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The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through
the formation of internal transport barriers that reduce radial particle and heat transport. However,
the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at
the plasma edge caused by external perturbations. Contrary to many expectations, it has been
observed that such a chaotic region does not uniformize heat and particle deposition on the inner
tokamak wall. The deposition is characterized instead by structured patterns called magnetic
footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an
ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of
chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety
factor ranges, these effects on the wall are associated with the field line stickiness and escape
channels due to internal island chains near the flux surfaces. Comparisons between magnetic
footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters
show that highly concentrated magnetic footprints can be avoided by properly choosing these
parameters. © 2008 American Institute of Physics. �DOI: 10.1063/1.2988335�

I. INTRODUCTION

In the last decade several experiments have confirmed
that modifications of radial electrical current profiles can im-
prove the plasma confinement in tokamaks. In particular, it
has been shown that the presence of reversed magnetic shear
can reduce fluctuation levels and the fluctuation-driven
transport.1–5 Reversals of magnetic shear over a wide region
of the plasma column occur in plasmas with nonmonotonic
safety factor profiles.6 Such profiles can result from nonin-
ductive current drive methods like neutral beam injection.
The combination of Ohmic heating and current drive gener-
ate configurations with enhanced reversed shear and highly
peaked density and pressure profiles. These discharges
present reduction of the plasma transport, through the forma-
tion of a transport barrier, i.e., a region where both the elec-
tron and ion diffusivities are greatly reduced around the
shearless radius.1–3,7,8 Moreover, these kinds of discharges
have been observed in transitions from low �L� to high �H�
regimes, for which limited regions of the plasma, specially at
the edge, may exhibit reversed shear through proper modifi-
cation of the radial profiles.9

Other modifications can also be achieved by applying
different kinds of perturbations at the plasma edge. In par-
ticular, external electrical currents can be used to create ad-
ditional resonant magnetic perturbations inside the plasma.
Such resonances create a zone of chaotic magnetic field lines
at the plasma edge that controls stability or transport of heat
and particles therein. Such external resonant perturbations
can be produced by ergodic limiters,10–13 that have been
shown to improve plasma confinement,14 as well as to con-
trol magnetic activity15 and plasma disruptions.16–19 Further-

more, a recent experiment has shown that ergodic divertors
can also be successfully applied to mitigate edge localized
modes while maintaining the plasma confinement.20

Originally, the ergodic limiter was proposed as a proce-
dure to obtain a uniform distribution of the exhausted power
on the wall.10,21–23 The field line ergodization resulting from
the resonant perturbation created by such a divertor would
lead to a broadening of the scrape-off layer and a widening
of the contact zone between plasma and the wall.24 Devices
based on this concept have been tested on several
machines.19,21–23,25–27 However, further experiments have re-
vealed that the heat and particle deposition patterns are not
actually uniform as previously assumed, but are rather
strongly structured, presenting a self-similarity that suggests
an underlying fractal structure.28–35

These structured patterns of the heat and particle depo-
sition turn out to be undesirable from the point of view of
controlling plasma-wall interactions, and have been investi-
gated in a series of experiments with the dynamic ergodic
divertor.32–35 Although the patterns are not uniform, they
proved to be manageable through changing the plasma equi-
librium or varying the resonant perturbations, such that one
can control heat and particle deposition on the tokamak
vessel.36

The usefulness of ergodic divertors in the improvement
of the plasma confinement, particularly with reversed shear
magnetic fields, makes the understanding and control of the
deposition pattern a key issue in advanced tokamak sce-
narios. The spatial structures observed in the heat flux depo-
sition patterns on the tokamak wall have been interpreted as
a consequence of the topology of the perturbed magnetic
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field and the structure of the field lines.37 This results from
the fact that charged particles predominantly follow the mag-
netic lines, and thus a description of how field lines escape
would give an approximate description of the experimentally
observed heat deposition patterns on the tokamak wall. The
latter have been identified through the so-called magnetic
footprints.

Magnetic footprints have been obtained by using
numerically29,38–46 and analytically47–50 obtained maps of the
perturbed magnetic fields. The observed fractal structure of
magnetic footprints follows from the mathematical structure
underlying the area-filling chaotic region of magnetic field
lines—a chaotic manifold tangle, comprising the homoclinic
and heteroclinic intersections of invariant manifolds of un-
stable periodic orbits embedded in the chaotic region.29,38,39

Another consequence of this manifold tangle is an involved
structure of escape basins, which indicate the loci of points
such that a field line passing through that point will escape
through a given region at the tokamak wall.51

In this paper we investigate the magnetic footprints and
related escape basins for a tokamak with reversed magnetic
shear, obtained through using a nonmonotonic plasma cur-
rent profile. The chaotic magnetic field in the reversed shear
region is generated by an ergodic limiter, which is an exter-
nal current configuration whose magnetic field resonates
with the equilibrium field yielding a magnetic island struc-
ture and invariant flux surfaces.51,52 Chaotic field lines �in the
Lagrangian sense, since our configuration is strictly magne-
tostatic� result from interactions among magnetic islands,
with progressive destruction of perturbed flux surfaces as the
perturbation strength increases, according to a peculiar sce-
nario described in Refs. 52–56 and which is different from
that observed in twist magnetic configurations, where the
Kolmogorov–Arnold–Moser �KAM� theory is valid.57–59

This difference occurs around the magnetic shearless surface.
However, at the plasma region far from the shearless surface,
the KAM theory can be applied.

This paper is organized as follows: In Sec. II we describe
the model fields for a nonmonotonic plasma equilibrium and
the perturbation caused by an ergodic limiter. Section III
deals with the structure of magnetic field lines resulting from
such model fields, using a symplectic map obtained from a
Hamiltonian description. The magnetic footprints and escape
basins for the configuration we investigate are described in
Sec. IV. The last section is devoted to our conclusions.

II. MODEL FIELDS

We use a nonorthogonal coordinate system to describe
magnetic field lines in a tokamak, �rt ,�t ,�t�, related to the
usual local coordinates �r ,� ,�� by the following relations:60

rt = r�1 −
r

R0�
cos � + � r

2R0�
�2�1/2

, �1�

sin �t = sin ��1 −
r

R0�
cos � + � r

2R0�
�2�−1/2

, �2�

where R0� is the magnetic axis radius. In the large aspect ratio
limit �rt�R0��, rt and �t become r and �, respectively. The

relation of the magnetic axis radius with the major radius R
is

R2 = R0�
2�1 − 2

rt

R0�
cos �t − � rt

R0�
�2

sin2 �t� , �3�

which leads to physically meaningful results provided
rt /R0��1 /2, a condition always fulfilled in the numerical
simulations to be described in this paper.

Assuming axisymmetry, the contravariant components of
the equilibrium magnetic field B0 can be obtained from a
poloidal flux �p�rt ,�t� and the poloidal current function
I�rt ,�t� as

B0
1�rt,�t� = −

1

R0�rt

��p

��t
, �4�

B0
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1
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��p
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B0
3�rt,�t� = −

�0I

R2 . �6�

The poloidal flux results from solving the equilibrium
equation in these coordinates.60 We obtained an approximate
solution by considering the first-order expansion �p�rt ,�t�
=�p0�rt�+��p�rt ,�t�, where �p0�rt� is a solution corre-
sponding to the cylindrical case

1

rt

d

drt
�rt

d�p0

drt
� = �0J��p0� , �7�

and 	��p�rt ,�t�	� 	�p0�rt�	 contains the toroidal corrections,
and J��p0�rt�� is the toroidal current density profile. Since
we are focusing on equilibrium fields possessing reversed
shear, we assume a nonmonotonic current profile,62

J�rt� =
IpR0�

�a2

�	 + 2��	 + 1�

 + 	 + 2

�1 + 

rt

2

a2��1 −
rt

2

a2�	

, �8�

where Ip is the total plasma current, a is the plasma radius,
and 
 and 	 are positive parameters.

The intersections of the flux surfaces �p�rt�=constant
with a toroidal plane exhibit the Shafranov shift toward the
exterior equatorial region �Fig. 1�. Moreover, the safety fac-
tor profile is given by

q�rt� =
1

2�



0

2� B0
3�rt,�t�
B0

2�rt�
d�t = qc�rt��1 −

4rt
2

R0�
2�−1/2

, �9�

where qc�rt�, for the nonmonotonic profile �8�, is given by62

qc�rt� = qc�a�
rt

2

a2

��1 − �1 + 
�
rt

2

a2��1 −
rt

2

a2�	+1

��1 −
rt

a
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with qc�a�� Ipa2 / IeR0�
2, 
��
�	+1� / �
+	+2�, and ��.� is

the unit step function, yielding a nonmonotonic safety factor
profile �Fig. 2�. In the numerical simulations, we normalize
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the minor tokamak radius b and the plasma radius a to the
major �magnetic axis� radius R0�, such that a /R0�=0.28 and
b /R0�=0.35. We also choose q�a�=5.0 and q�0�=4.75, corre-
sponding to the safety factors at the plasma edge and mag-
netic axis, respectively, when 
=3.0 and 	=0.8. With this
set of parameters we see, from Fig. 2, that the shearless
radius is near the middle of the plasma column �r /a�0.6�.
At both sides of the shearless radius there are flux surfaces
with the same safety factor, as q=4.0 for example, leading to
the formation of dimerized island chains, when a magnetic
perturbation is applied. These islands are centered at the po-
sition of the corresponding resonant flux surfaces.

The magnetic perturbation we considered in this paper is
produced by an ergodic limiter consisting of Nr current rings
of length � located symmetrically along the toroidal direction
of the tokamak �Fig. 3�. Each current ring can be considered
as slice of a resonant helical winding with mode numbers
�m0 ,n0� and a winding law given by ut=m0��t+
 sin �t�
−n0�t=constant, where 
 is a tunable parameter. These cur-

rent rings are located at the vessel radius rt=bt and carry a
current Ih in opposite senses for adjacent conductors. The
role of these windings is to induce a dominant �m0 ,n0� reso-
nant perturbation in the tokamak, and to achieve this effect
we must choose a helical winding with the same pitch as the
field lines in the rational surface we want to perturb.

The perturbing magnetic field generated by the ergodic
limiter is assumed to be a vacuum field solution BL=�
�AL of the Laplace equation with proper boundary condi-
tions at the tokamak wall. The vector potential can be written
as a sum of a large number of resonant terms whose ampli-
tudes, being proportional to Bessel functions of order k, de-
cay with increasing k.61 Thus, inside the plasma, it is a good
approximation to consider, in lowest order, the only nonva-
nishing component of the corresponding vector potential
given by62

AL3�rt,�t,�t� � −
�0IhR0�

�
� rt

bt
�m0

cos�m0�t − n0�t� . �11�

The magnetic field line equations corresponding to the
superposition of the equilibrium and limiter fields, B=B0

+BL, are

drt

d�t
= −

1

rtBT
�1 − 2

rt

R0�
cos �t� �

��t
AL3�rt,�t,�t� , �12�

d�t

d�t
=

1

rtBT
�1 − 2

rt

R0�
cos �t� �

�rt
��p0�rt� + AL3�rt,�t,�t�� ,

�13�

where BT is the toroidal magnetic field at the magnetic axis.

III. FIELD LINE MAPPING

The field line equations in an axisymmetric configura-
tion are known to exhibit a Hamiltonian �canonical� struc-
ture, the symplectic property being a consequence of � ·B
=0.57,58 The differential equations �12� and �13� can be inte-
grated numerically, but this method can introduce truncation
errors that may spoil their symplectic nature. An alternative
procedure consists of obtaining a field line map which pre-
serves by construction the symplectic property of the field
line equations.40

The equilibrium magnetic field represents an integrable
Hamiltonian system in the sense that magnetic field lines lie

FIG. 1. Equilibrium flux surfaces for the plasma equilibrium with reversed
shear given by a nonmonotonic current profile.

FIG. 2. Nonmonotonic safety factor profile for a reversed shear equilibrium
with 
=3 and 	=0.8.

FIG. 3. Scheme of an ergodic magnetic limiter.
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on surfaces with H0=constant. In this case, we can define
action-angle variables �J ,��, and the azimuthal angle �t= t
is a timelike variable parameterizing field lines. The explicit
form of the relation between the canonical variables �J ,��
and the coordinates �rt ,�t� can be found in Ref. 62.

The magnetic field produced by the ergodic limiter can
be regarded as a small perturbation of the integrable Hamil-
tonian. Since the ergodic limiter current Ih is much smaller
than the plasma current Ip, the condition 	AL3 /�p0	�1 is
always fulfilled. In this case the perturbed Hamiltonian can
be written as

H�J,�,t� = H0�J� + H1�J,�,t� ,

=
1

BTR0�
2�p0�J� +

1

BTR0�
2AL3�J,�,t� , �14�

�	H1 /H0	�1� such that the magnetic field line equations �12�
and �13� can be written in the canonical form

dJ
dt

= −
�H

��
, �15�

d�

dt
=

�H

�J
. �16�

For an arbitrary dependence on t of the ergodic limiter
perturbation one is forced to resort to numerical integration
methods preserving the symplectic area.40,63 On the other
hand, if the dependence on t can be modelled as a sequence
of delta functions the magnetic field lines can be integrated
so as to yield an analytical field line map. This is actually
possible since the ergodic limiter perturbation is due to Nr

rings of a length � which is small compared to the toroidal
circumference 2�R0�, and symmetrically distributed along the
toroidal direction. Thus, under each coil the field line posi-
tion changes due to the action of the kick perturbation de-
scribed by the delta function. Between coils, where the per-
turbing field is small, the field lines are mapped under the
influence of a rotational transform with shear �tokamak mea-
surements justify this approximation13,19�. Corrections due to
integration of field lines under the coils give rise to small
connections on the Poincaré maps.19,13

The resulting Hamiltonian is

HL�J,�,t� = H0�J� +
�

R0�
H1�J,�,t� 


k=−�

+�

��t − k
2�

Nr
� ,

�17�

where the limiter field is approximated by a periodic train of
delta kicks applied at each ring position.39,51,62,64 An approxi-
mated solution of the canonical equations related to the
Hamiltonian �14� gives a local approximation of the field line
mapping,62 which allows a detailed analysis of field line
transport and escape.65

Due to the delta functions appearing in the Hamiltonian
�17�, the field lines receive a kick whenever they cross a
toroidal section �=constant. Just after the nth kick, the
action-angle variables describing the field line position take
on the values �Jn ,�n�, respectively. Between two successive

kicks the field equations can be integrated analytically and,
after having received the next kick, the field lines lie on
another magnetic surface. The new values of the action-angle
variables, �Jn+1 ,�n+1�, are used as a new set of initial con-
ditions, in order to obtain the next action-angle variables. In
the following we transform the original action-angle vari-
ables �J ,�� to the polar-toroidal �rt ,�t� coordinates and then
to the local coordinates �r ,�� using Eqs. �1� and �2�. Thus,
after the exact coordinate transformation, we present our re-
sults in the original �r ,�� space.

In Fig. 4�a� we show Poincaré sections of the field lines
using the canonical map obtained from the Hamiltonian
function �17�, in the form �Jn+1 ,�n+1�=F�Jn ,�n�, the ex-
plicit form of F being found in Ref. 62. We make the limiter
field to resonate with the flux surface with safety factor q
=4 by choosing the perturbation parameters as 
=0.45 and
the mode numbers �m0=4 ,n0=1�. As a result, there are
chains of four dimerized magnetic islands, since, for the con-
sidered nonmonotonic equilibrium, there are two distinct ra-

FIG. 4. Poincaré section of a tokamak perturbed by an ergodic limiter for a
nonmonotonic safety factor profile with 	=0.80 and 
=3.00, Nr=4, Ih / Ip

=0.11, and �a� �m0 ,n0�= �4,1� and 
=0.45319; �b� 
=0.5895, �m0 ,n0�
= �5,1�.
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dial locations for the same value of the safety profile. Due to
the large limiter current used in this phase portrait �Ih / Ip

=0.11� both islands have been considerably destroyed, one
of them having been almost completely engulfed by the cha-
otic region. Hence, this limiter current is large enough so as
to generate a chaotic region closer to the wall. Figure 4�b�
shows the phase space plot for 
=0.59, where the limiter has
mode numbers �m0=5 ,n0=1� and the same current as before.
In this mapping the perturbation current is large enough to
utterly destroy the �5,1� chain and create a wide chaotic re-
gion. The secondary 4 /1 dimerized island, however, is less
destroyed in comparison with the 5/1 one, as can be seen in
Fig. 4�b�.

In order to understand the nature of chaotic orbits and its
consequence on the transport of field lines, we show the
graphical representation of invariant manifolds stemming
from an unstable saddle point embedded in the chaotic re-
gion. The invariant manifolds are sets of points whose for-
ward and backward iterations belong to the same set. For
stable �unstable� manifolds, forward �backward� iterates con-
verge to a hyperbolic saddle point, as the number of itera-
tions goes to infinity. A method to obtain a numerical ap-
proximation to these invariant manifolds is to consider the
first N0 �say, 80� forward and backward images of a small
disk filled with a large number of initial conditions �say,
5000�5000� and centered at the location of a saddle point
embedded in the chaotic orbit.66

For large enough limiter currents there is a chaotic re-
gion in the outer tokamak region, as can be seen in Figs. 4�a�
and 4�b�. Choosing a saddle in the midst of this chaotic re-
gion, the manifolds stemming from this point are depicted in
Figs. 5�a� and 5�b� for the same set of parameters used in
Figs. 4�a� and 4�b�, respectively. In both figures the dark and
gray curves stand for the stable and unstable manifolds, re-
spectively, and the field lines follow closely these manifolds.
There are forward �backward� iterations of the map produc-
ing trajectories arbitrarily close to a branch of the unstable
�stable� manifold. The intersections of unstable and stable
manifolds are shown in Figs. 6�a� and 6�b� for the same
parameters used in Figs. 4�a� and 4�b�, respectively. The
fractal structure resulting from the convoluted nature of the
manifold branches has practical consequences in the deposi-
tion patterns at the tokamak wall since guiding center motion
is primarily determined by the field line configuration.

From the dynamical systems point of view, the stable
and invariant manifolds, intersecting at homoclinic and het-
eroclinic points, form a nonattracting chaotic set, also called
manifold tangle.57,59 If we were to choose at random an ini-
tial condition placed in the chaotic region, the probability of
this point to belong to the manifold tangle is exactly zero.
Nevertheless, the manifold tangle has a deep influence on the
dynamics in the chaotic region. It is actually the dynamical
structure underlying the chaotic orbit. For example, if the
manifold tangle were uniformly distributed over the chaotic
region, the latter would yield a “normal” �or Gaussian� dif-
fusion of field lines. This occurs, for example, for uniformly
hyperbolic chaotic systems, such as the Arnold’s cat map or
the Sinai’s billiard.67 If this situation were to occur in the
chaotic layer generated by an ergodic limiter, the correspond-

ing deposition pattern on the tokamak wall would be accord-
ingly uniform, as it was originally expected.

However, in nonhyperbolic area-preserving systems like
the field line map obtained from the Hamiltonian �17�, the
manifold tangle is nonuniformly distributed, presenting pro-
nounced filaments of manifold branches that form a kind of
escape channel, which can be seen in Figs. 5 and 6. These
channels, whenever hitting the tokamak wall, are able to
drive particles toward the wall, producing the complicated
structure of magnetic footprints that is actually observed in
experiments. Moreover, the diffusion expected from a non-
uniform finite chaotic region at the plasma edge is anoma-
lous, presenting typically a non-Gaussian dependence of the
radial quadratic displacement with the timelike variable.61,68

However, this is only a local approximation since the calcu-
lations are valid for an unbounded space domain.

FIG. 5. Invariant stable �dark curves� and unstable �light gray curves� mani-
folds of a fixed point embedded in the chaotic region corresponding to the
Poincaré sections depicted in �a� Fig. 4�a�; �b� Fig. 4�b�.
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IV. ESCAPE OF THE CHAOTIC FIELD LINES

Another observable manifestation of the nonuniformity
of the outer chaotic region due to an ergodic limiter is the
distribution of the connection lengths of field lines in the
plasma edge. The connection length, Ncl�r ,��, is the number
of toroidal turns it takes for a field line, originating from a
given initial condition located at �r ,�� in the Poincaré sec-
tion, to reach the tokamak wall. In our case we can set the
tokamak wall at the same radius of the ergodic limiter rings,
at rt=bt. The field line is considered lost when it reaches this
radial position. The connection length furnishes a rough es-
timate of the escape time for a particle, passing through the
point �r ,��, to hit the tokamak wall, ��2�RNcl /vT, where
vT is the thermal velocity. Recent experiments have shown
that the radial structure of the electron temperature and den-
sity at different times of the discharge reveals a correlation
between the connection length and the heat flux.69 It has
been observed that most of the heat content is brought from
the plasma core wall by the field lines with relatively large
connection lengths �namely, those with Ncl�4�.

The connection length depends on the position at the
chaotic region in the Poincaré section and, since the chaotic
region is nonuniform, as shown in the previous section, we
expect a nonuniform distribution of connection lengths in
our system. We have numerically computed the distribution
of the connection lengths for the situations depicted in Figs.
4�a� and 4�b�, by using grids of points on the chaotic region
of the corresponding phase portraits, each point serving as a
different initial condition. The connection length for each
point is the number of toroidal turns necessary for each re-
sulting field line to reach the wall at rt=bt. In fact, the con-
nection lengths take on values in a wide interval, from Ncl

=1 to Ncl�104, as illustrated by Figs. 7�a� and 7�b�, where
Ih / Ip=0.11, and the limiter has mode numbers �4,1� and
�5,1�, respectively. The connection lengths for each point of
this grid, within the interval from 1 to 10 turns, are indicated
using a color scale. We have chosen a bounded radial portion
of the toroidal section, since we are interested in the escape
of the field lines near the tokamak wall �initial conditions
with Ncl�10 belong altogether in black regions�. The re-
gions with short and long connection lengths are also called
laminar and ergodic, respectively.

A common trait of Figs. 7�a� and 7�b� is that both exhibit
escape regions with smooth boundaries. Fractal structures
can be seen, however, provided larger values of Ncl are taken,
as in Figs. 7�c� and 7�d�, where the interval of connection
lengths is increased to an upper limit of Ncl=200 toroidal
turns. From these examples we can see that not only the
connection lengths of the field lines are important, but also
their radial penetration depths. For example, there are field
lines with small connection lengths starting near the wall or
in the vicinity of the island chains. Those field lines produce
quite a uniform escape pattern, i.e., without a noticeable con-
centration on a given region of the wall, and hence should
not contribute to the heating deposition patterns observed on
the wall. The field lines around the islands with high penetra-
tion depths are more evident for the �4.1� mode �Fig. 7�c��
than for the �5,1� one �Fig. 7�d��. Field lines with connection
lengths higher than a given limit �say, Ncl=4000�, can be
considered as effectively trapped. Hence a region with large
connection lengths in the toroidal section represents an ef-
fective transport barrier.

A further characteristic of the nonuniform escape pat-
terns is their dependence on the safety factor at plasma ra-
dius, q�a�. We investigated this dependence by making the
following numerical experiment: We picked a large number
of initial conditions at the tokamak wall with uniformly dis-
tributed poloidal angles and computed the connection length
of each �i.e., the number of toroidal turns for the line to
return to the tokamak wall�. The intervals of points with
same connection lengths �expressed in a color scale� are de-
picted in Figs. 8�a� and 8�c� as a function of q�a� for the
mode numbers �4,1� and �5,1�, respectively, with magnifica-
tions shown in Figs. 8�b� and 8�d�, respectively. We have
varied q�a� so as not to change the limiter current Ih, hence
we have instead to vary the plasma current Ip; from Ih / Ip

=0.066 for q�a�=3.0, to Ih / Ip=0.110 for q�a�=5.0.
We can identify in Fig. 8, boomerang-shaped regions

related to specified intervals of connection lengths, which are

FIG. 6. Intersections among the invariant manifolds corresponding to the
Poincaré sections depicted in �a� Fig. 4�a�; �b� Fig. 4�b�.
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similar to those experimentally identified in tokamaks.38,70

Figures 8�a� and 8�b� indicate a high concentration of regions
with large connection lengths for the �4,1� perturbation
mode. On the other hand, Figs. 8�c� and 8�d�, obtained for
the �5,1� mode, suggest a scattering of these regions over a
larger poloidal extension. In order to understand the color
changes seen in Fig. 8�b�, we present from Figs. 9�a�–9�d�
the Poincaré sections corresponding to the values of the edge
safety factor q�a�=4.5, 4.3, 3.9, and 3.2, respectively. They
indicate that the last remnant island chains, near the internal
KAM surfaces, where the concentration of field lines is more
pronounced, have mode numbers �4,1� and �11,3� �Fig. 9�a��,
�7,2� �Fig. 9�b��, �10,3� �Fig. 9�c��, and �3,1� �Fig. 9�d��.

For q�a�=5.0, as can be seen in Fig. 4�a�, one has re-
gions with high connection lengths. The escape of the field
lines is essentially determined by the homoclinic tangle of
the dimerized main chain �4,1�. This conclusion is also
drawn from the results shown by Fig. 8�b�, where there is a

dominant ergodic region near the tokamak wall. A general
trait observed in Fig. 9 is that, as the value of q�a� is de-
creased, there follows that the size of the ergodic region
diminishes and a laminar region becomes dominant. In Fig.
9�a�, for q�a�=4.5, the �4,1� and �11,3� chains are observed
near the KAM surfaces. Thus, as can be also verified in Figs.
9�b�–9�d�, the last chains next to the KAM surfaces deter-
mine the connection lengths and the escape of the field lines.
In Figs. 9�b� and 9�c� this process is more evident than in
Fig. 9�a�. In particular, we observe from Fig. 9�d� that the
�3,1� secondary dimerized chain is the dominant one.

The observed distribution of the field lines concentrated
around the remnant island chains, i.e., the stickiness, refers to
the existence of field lines in the chaotic region which spend
a comparatively large time �measured in number of toroidal
turns� bouncing around the vicinity of partially destroyed
magnetic islands.71 Stickiness is a rather general property of
the chaotic orbits of nonhyperbolic area-preserving maps,

FIG. 7. �Color online� Distribution of connection lengths in the range �1, 10� �indicated by a color scale� for the Poincaré sections depicted in �a� Fig. 4�a�;
�b� Fig. 4�b�. �c� and �d� represent this distribution in the range �1, 200� for �a� and �b�, respectively.
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and produces a nonuniform distribution of points in the cha-
otic region.72

In the context of the present work, stickiness is one of
the causes of the appearance of regions with large connection
lengths. Another factor contributing to the highly concen-
trated connection length intervals in Figs. 8�a� and 8�b� is the
existence of the escape channels that drive field lines from
the stickiness regions towards the wall. The more scattered
escape regions depicted in Figs. 9�a� and 9�b� imply larger
values of the corresponding average connection length, in
comparison with the more concentrated regions observed in
Figs. 9�c� and 9�d�. The observed distinctions are due to the
differences between the stickiness regions and the escape
channels located at the remnant’s last island chains. As
pointed in Ref. 70 these distinctions come from the different
manifold tangles underlying their chaotic orbits, as already
suggested from the chaotic saddles depicted in Figs. 5 and 6.
Moreover, the last island chains change with the value of

q�a�, since these chains correspond to different mode num-
bers �m ,n� for the perturbation magnetic field, from �4,1�,
�11,3� �Fig. 9�a��, to �3,1� �Fig. 9�d��. Thus, the strong de-
pendence of boomerang structures on the edge safety factor
variation, that is observed in Fig. 8, is explained by the se-
quence of island chains that successively become dominant
as the safety factor decreases.

Figure 10 shows the poloidal wave number power spec-
trum variation with q�a� of selected field lines with long
connection lengths. For each q�a� we determine the connec-
tion lengths of many field lines starting on the wall and ini-
tial poloidal angles distributed uniformly. Next, for each
q�a�, we select the field line with the longest connection
length and calculate its Fourier spectrum. This choice was
motivated by the observed line stickiness around the domi-
nant island chain that explains the long connection length.

For each q�a� in the intervals with a dominant frequency

FIG. 8. �Color online� Intervals of the same connection length �indicated by a color scale� computed at the tokamak wall, as a function of the edge safety
factor, and corresponding to the Poincaré sections depicted in �a� Fig. 4�a�; �c� Fig. 4�b�. �b� and �d� are magnifications of a region in �a� and �c�, respectively.
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in the power spectral analysis, we use the computed fre-
quency to calculate �from its inverse� the trapped line rota-
tional transform. The rotational transforms, obtained by this
procedure, are rational numbers �indicated by arrows in Fig.
10, where plateaus indicate the edge safety factor for which a

dominant frequency exists�. These rational values are equal
to those obtained for the dominant island chains where the
corresponding field lines, with long connection lengths, were
trapped. Thus, although in Fig. 9�a� we identify remnant is-
land chains with the rotational transform inverses �4,1� and
�11,3�, from the spectral analysis we obtain a rotational trans-
form inverse of �11,3�, as indicated in Fig. 10. This indicates
that the dominant 11 /3 island chain is the responsible for the
line stickiness observed in Fig. 9�a�. However, as it can also
be seen in Fig. 9�a�, the escape channel of the line trapped on
the island chain �11,3� is determined by the �4,1� chain. Con-
sequently, the internal remnant chain determines the connec-
tion length and the external remnant chain determines the
escape channels through which the field lines leave the
stickiness region and reach the wall. Similar observations are
valid for other values of q�a�. In particular, for q�a� slightly
above 3.0, as in Fig. 9�d�, we identify the internal remnant
�3,1� chain as responsible for the line stickiness, whereas the
escape channels are determined by an external remnant
chain. Therefore, the analysis of Figs. 9 and 10 confirm that
high connection lengths are observed once some lines are
trapped on internal islands during many toroidal turns. The
variation of q�a� changed the topology of the dominant is-
lands and the associated stickiness, consequently, also chang-
ing the connection lengths. Moreover, the substructures on

FIG. 9. Magnifications of the Poincaré sections corresponding to four points of Fig. 8�b� for �a� q�a�=4.5, �b� q�a�=4.3, �c� q�a�=3.9, and �d� q�a�=3.2.

FIG. 10. Power spectral variation with q�a� between 5.0 and 3.0, for se-
lected field lines with long connection lengths.
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Fig. 8 can be related to ranges of the edge safety factor q�a�
for which dominant islands are found.

Another way to complement this discussion is to relate
the distribution of connection lengths with the exit basins
and magnetic footprints. The exit basins correspond to a set
of initial conditions which generates field lines that escape
through a given exit. We obtained such basins by dividing
the tokamak wall at a given toroidal section into ten intervals
of equal poloidal extension. Any interval can be viewed as an
exit, and all the initial conditions leading to field lines escap-
ing through that exit are depicted with the same color. Fig-
ures 11�a� and 11�b� show the exit basins corresponding to
these ten intervals �in a color scale�, for Ih / Ip=0.11, and a
limiter with mode numbers �4,1� and �5,1�, respectively. The
field lines in Fig. 11�a� which do not escape after less than
4000 iterations are marked in black.

We can see in Fig. 11�a� that the ten exit basins are
intertwined in a very complex way, with a fractal pattern

very similar to that observed in the corresponding distribu-
tion of the connection lengths �see Fig. 7�c��. When the per-
turbing mode number is �5,1� �Fig. 11�b��, the escape chan-
nels are much more scattered than in the �4,1� mode, as can
be observed also for the distribution of the connection
lengths. We notice that lines coming from the inner part of
the plasma column reach a concentrated region of the toka-
mak wall, as illustrated in Figs. 11�a� and 11�b�, and contrib-
uting significantly to the localized heat deposition on the
wall.

The magnetic footprints also help us to understand the
escape channels for different mode numbers of the perturba-
tion field. They are the deposition patterns of the field lines
from the chaotic region and which are lost due to collisions
with the wall. A statistical characterization of the magnetic
footprints is shown in Figs. 12�a� and 12�b�, depicting histo-
grams for the number of the lost field lines multiplied by
their connection lengths for perturbation currents of Ih / Ip

=0.11 and the mode numbers �4,1� and �5,1�, respectively. In
the former case, there are four dimerized island chains, each

FIG. 11. �Color online� Exit basins dividing the poloidal cross section into
ten regions �indicated by a color scale�, corresponding to the Poincaré sec-
tions depicted in �a� Fig. 4�a�; �b� Fig. 4�b�.

FIG. 12. Histograms for the number of escaping field lines times their
connection lengths, corresponding to the Poincaré sections depicted in �a�
Fig. 4�a�; �b� Fig. 4�b�.
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of them with a characteristic stickiness region and �due to the
safety factor profile� with a nonuniform poloidal distribution.
In fact, even though we expect out of four escape channels,
we have basically two regions of large statistical incidence
�two broad peaks in Fig. 12�a��. A similar conclusion is
drawn from the peaks observed in Fig. 12�b�, for which five
escape channels are expected. Our approximate Hamiltonian
with delta kicks is not able to reproduce a helical structure of
magnetic footprints on the wall along the toroidal and poloi-
dal axes, found, for instance, in Ref. 41.

V. CONCLUSIONS

In tokamaks with reversed magnetic shear at the plasma
edge, high amplitude perturbations are necessary to destroy
the external invariant magnetic surface that confine the
plasma. Thus, this convenient stability property encourages
the use of nonmonotonic plasma current density to generate
enhanced confinement regimes with levels of particle and
heat transport much lower than those commonly observed in
experiments.

However, even for reversed shear equilibria, as those
considered in this paper, external surfaces are destroyed by
resonant perturbations through a breakup scenario common
to nontwist Hamiltonian systems, and which yields localized
�Lagrangian� chaos. Furthermore, for these equilibria, we
analyzed how the magnetic field lines escape to the wall
through the so-called laminar and ergodic regions �those with
short and long connection lengths, respectively� located be-
tween the most external surviving island chain and the toka-
mak wall. Thus, the field line with long connection lengths
may escape to the wall transporting energetic particles from
the plasma interior. Moreover, the line stickiness and the
escape channels to the wall are a consequence of a series of
internal dominant island chains, near the KAM barriers in-
side the plasma. For several equilibrium configurations, it
was possible to identify that the line stickiness depends on a
remnant internal island chain, while the escape channels are
determined by a remnant external island chain.

We showed that the field line connection lengths to the
wall depend on the homoclinic tangle around the last rem-
nant island chain. This dependence may create an undesir-
able difficulty, since the use of nonmonotonic current density
profiles combined with resonant perturbations may create ex-
tremely concentrated magnetic footprints on the tokamak
wall, thus possibly worsening problems related with heat and
particle loading in the wall.

In conclusion, we presented a procedure to evaluate the
possible undesirable concentration of the expected magnetic
footprints on the wall, given the equilibrium and perturbation
parameters. To show the dependence of this effect on the
edge safety factor, the internal island chains were identified
by their rotational transform and associated to the strike
zones on the tokamak wall. Our numerical simulations were
made for nonmonotonic analytical toroidal equilibria, per-
turbed by resonances created by an ergodic limiter. However,
the presented analysis and the conclusions are valid for other
kinds of resonant perturbations, as those created by a di-
vertor or due to natural MHD oscillations.
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