemble (M = 5× 104) and the red (gray)
line corresponds to the average over the sub-ensemble (m = 500) most accelerated
initial condition. The parameter K was varied with step equal to �K = 0.00005
between K = 0.13 (parameter value for which the last spanning curve in phase
space is destroyed [22, 49]) and K = 0.5 (parameter value for which occurs the first
period-1 AM [49]).

As we can observe, at some values of the parameter K , the quantity < V >5×103

presents peaks very distinguishable from the general behavior of the curves. These
peaks indicates the existence of the AM for the correspondent values of parameter
K . The computation of the average over the sub-ensemble m = 500 of the most
accelerated initial condition (red (gray) curve) highlights the effect of the AM with
less influence in the global dynamics. Inmost of cases their existence is only revealed
by the search of the m = 500 most accelerated initial condition. The period of each
AM obtained by this procedure was numerically determined and indicated over each
correspondent peak of Fig. 2. Moreover, the complete information about the AM is
organized in Table1 detailed by the period, range of stability, step-size, parameter of
maximum acceleration and position of one accelerating structure.
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Fig. 2 Average velocity for the Bouncer model as function of K . In black we have the average
over the first ensemble M , and in red (gray) we have the average over the sub-ensemble m. For
both averages the time series we set at N = 5× 103. The distinct peaks in both curves indicate the
existence of AM and the numbers indicate the correspondent period of the AM (color online)

4 Islands of Acceleration

After using the complete model to determine the existence of the AM with less
influence in global dynamics, we can use the simplified model to reveal the location,
shape and size of the correspondent AM of the complete version. As we discussed,
the simplified mapping is symplectic and area-preserving. So, the existence of the
AM in this version of the model does not affect the global dynamics of the system
but only the initial conditions given inside the AM or very close to them due the
effect of stickiness.

When we impose a modulation in V direction of phase space, the AM appear as
periodic islands. The number of islands in modulated phase space must be equal to
the period of the AM. In many cases, the size of these stability islands is too small
to be visualized in the entire modulated phase space. Also, their sizes are strongly
related to the influence of the AM in the global dynamics.

In Fig. 3 we illustrate the modulated phase spaces of the simplified mapping
with coordinate ϕ at the horizontal direction and V at the vertical direction for
the parameters K ∗ of Table1. The red (black) circles indicate the position of each
accelerating structure (islands in simplified map). As we can see, the number of
accelerating structures corresponds to the period of the AM. We can also observe
that most of the AM present at least one accelerating structure at V = 1, with
exception of Fig. 3a, e, h.
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Table 1 Accelerator modes for K < 0.5

Period Range of stability Step-size (l) K ∗a Accelerating
structure (ϕ, V )
for K = K ∗

16 0.17875 < K <

0.17910
1 0.17895 (−1.847, 0.938)

7 0.18935 < K <

0.19000
1 0.18970 (−2.431, 1.000)

5 0.20570 < K <

0.20605
1 0.20600 (−2.520, 0.9982)

5 0.20965 < K <

0.21325
1 0.21025 (−2.483, 1.000)

4 0.23440 < K <

0.25065
1 0.23600 (−1.083, 0.815)

11 0.26705 < K <

0.26810
1 0.26745 (−0.714, 1.000)

7 0.27845 < K <

0.27980
1 0.27960 (0.865, 1.000)

2 0.32020 < K <

0.32720
1 0.32100 (−1.182, 0.797)

3 0.32895 < K <

0.33065
1 0.32950 (−1.357, 1.000)

9 0.37125 < K <

0.38610
4 0.37460 (−0.943, 1.000)

3 0.40725 < K <

0.40815
2 0.40750 (−1.398, 1.000)

9 0.43675 < K <

0.44810
6 0.43920 (−1.046, 1.000)

7 0.46090 < K <

0.46580
2 0.46270 (−1.088, 1.000)

aParameter value correspondent to the maximum acceleration in the range of stability

In Fig. 4a–n we zoomed the modulated phase spaces of Fig. 3a–n around one of
the accelerating structures, respectively. We consider the modulation V mod[2] for
a better view of the accelerating structure at V = 1. The points in red indicate the
initial conditions belonging to the AM. We can observe in Fig. 4 that the most of the
AM has a reduced area. This is the reason for being so difficult their detection. Also,
in the Fig. 4j and l. we reveal that for the period-9 AM, we have three clusters of three
accelerating structures on different locations of phase space. This fact increases the
effect of stickiness around the islands of acceleration and make their influence more
important to study diffusion process, besides the small size of their area on phase
space.

The area of accelerating structures is not be the only aspect to determine their
influence on the global dynamics in the complete model. As an example, we can
compare the Fig. 4c with Fig. 4a, b. The period-5 AM shown in Fig. 4c is the smallest
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Fig. 3 Modulated phase space for the simplifiedmodelwith coordinateϕ on the horizontal direction
and V mod[1] on the vertical direction for the respective parameters: a K =0.17895,b K =0.18970,
c K =0.20600, d K =0.21025, e K =0.23600, f K =0.26745, g K =0.27960, h K =0.32100,
i K =0.32950, j K =0.37460, l K =0.40750, m K =0.43920, n K =0.46270. The red (black)
circles indicate the positions of the accelerating structures (color online)

accelerating structures in direct comparison with the others. However, it is more
influent to a global effect in the dynamics than the period-16 AM and period-7 AM
as can be seen in Fig. 2.
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Fig. 4 Islands of Acceleration of the AM presented in Table 1 for the parameters: a K =0.17895,
b K =0.18970, c K =0.20600, d K =0.21025, e K =0.23600, f K =0.26745, g K =0.27960,
h K =0.32100, i K =0.32950, j K =0.37460, l K =0.40750, m K =0.43920, n K =0.46270

5 Conclusions

The existence of high period AM and low influence on the global dynamics was
investigated using the Bouncer Model. Due to the global properties of the AM in
the complete version of this system, it was used to investigate the distribution of
the AM for different periods as we ranged the control parameter. Until now it was
a challenging task to detect the existence and location of accelerating structures
in symplectic maps, since the initial conditions tested are rarely located inside the
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islands of acceleration (which location is unpredictable in most of the cases). With a
model that exhibits a global behaviour for the AM, any sufficiently great ensemble of
initial conditions could be used to identify the existence of the AM and their periods.

A simplified version of the model allows us to find a correspondent symplec-
tic mapping similar to the standard mapping. The simplified mapping was used to
visualize the accelerating structures and their positions in the phase space. When
we impose a modulation between 0 and 1 on the velocity variable, these structures
constitute a number of small islands of acceleration equal to the period of the AM.
A close view on the accelerating structures reveals that their size are not the only
aspect to determine their influence on the global dynamics of the complete model.
Other dynamical properties as: period of the AM, step-size l of the jumps, stickiness
around accelerating structures, distribution of regular periodic islands in phase space
and the chaotic saddle formed by the invariant stable and unstable manifolds should
also influence the effect of the AM on the global dynamics of the system [49].
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