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Abstract. Simple wire models have been proposed to simulate magnetic config-
urations in tokamaks. Here we consider electric currents in five parallel infinite
wires to obtain double-null magnetic surfaces with specific choices of magnetic axis
positions, triangularity, and elongation. As an example, we choose the position and
the electric current of each wire to obtain magnetic surfaces similar to those expected
in the tokamak international thermonuclear experimental reactor. Moreover, we also
integrate the perturbed field line differential equation to simulate chaotic layers near
the hyperbolic points and deposition patterns at the divertor plate observed in
tokamaks. To simulate that, we add to the model a perturbing error field, due to
asymmetries in the tokamak coils, and introduce a random collisional term to the
field line mapping to reproduce escape pattern alterations due to particle collisions.

1. Introduction
Tokamaks with poloidal divertors have substantially
improved the magnetic confinement of plasmas for ther-
monuclear controlled fusion (Janeschitz 2007) and this
good performance will be tested in the future inter-
national thermonuclear experimental reactor (ITER).
The magnetic configuration of tokamaks with divertors
contains a toroidal magnetic surface separating closed
field lines on nested surfaces from open field lines
hitting the divertor plates (Boozer and Rechester 1978).
Moreover, the brake of symmetry due to error fields and
plasma oscillations create chaotic field lines around the
separatrix (Wingen et al. 2009a).

Numerical field line calculations in diverted plasmas
based on numerical equilibria reconstructions are well
known in the literature (Evans et al. 2002). However,
computational codes that integrate magnetic field line
equations in tokamaks and describe both open and
chaotic field lines near poloidal divertors are time-
consuming and generate a great computational cost
(Casper et al. 2007; Brix et al. 2008; Wingen et al. 2009b).
Basic dynamical properties of field lines can be well
described by simple models that have been introduced
to reproduce the main magnetic field line dynamics near
the separatrix. Generally, simple models consider a set
of coils or wires to reproduce fields similar to those
typical of magneto-hydrodynamic (MHD) equilibrium
in tokamaks.

The magnetic field of two infinite wires was introduced
in 1978 to calculate the width of the scrape-off layer
of a divertor tokamak (Boozer and Rechester 1978).
Equilibrium models using two and three infinite wires

were used to study the chaotic layer formation due to
error fields in single-null (one X-point) (Pomphrey and
Reiman 1992) and double-null (two X-points) (Reiman
1996) divertor tokamaks, respectively. The particle drift
orbits were obtained in Daybelge and Yarim (1999)
for a model of three circular coils in the presence
of non-axisymmetric magnetic field perturbations. A
comparison between the chaotic layer formation using a
two-wire model and a discrete map was investigated
in Ali et al. (2004, 2008). A single-null equilibrium
plasma model, composed by three infinite wires, was
used in Abdullaev et al. (2006) to implement a method
of canonical mapping near the separatrix in presence
of magnetic perturbations created by pairs of loop coils
with opposite flowing currents.

In this work we use a set of five parallel infinite
wires conducting electric currents to describe equilibrium
magnetic surfaces of double-null divertor tokamaks.
This number of wires is sufficient to reproduce the cross-
section of an arbitrary choice of magnetic configuration,
depending on the wire positions and their currents. In
comparison with Pomphrey and Reiman (1992) and Re-
iman (1996), our configuration with five wires introduces
the possibility to adjust the triangularity and elongation
of the flux surfaces. Thus, our model can better analyze
lines transport similar to those observed in more pre-
cise descriptions of tokamak plasma equilibrium with
divertors (Wingen et al. 2009a, b).

We show the model versatility by creating surfaces
with similar topology of ITER surfaces. This simple
model reproduces quite well ITER-like magnetic topo-
logy capturing some aspects of the magnetic field line
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dynamics of plasma region near the separatrix, but not
in the plasma core.

Non-axisymmetric magnetic perturbations destroy the
magnetic separatrix creating homoclinic tangles, leading
to the formation of a layer of chaotic field lines (Joseph
et al. 2008). The structure of this chaotic layer determines
the pattern of magnetic footprints on divertor plates
(deposition patterns) and directly interferes on heat
flux transport (Joseph et al. 2008). To study the field
line escape patterns near the destroyed separatrix, we
introduce perturbations on the equilibrium created by
resonant magnetic perturbations by error fields due to
asymmetries on external coils (Pomphrey and Reiman
1992; Reiman 1996) and an additional noise to simulate
the collisional diffusion of particles (Beaufume et al.
1990). We solve numerically the perturbed magnetic
field line differential equation to investigate the effect
of magnetic perturbations on chaotic layer formation
and deposition patterns at the divertor plate.

We introduce the model of five infinite wires in Sec. 2.
Numerical results on equilibrium and perturbed mag-
netic surfaces are presented in Secs. 3 and 4 respectively.
We present numerical examples of escape pattern typical
of those computed for tokamaks in Sec. 5. Finally, in
Sec. 6 we present the conclusions.

2. The model
The magnetic field equations produced by a set of N
infinite wires are written in rectangular coordinates as

Bx(x, y) =
N∑

i=1

µ0Ii
2π

(y − yi)

(x − xi)2 + (y − yi)2
, (1)

By(x, y) =
N∑

i=1

µ0Ii
2π

−(x − xi)

(x − xi)2 + (y − yi)2
, (2)

where In and (xn, yn) are the electric current and position
of the nth wire. In this work we use N = 5 wires, where
one of them represents the plasma current (Ip) and
the other four reproduce a desirable plasma shape in
tokamaks. The position (xp, yp) of Ip coincides with the
magnetic surface axis at z = 0.

The magnetic field created by five wires is in the
plane (x, y). To model the toroidal geometry, we must
introduce periodicity in the z-direction. Thus, to repro-
duce the tokamak field we have to add the vertical field
created by a solenoid. Therefore, the z-component of the
toroidal field generated by the external coils is given by

Bz(x) =
R0B0

x
, (3)

where R0 is the major radius of the torus (or geometric
axis) and B0 is the toroidal field at the geometric axis.
Thus, for x = R0, Bz(R0) = B.

The equilibrium magnetic surfaces are defined as
surfaces with field lines satisfying the condition "B."∇ψ =
0, where

ψ(x, y) =
µ0Ip
2π

ln

(
rp

N∏

n=2

r
In
Ip
n

)
. (4)

Table 1. Wire positions and current values of our model.

n xn (m) yn (m) In (MA)

1. (plasma) 6.41 0.513 15.00
2. 3.72 −7.580 15.90
3. 3.20 8.600 16.28
4. 2.45 0.513 −5.69
5. 10.00 0.513 −4.60

Figure 1. (Colour online) Magnetic surfaces at inner and
outer separatrixes. The red points indicate each wire position.

The function ψis the magnetic flux passing through a
plane along the z-direction extending from the magnetic
axis out to the generic point (x, y). The distance of
the generic point (x, y) from the position (xn, yn) of the
conductor In is defined by rn = [(x− xn)2 + (y − yn)2]1/2.

Interpreting the z-coordinate as an independent vari-
able we can write the differential equation of the field

lines
→
B ×

→
dl = 0 as

dx

dz
=

Bx

Bz
;

dy

dz
=

By

Bz
. (5)

In Sec. 3, to study the magnetic configuration with
the wires model, we integrate numerically (5) using the
Runge–Kutta method.

3. Numerical results: magnetic surfaces
In our model, to represent equilibrium magnetic surfaces
of ITER configuration, with the major parameters of
ITER listed in Janeschitz (2007), we choose the paramet-
ers of currents and positions of wires listed in Table 1.

Wire 1 represents the plasma current and its position
coincides with the magnetic surfaces axis. The major
role of wires 2 and 3 is to create the lower and upper X-
points, respectively. The positions of lower and upper X-
points are in different separatrixes. The negative currents
in wires 4 and 5 compress the left and right sides of
magnetic surfaces and allow us to model the desired
elongation of surfaces. The wire currents and positions
are chosen according to the values of ITER parameters.

Figure 1 shows the positions of wires represented by
red points, with the surfaces generated by them.
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Figure 2. (Colour online) (a) Magnetic surfaces obtained from the model with colors representing different values of ψ(x, y); (b)
ITER magnetic surfaces (extracted from Janeschitz (2007). Average safety factor values, q, are indicated in both figures.

Figure 2(a) shows magnetic surfaces indicated by
colors representing different values of ψ(x, y) calculated
by our model. Figure 2(b), extracted from Janeschitz
(2007), shows magnetic surfaces obtained for the mag-
netic configuration of ITER. In both figures the values of
the safety factor, q (defined below), for magnetic surfaces
internal to the separatrixes are indicated. We can verify
a good agreement between the magnetic surfaces and
safety factor profiles calculated by our model and those
designed for ITER.

Each magnetic surface has a well-defined pitch re-
lated to the so-called rotational transform, which is
the average poloidal angle swept by a field line after
one complete toroidal turn. In the present model, the
poloidal angle is the angular displacement performed
on the x–y plane by a straight line that connects the
magnetic axis to a specific magnetic field line. For
tokamaks the inverse of rotational transform is the
safety factor used to characterize the line topology.

To obtain the safety factor profile of magnetic sur-
faces, we integrate the system of (5) for many initial
conditions lying on a horizontal line connecting the
magnetic axis to the right side of the separatrix. We
consider that a field line completes m toroidal turns if
z = 2mπR0. Thus, on rational surface with a safety factor
q = m/n, the periodic field lines perform m toroidal and
n poloidal turns.

Figure 3 presents the safety factor profile calculated
from our model for initial conditions indicated on the
x-axis (with y = 0). In this figure we can identify the
positions of two surfaces with infinite safety factors.
These surfaces correspond to two separatrixes as shown
in Fig. 1. In a magnetic system, hyperbolic points corres-
pond to the positions with null poloidal magnetic field
(Bxand By = 0) and, consequently, to safety factor values

Figure 3. Safety factor profile for the magnetic surfaces of
Fig. 1. The rectangle indicates the region amplified in the
insert. The dotted line in the insert indicates the value q = 3
corresponding to a magnetic surface containing the point
x = 8.16 m, which corresponds to the last closed surface.

that go to infinity. The dotted line in Fig. 3 indicates
the value q = 3 corresponding to a magnetic surface
containing the point x0 = 8.16 m, which corresponds to
the last closed surface. We also show a rectangle in Fig. 3,
which includes initial conditions in the external region
(x > 8.16), namely the plasma edge and the scrape-off
layer. Profiles similar to the one shown in Fig. 3 are
expected in the tokamak ITER whose external magnetic
surfaces have safety factor greater than three.

4. Numerical results: perturbed magnetic
surfaces

To investigate the effect of magnetic perturbations on
the chaotic layer formation, we perturb the field line
equations by adding field components described by a
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Figure 4. (Colour online) (a) Chaotic layer due to an error field with perturbation parameter ε = 2 × 10−4. (b) Amplification of
the red rectangle shown in (a). (c) Amplification of the red rectangle of (b) showing magnetic islands immersed in the chaotic
layer.

model, proposed in Pomphrey and Reiman (1992), of
error fields due to asymmetries on external coils. Thus,
the perturbed line equations are

dx

dz
=

Bx + B(p)
x

Bz + B(p)
z

;
dy

dz
=

By + B(p)
y

Bz + B(p)
z

, (6)

where B(p)
x , B(p)

y , and B(p)
z , the rectangular components

of the perturbing field, can be written as
→
B(p) = εB0∇χ (7)

with

χ = R0 exp

[
(x − xp)

R0

]
cos

(
z

R0

)
. (8)

Then the components are

B(p)
x = εB0 exp

[
(x − xp)

R0

]
cos

(
z

R0

)
; B(p)

y = 0; and

B(p)
z = −εB0 exp

[
(x − xp)

R0

]
sin

(
z

R0

)
. (9)

Fourier decomposition of error fields of Joint
European Torus (JET) tokamak shows that the amp-
litude of perturbation can be estimated in ε ≈ 10−4

(Pomphrey and Reiman 1992; Reiman 1996).
We integrate the perturbed equations, with perturba-

tion parameter ε = 2 × 10−4, and obtain Fig. 4(a) with
a chaotic layer around the lower hyperbolic point. The
magnetic field lines are no longer closed and eventually

reach the inner part of the chamber following the lines
leaving the X-point. These lines finish their trajectories
at the divertor plate. In Figs. 4(b) and (c), it is possible to
observe magnetic islands immersed in the chaotic layer.
These islands play an important role on the field line
escape (Kroetz et al. 2008).

5. Escape patterns
In this section we consider our model to calculate the
field line escape to a divertor plate displayed horizontally
at the position yf = −4.5m. As the particles follow
the field lines, the obtained escape structure should
be closely related to the measurable plasma particle
deposition profile on divertor plate.

To evaluate the considered field line escape, we cal-
culate the connection length, which is the number of
toroidal turns, m, performed by a field line until it reaches
the plate. The magnetic field line is integrated forward
and backward in z, for initial conditions in a box with
4.75 ! x0 ! 5.70 and −3.80 ! y0 ! −2.60, until it
reaches the plate at the position (xf, yf, zf).

Figure 5(a) shows the connection length for the system
with perturbation parameter ε = 2 × 10−4. The largest
connection lengths are obtained from initial conditions
near the broken separatrix. Figure 5(b) is an amplifica-
tion of the rectangle indicated in Fig. 5(a) and reveals
a structure of the connection length map similar to the
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Figure 5. (Colour online) Connection lengths with perturbation parameter ε = 2 × 10−4 where the number of toroidal turns, m,
is represented by the color scale displayed in logarithmic scale. (a) The connection lengths correspond to each initial condition
in the Poincaré map. The rectangle indicates the area amplified in (b). (b) Amplification of (a) close to the X-point.

Figure 6. (Colour online) Footprints with perturbation parameter ε = 2 × 10−4. The colors are in logarithmic scale. (a) Places
on the divertor plate, located at yf = −4.5m, where magnetic field lines started. The colors indicate the connection length of each
field line. (b) Amplification of the rectangle indicated in (a) reveals an inhomogeneous field line striking the divertor plate.

homoclinic tangle of stable and unstable manifolds that
come from a hyperbolic fixed point (da Silva et al. 2002;
Roeder et al. 2003; Wingen et al. 2009a). This kind of
structure has been observed using computational codes
that simulates escape patterns in Schmitz (2008).

As the system is periodic in z, we relate the z-
coordinate with the toroidal angle ϕf = zf/R0. It allows
us to calculate the footprint, which is the set of strike
points of field lines at the divertor plate. The magnetic
field line is integrated backward in z, for initial condi-
tions located at the divertor plate yf = −4.5m for a box
with 5.65 ! x0 ! 5.68 and 0 ! ϕ0 ! 2π until it reaches
the plate at the position (xf, yf,ϕf).

Figure 6(a) shows the footprint, and a zoom in the
rectangle (Fig. 6(b)) reveals an inhomogeneous line strik-
ing the divertor plate. Similar results have been observed
in sophisticated simulation codes (Jakubowski 2009;
Wingen et al. 2009a). Successive zooms of Fig. 6(b)
were performed and showed a complex distribution
of field lines that escape to the plate, evidencing a
fractal structure (Viana et al. 2010). This field line

complex structure is essentially determined by the fractal
structure of the homoclinic tangle in chaotic region
(Viana et al. 2010).

A study of escape patterns using a symplectic ap-
proach that represents the magnetic geometry of DIII-
D revealed that the fractal dimension of footprints
increases with the amplitude of topological noise (Evans
1991) and error fields (Punjabi and Ali 2011). Moreover,
the radial profiles of connection lengths, poloidal turns
before striking the plate, diffusion coefficient of magnetic
field lines, and average of safety factor also present self-
similarity.

Inside the plasma particle, transport is not only de-
termined by the magnetic field lines but also by colli-
sions. So to estimate the particle escape pattern from
the magnetic topology obtained from our model, we
have to modify the field line equations to simulate
how collisions divert particle center guide from the
field line trajectories. Recently, it has been verified in
a simple numerical model for particle collision that the
chaotic saddle of the magnetic field and its manifolds
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Figure 7. (Colour online) (a) Four regions, near the separatrix, with uniform noise amplitudes indicated by black, blue, green,
and red colors. The black region is without noise; for the blue region,ρ = 1 × 10−4, for the green region,ρ = 1 × 10−3, and for
the red region,ρ = 5.5 × 10−3. Connection lengths (b) and footprints (c) are obtained with noise for the perturbation parameter
ε = 2 × 10−4; the number of toroidal turns, m, is represented by the color in logarithmic scale.

still govern the particle dynamics when collisions are
included (Schelin et al. 2011). To do that, we add
the effect of an additional noise in the system that
simulates collisional diffusion of particles inside the
plasma column. The effect of such noise is represented by
adding a vector of random orientation to the magnetic
field (Beaufume et al. 1990). Thus, the field line equation
(6) becomes

dx

dz
=

Bx + B(p)
x

Bz + B(p)
z

+ ρ sin(θt);

dy

dz
=

By + B(p)
y

Bz + B(p)
z

+ ρ cos(θt), (10)

where ρ is the perturbation amplitude and 0 ! θt ! 2π
is a random phase. We choose ρ by analyzing the mean
free path obtained for ITER (Artaud 2010).

However, as collisions are much dependent on plasma
temperature to add noise in the system, we divide the
region next to the separatrix in four, as shown in
Fig. 7(a), roughly taking into account the expected non-
uniform temperature profile in ITER. For the field lines
located at the black region no noise is added. For the
blue region the noise is added every time the field line

reached the sectionz = () × 2 × π), with ) integer and
noise amplitude ρ = 1 × 10−4. For the green region
the noise is added every time the field line reached the
section z = () × π), with ) integer and noise amplitude
ρ = 1×10−3. For the red region the noise is added every
time the field line reached the sectionz = () × (π/2)),
with ) integer and noise amplitude ρ = 5.5 × 10−3.

Figure 7(b) shows the influence of noise in the connec-
tion lengths and, comparing with Fig. 5(a), one can note
a more inhomogeneous particle deposition around the
vicinity of the separatrix. This observed inhomogeneity
reflects the noisy perturbation added to the field lines.
The main effect of the considered collisional term on
the obtained connection lengths is due to the fact that
particles no longer trace out the unstable manifold
exactly, rather they disperse about it (Schelin et al.
2011). Figure 7(c) shows the preservation of the basic
structure of the divertor footprint, as predicted from
a much more detailed Monte Carlo fluid simulation
code with realistic plasma parameters, given in Frerichs
et al. (2012), as well as experimental results, as discussed
in Schmitz (2008), which show that the particle flux,
with multiple peaks on the divertor target plate, retains
the basic structure of magnetic footprints. Thus, the
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results shown in Figs. 7(b) and (c) suggest that the
approach used in this model, with a right choice of
noise amplitude, reproduces quite well the effects of
collisions in comparison with experimental results and
simulations from a more comprehensive treatment of
collisional transport with realistic plasma parameters.

6. Conclusions
The presented infinite wire model is capable to reproduce
single-null magnetic surfaces with specific choices of
magnetic axis positions, triangularity, and elongation.
The versatility of the model was exemplified recreating
a magnetic configuration close to ITER equilibrium and
similar safety factor profiles. Different kinds of perturb-
ations can be easily used since the components of the
perturbing magnetic fields are known. With this simple
model of equilibrium configuration it is possible to
study the qualitative characteristics of magnetic field line
dynamics in the chaotic layer of a single-null divertor.
A generic magnetic perturbation written as a Fourier
expansion in terms of different resonant modes can also
be used.

The continuous integration of magnetic field lines al-
lows the obtaining of strike points of escaping field lines
as well as their lengths, and they agree qualitatively with
the results obtained with sophisticated computational
codes. The addition of noise can simulate collisions
between particles to create a more realistic scenario.
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