

View

Online


Export
Citation

RESEARCH ARTICLE |  MAY 15 2025

Hamiltonian chaos for one particle with two waves: Self-
consistent dynamics 
Matheus J. Lazarotto   ; Iberê L. Caldas  ; Yves Elskens 

Chaos 35, 053143 (2025)
https://doi.org/10.1063/5.0261013

Articles You May Be Interested In

Island myriads in periodic potentials

Chaos (March 2024)

Low-dimensional chaos in the single wave model for self-consistent wave–particle Hamiltonian

Chaos (August 2021)

Wave–particle interactions in a long traveling wave tube with upgraded helix

Phys. Plasmas (September 2020)

 30 M
ay 2025 15:53:49

https://pubs.aip.org/aip/cha/article/35/5/053143/3346930/Hamiltonian-chaos-for-one-particle-with-two-waves
https://pubs.aip.org/aip/cha/article/35/5/053143/3346930/Hamiltonian-chaos-for-one-particle-with-two-waves?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-0173-9232
javascript:;
https://orcid.org/0000-0002-1748-0106
javascript:;
https://orcid.org/0000-0003-4881-8963
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0261013&domain=pdf&date_stamp=2025-05-15
https://doi.org/10.1063/5.0261013
https://pubs.aip.org/aip/cha/article/34/3/033115/3269628/Island-myriads-in-periodic-potentials
https://pubs.aip.org/aip/cha/article/31/8/083104/342266/Low-dimensional-chaos-in-the-single-wave-model-for
https://pubs.aip.org/aip/pop/article/27/9/093108/263271/Wave-particle-interactions-in-a-long-traveling
https://e-11492.adzerk.net/r?e=eyJ2IjoiMS4xMiIsImF2IjozMzYxNTcyLCJhdCI6MTA0NTAsImJ0IjowLCJjbSI6NDE2NzY3NzcxLCJjaCI6NjExNDcsImNrIjp7fSwiY3IiOjYzNjkwNjY1NywiZGkiOiIzMGFjYzczNmExMGE0OWRjYTNhNTNmOTMwNTUxNzYyYSIsImRqIjowLCJpaSI6IjQwODgzMWNmOThkYzQ4MDM5MjBhYWFlMTkyNTNmOGM5IiwiZG0iOjMsImZjIjo4MTExMzYzMjIsImZsIjo3NzY0MDEyMjUsImlwIjoiMjAuODEuMzQuMTc3IiwibnciOjExNDkyLCJwYyI6MCwib3AiOjAsIm1wIjowLCJlYyI6MCwiZ20iOjAsImVwIjpudWxsLCJwciI6MjQwMDM3LCJydCI6MSwicnMiOjUwMCwic2EiOiI5NyIsInNiIjoiaS0wNjNhOTk1MWJmOWVmMjkyYiIsInNwIjoyMTQ2Njk2LCJzdCI6MTI4ODE3NSwidWsiOiJ1ZTEtZGE4NmM0YzUzZDg3NGZlNmE0NzcyYjA5NmQ3Y2RkMGIiLCJ6biI6MzA3MzcwLCJ0cyI6MTc0ODYyMDQyODk1OCwiZ2MiOnRydWUsImdDIjp0cnVlLCJncyI6Im5vbmUiLCJ0eiI6IkFtZXJpY2EvTmV3X1lvcmsiLCJ1ciI6Imh0dHBzOi8vcHVibGlzaGluZy5haXAub3JnL3B1YmxpY2F0aW9ucy9qb3VybmFscy9zcGVjaWFsLXRvcGljcy9jaGFvcy8_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09ZGlzcGxheSZ1dG1fY2FtcGFpZ249Y2hhX3N0X29wZW5fZm9yX3N1YnNfUERGXzIwMjUifQ&s=ub6Ly1VcaAQLSqEOKqroU-byLGs


Chaos ARTICLE pubs.aip.org/aip/cha

Hamiltonian chaos for one particle with two
waves: Self-consistent dynamics

Cite as: Chaos 35, 053143 (2025); doi: 10.1063/5.0261013

Submitted: 28 January 2025 · Accepted: 25 April 2025 ·
Published Online: 15May 2025 View Online Export Citation CrossMark

Matheus J. Lazarotto,1,2,a) Iberê L. Caldas,2,b) and Yves Elskens1,c)

AFFILIATIONS
1Aix-Marseille Université, CNRS, UMR 7345, PIIM, F-13397, Marseille cedex 13, France
2Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo 05508-090, Brazil

Note: This paper is part of the Special Topic on Complex Dynamical Systems, Nonlinear and Condensed Matter Physics:

Dedicated to Serge Aubry.
a)Author to whom correspondence should be addressed: matheus_jean_l@hotmail.com
b)ibere@if.usp.br
c)yves.elskens@univ-amu.fr

ABSTRACT

A simple model of wave-particle interaction is studied in its self-consistent form, that is, where the particles are allowed to feedback on
the wave dynamics. We focus on the configurations of locked solutions (equilibria) and how the energy-momentum exchange mechanism
induces chaos in the model. As we explore the system, we analyze the mathematical structure that gives rise to locked states and how the
model’s non-linearity enables multiple equilibrium amplitudes for waves. We also explain the predominance of regularity as we vary the
control parameters and the mechanism behind the emergence of chaos under limited parameter choices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0261013

When modeling physical systems composed of waves and
particles, it is often assumed that the latter are subject to the influ-
ence of the former, but not the other way around. In this work,
we investigate the effect of considering the mutual interaction
between waves and particles, resulting in a self-consistent dynam-
ics. With a Hamiltonian model of the system, we consider the case
of one particle interacting with two waves. We first reduce the
equations from a six-dimensional problem to a four-dimensional
one, with one constant of the motion, enabling better handling
of equations and visualization of their solutions. While previous
studies analyzed how a particle influenced by two free waves—i.e.,
without mutual interaction—behaves chaotically, here we discuss
how the particle serves as a mediator, enabling the exchange of
energy and momentum between the waves and propagating its
chaotic motion into their evolution. Moreover, we find that sev-
eral locked states, where both waves travel in equilibrium with the
particle, can exist for the same total momentum and energy.

I. INTRODUCTION

When describing a plasma on a microscopic scale, a
fundamental process is the interaction between its particles

(electrons and ions) and waves propagating in the plasma.1,2 In
the particular limit of collisionless plasmas, that is, when the
time scale of particle “collisions” is much longer than the time
scale of the interaction with waves, the energy and momentum
exchange between particles and waves becomes relevant to the point
of generating instabilities, favoring wave amplification or particle
acceleration.3

For instance, this scenario can be experimentally reproduced
in traveling wave tubes (TWTs), where a beam of electrons inter-
acts with electrostatic waves in a controllable environment.4,5 This
setup enables the analysis of chaotic interactions due to the energy-
momentum exchange that may lead to instabilities and further
turbulence in plasmas, which, in turn, correlates to the emergence of
chaotic regions in phase space. This chaotic transition can be caused
by resonance overlap of the waves, nonlinear synchronization by
a single nonresonant wave or the “devil’s staircase” mechanism,
causing a spread of the velocity distribution of the beam.6,7 Stabil-
ity islands, on the other hand, can correlate with coherent particle
acceleration (beam trapping), and the breaking of barriers (invari-
ant tori in the one-particle phase space), allowing for new ways of
chaos control.

When modeling such scenarios, the Langmuir waves, that is,
the collective vibration of electrons in the presence of much heavier
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ions that neutralize the system, are found to be coupled with quasi-
resonant particles (i.e., an electron’s velocity being close to a wave’s
phase velocity).8 Thus, for simplicity, the usual Hamiltonian models
initially consider only the effect of waves on the particles. To give a
step ahead, the re-interaction of the particles with the waves can be
taken into account, thereby making the dynamics self-consistent.1,2,9

Consequently, electrons (and ions) do not play just the role of test
particles but, instead, promote energy-momentum exchange with
the waves, allowing for the aforementioned nonlinear phenomena.
To model it, one can consider M independent Langmuir waves
behaving as harmonic oscillators and N quasi-resonant free charged
particles, with the addition of a coupling term for each wave-particle
pair.10–12

Gomes et al.13 considered two of the simplest cases, namely,
that of one wave and one particle (M = 1, N = 1), which is analyti-
cally treatable and shows the electron either being trapped (strong
resonance) or passing through wave potential wells,14,15 and the
case of one wave interacting with two particles (M = 1, N = 2),
that presents chaotic behavior. We direct the reader to the work of
Gomes et al.13 for a simple yet broad introduction on the experimen-
tal context, modeling, and applications of wave-particle dynamics.

In this sense, our work is complementary to Gomes’ work,
for we consider the remaining case of two waves interacting with
one particle (M = 2, N = 1), aiming to a simple description of the
interaction between waves and particles. By studying these sim-
plest cases, one may shed light on the microscopic mechanisms that
induce chaos in the macroscopic system and how to prevent (or
allow) it. In the current work, for instance, it is shown that equi-
librium solutions only come in locked configurations and allow
multiple unstable wave amplitude combinations. The emergence
of chaos in the system is predominantly due to separatrix chaos
related to the parameter limit where non-linear coupling produces
energy-momentum exchange.

In what follows, Sec. II A starts by presenting the generic
wave-particle self-consistent Hamiltonian model and, Sec. II B, the
particular case studied here (for M = 2, N = 1), along with its math-
ematical simplification to reduce the number of degrees of freedom
and number of parameters. Section III presents a global analysis of
the equilibrium solutions in parameter space. Section IV discusses
the emergence of chaos in phase space and the integrable limits
of the system. Appendix sections provide more details on model
parameter simplifications, the stability of equilibrium solutions, and
the decoupling limit of the system equations of motion.

II. THE WAVE-PARTICLE HAMILTONIAN

A. The generic model

Within the context of Langmuir waves interacting with ions in
plasmas, one can model the self-consistent dynamics of N identical
particles traveling in a periodically bounded interval of length L via
a coupling with M longitudinal waves. Each particle is described by
the generalized coordinate-momentum pairs (xi, pi) and each wave
is written in phasor formulation as Zj = Xj + iYj = √

2Ij e−iθj , with
either Cartesian (Xj, Yj) or polar (θj, Ij) canonical variables. Within

this interval, wave numbers are given by kj = 2π j

L
, for j ∈ Z, and

natural frequencies by ω0j. The system’s Hamiltonian is then1,2

HN,M
sc =

N
∑

i=1

p2
i

2m
+

M
∑

j=1

ω0j

X2
j + Y2

j

2

+ ε

N
∑

i=1

M
∑

j=1

βj

kj

(

Yj sin(kjxi) − Xj cos(kjxi)
)

, (1)

or, equivalently, in polar-phasor coordinates,

HN,M
sc =

N
∑

i=1

p2
i

2m
+

M
∑

j=1

ω0jIj − ε

N
∑

i=1

M
∑

j=1

βj

kj

√

2Ij cos
(

kjxi − θj

)

,

(2)

with βj as a coupling constant with the jth-wave and ε an overall
coupling scale. For the wave degrees of freedom, Xj and θj are treated
as coordinates with Yj and Ij as their respective conjugate momenta.

Hamiltonian HN,M
sc comprises three contributions: the free

motion (kinetic energy) of particles (m > 0); the harmonic oscil-
lation of waves (ω0j > 0); and the coupling between particles and
waves. Furthermore, Hamiltonian HN,M

sc is invariant under transla-
tions in time and in space, so that the total energy E = HN,M

sc and
the total momentum P = ∑N

i=1 pi +
∑M

j=1 kjIj are conserved. The
latter constant reveals that the growth or decay of a wave with pos-
itive phase velocity (

ω0j

kj
> 0) is directly balanced with the slowing

down or acceleration of particles. On interchanging the time and
space variables, this Hamiltonian also captures the key physics in
the dynamics of traveling wave tubes.2,4 For instance, in the paradig-
matic two-wave scenario with a slaved particle, given parameters
εβ1 = εβ2 = β , k1 = k2 = k, m, the Chirikov overlap parameter16,17

is s = 2
√

βk/m((2I1)
1/4 + (2I2)

1/4)/|ω1 − ω2|.

B. The single particle with two waves

To address the key physics of the system, one can start looking
at the simpler scenarios, namely, those with few waves and particles
interacting with each other. The simplest case, that of M = N = 1, is
integrable and was treated before in Refs. 13–15; thanks to its inte-
grability, it provides reference information for the more complex
cases where chaos emerges. With the addition of a particle (N = 2,
M = 1), as studied by Gomes et al.,13 the non-linear term in Hamil-
tonian (1) implies the emergence of chaos in phase space not only
around separatrices but also near elliptic points.

Here, we consider the “mirror” case of one particle coupled
to two waves, that is, the case with N = 1, M = 2 in Hamilto-
nian (1) and (2). The system, thus, has seven free parameters:
k1, k2, εβ1, εβ2, ω01, ω02, and m (along with three free scales, leaving
four dimensionless free parameters). For simplicity, εβj are selected
to be equal and unity: εβ1 = εβ2 = 1, as well as the particle mass:
m = 1, which can be set without the loss of generality by rescaling
variables (see Appendix A for more details).

Given the translational invariance, only the relative positions
θj − kjx are dynamically relevant; thus, for commensurate k1 and
k2, the particle position x can meet periodic boundary conditions,
x ∈ [0, L], compatible with both waves. For incommensurate wave
numbers, the position space is necessarily the full real line. By setting
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equal wave numbers and given a proper rescaling of space, we select
k1 = k2 = 1 (in order to keep free phase-velocities, the frequencies
ω0j are kept different).

The resulting three degrees-of-freedom Hamiltonian is
autonomous and translation-invariant; in Cartesian-phasor coordi-
nates, it reads

H1,2
sc = p2

2
+ ω01

X2
1 + Y2

1

2
+ ω02

X2
2 + Y2

2

2

+ (Y1 + Y2) sin(x) − (X1 + X2) cos(x), (3)

and, likewise, in polar-phasor form,

H1,2
sc = p2

2
+ ω01I1 + ω02I2 −

√

2I1 cos(x − θ1) −
√

2I2 cos(x − θ2).

(4)

To further simplify the model and better visualize the solutions
in phase space, it is convenient to reduce the number of degrees
of freedom, which is obtained with a simple sequence of canonical
transformations. Although assuming equal wavelengths and cou-
pling strengths, the transformations below do not depend on these
assumptions.

The particle’s degree of freedom can be suppressed with the aid
of the total momentum constant P using p = P − I1 − I2. In addi-
tion, a Galilean transformation to a reference frame traveling with
the first wave, provided by the generating function

G(x, θ1, θ2, p̄, Ī1, Ī2) = (x − ω01t)(p̄ + ω01) + (θ1 − ω01t)Ī1

+ (θ2 − ω01t)Ī2 + ω2
01t

2
,

and the definition of the relative angle φj := θ̄j − x̄ = θj − x, pro-
vided by the generating function

F(x̄, θ̄1, θ̄2, p
′, I ′

1, I
′
2) = I ′

1(θ̄1 − x̄) + I ′
2(θ̄2 − x̄) + p′x̄,

simplify Hamiltonian (4) to

H′ =
(

I ′
1 + I ′

2

)2

2
− P̄

(

I ′
1 + I ′

2

)

+ 1ωI ′
2 −

√

2I ′
1 cos(φ1)

−
√

2I ′
2 cos(φ2), (5)

where prime symbols denote the final transformed variables

(x, θj, p, Ij)
G7→ (x̄, θ̄j, p̄, Īj)

F7→ (x′, φj, p′, I ′
j ) and will be dropped

from now on.
From old to new variables, the amplitudes are unmodified

(I ′
j = Ij) and the new angles are the relative position between the

particle and the wave φj = θj − x. The new total momentum is now
P̄ = P − ω01 and we define the detuning parameter between the
waves: 1ω := ω2 − ω1, eliminating one of the frequencies. This final
form has two degrees of freedom (φ1, φ2), their associated momenta
(I1, I2), and three control parameters (H, P̄, 1ω); Hamiltonian H
itself being a constant of the motion. The frequency ω01 can be set to
zero without loss of generality.

In Cartesian variables, Hamiltonian (3) in simplified form
reads

H′ = 1

8

(

u2
1 + v2

1 + u2
2 + v2

2

)2 − P̄

2

(

u2
1 + v2

1 + u2
2 + v2

2

)

+ 1ω

2

(

u2
2 + v2

2

)

− u1 − u2, (6)

where

ui =
√

2Ii cos (φi) , vi =
√

2Ii sin (φi), (7)

for i = 1, 2.
It may be of interest to keep both forms since Cartesian coor-

dinates provide a smooth transition for the limit Ij → 0, though
the polar ones provide a more intuitive picture of the dynamics.
Appendix B shows the equations of motion in Cartesian form.

It is worth mentioning that Hamiltonian (6) is fourth degree in
both ui and vi, making the visualization of phase space via Poincaré
sections less straightforward. Since the intersection of trajectories
with the section may yield two positive (or negative) roots, the usual
method of fixing a position (say u2 = 0) and a sign condition on
the conjugate momentum (say v2 > 0), is not enough to produce a
uniquely defined map. Since extra roots may exist and appear over
the points of map made by the first set of roots, invariant circles
appear overlapping. A solution can be achieved by filtering these two
sets of roots with an extra condition as u̇2 > 0.

III. LOCKED SOLUTIONS

As a reference for the system’s global dynamics, one can look at
the equilibrium solutions [i.e., (İ1, İ2, φ̇1, φ̇2) = E0] of the equations of
motion provided by Hamiltonian (5),

İ1 = −∂φ1H′ = −
√

2I1 sin(φ1),

İ2 = −∂φ2H′ = −
√

2I2 sin(φ2),

φ̇1 = ∂I1H′ = (I1 + I2) − P̄ − cos(φ1)√
2I1

,

φ̇2 = ∂I2H′ = (I1 + I2) − P̄ + 1ω − cos(φ2)√
2I2

.

(8)

In the present context, equilibrium solutions are also referred
to as locked states, given that, when in equilibrium, the amplitude
equations (İ1, İ2) yield the condition that the relative phases are con-
stant (φ∗

i ∈ {0, π}, for i = 1, 2) meaning that both waves and the
particle travel at the same velocity with the latter constrained to
be at either the minimum or maximum of one of the waves while
the other is in phase or anti-phase. It is worth mentioning that the
last two equations in (8) prevent the existence of zero-wave solu-
tions [I1(t) = I2(t) = 0] for both waves simultaneously for generic
(P̄, 1ω). For single null waves, i.e., I∗1 = 0 6= I∗2 (or vice versa), it
is possible to obtain such solutions for 1ω = 0. In such a case,
the null wave has an indefinite phase φi and the remaining one
must have a fixed amplitude given by the total momentum P̄. Other
considerations on the 1ω = 0 case are discussed in Appendix C.

From the locked relative phases φ∗
1 = n1π and φ∗

2 = n2π , for
ni = 0, 1 and i = 1, 2, the equilibrium amplitudes I∗1 and I∗2 , thus,
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FIG. 1. Color map with the number of equilibrium solutions for different n2. (Left)
case φ∗

2 = 0; (Right) case φ∗
2 = π .

must satisfy

cos(n2π)
√

2I∗2
− cos(n1π)

√

2I∗1
= 1ω . (9)

Therewith, the relation between amplitudes enables one to find
(I∗1 , I∗2) by substituting Eq. (9) into İ1 = 0, yielding

R(I2, n2) = I2

√

2I2

(

1+
(

(−1)n2 − 1ω

√

2I2

)2
)

+
(

(

1ω − P̄
)
√

2I2 − (−1)n2

) (

(−1)n2 − 1ω

√

2I2

)2

.

(10)

Solutions are then given by the condition R(I∗2 , n2) = 0, with
each one amounting for two locked states (I∗1 , I∗2 , n1π , n2π), namely,
one with n1 = 0 and the other with n1 = 1. The existence of roots
to condition (10) was evaluated numerically by scanning over the
parameter space (P̄, 1ω), with the result shown in Fig. 1 for both
cases n2 = 0 and n2 = 1.

In order to clarify the dependence of the number of roots as
the control parameters change, Fig. 2 shows the surface R(I∗2) = 0
along with the I∗2 axis. In this plot, roots will exist whenever the I∗2
axis crosses the surface for fixed control parameters P̄ and 1ω .

For either case of φ∗
2 , the set of solutions is composed of

two non-intersecting surfaces. One of them has a cup-like form,
which asymptotically converges to I∗2 → 0 as 1ω → ∞(−∞) for
φ∗

2 = 0 (φ∗
2 = π). The second surface branch, completely detached

from the cup, presents different concavity in each scenario of φ∗
2 .

When φ∗
2 = 0, the branch is convex and, therefore, allows for one

crossing throughout all parameter space, whereas for φ∗
2 = π , the

concave surface allows only for crossings up to the limit 1ω . 0.
The appearance of two extra roots, in both cases, is due to the
cup-like branch, since any intersection with it implies two extra solu-
tions, although these are only possible for P̄ & 1. It is worth pointing
out that the reasoning above does not consider any constraint on the
Hamiltonian H value.

From both Figs. 1 and 2, the case φ∗
2 = 0 guarantees that it is

always possible that the particle is placed at the minimum of one of
the waves and that it is locked to travel at the same speed, regardless

FIG. 2. Surface plot of R(I∗2 , P̄,1ω) = 0 with its contour lines at different con-

stant values of P̄. Dashed (respectively, plain) lines correspond to P̄ < 0 (respec-

tively, P̄ > 0). (Top) φ∗
2 = 0 (viz., n2 = 0); (Bottom) φ∗

2 = π (viz., n2 = 1).

Colored lines indicate particular values of P̄ for the stability analysis shown in
Figs. 3–5.

of P̄, 1ω . Moreover, if the total momentum of the system is large
enough (P̄ & 1), new locked states become possible in which the
waves may have enhanced or suppressed amplitude to provide the
balance of forces acting on the particle.
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In addition to the solutions themselves, stability is promptly
obtained from the system’s Jacobian, which yields a simple
biquadratic form (see Appendix D). Figures 3–5 show bifurcation
diagrams over the contour lines shown in Fig. 2; in them, stable
points (eigenvalues λ = ib, for b ∈ R 6=0) are colored blue, purely
unstable points (λ ∈ R 6=0) are colored red, and complex unstable
(λ = a + ib for a, b ∈ R6=0) are colored green.

When analyzing stability, we now consider the combinations of
locked phases including n1, thus resulting in four possible scenarios
of (n1, n2). For (n1, n2) = (0, 0), all solutions are stable.

For (n1, n2) = (0, 1), Fig. 3 shows that the concave surface has
its lower (upper) branch always stable (unstable). This indicates that
at the expense of suppressing the second wave momentum, it is pos-
sible for wave 1 to carry the particle at its minimum. Similarly, as
the total momentum increases and the cup bifurcation takes place,
the upper (lower) half of the branch is unstable (stable). For P̄ > 0,
the presence of complex unstable points amidst stable ones, in both
branches, prevents the second wave amplitude growth while the
particle is locked to wave 1.

For (n1, n2) = (1, 0), Fig. 4 shows that higher values of I∗2 are
now stable, indicating the opposite behavior to the one found previ-
ously for (n1, n2) = (0, 1). Now, with the increase of the second wave
amplitude, the stability of its minimum allows for the particle to be
placed at the maximum of the first wave at the same time. Again, as
the total momentum increases, stable branches become complexly
unstable, but now preventing the locking for small I∗2 amplitudes,
with small stability windows, particularly for P̄ = 0 and P̄ = 8. Also,
the cup-like surface provides a stable branch for detuning 1ω higher
enough.

For (n1, n2) = (1, 1), with the particle placed at the maxima
of both waves simultaneously, the expected instability is found for
most of the parameter space. However, Fig. 5 shows that for the
total momentum that is negative enough, e.g., P̄ = −4, or high
enough, e.g., P̄ = 4, branches with low I∗2 are stable, with no complex
instability found. This indicates that at the expense of the second
wave attenuation, the particle can be kept at an unexpected unstable
position.

IV. POINCARÉ SECTIONS AND CHAOS

Once the three degrees-of-freedom Hamiltonian (3) [or in
polar form (4)] is reduced to the equivalent 2-degree-of-freedom
form (6) [or in polar form (5)], trajectories can be visualized in phase
space. To this end, we made use of the Poincaré section defined as

6 =
{

(φ1, φ2, I1, I2) ∈ R
4; φ1 = φ2; φ̇2 > 0

}

. (11)

From the selected Poincaré section, we measured the area of
phase space occupied either by stability islands or chaotic regions
as a function of the control parameters (P̄, 1ω, H), once fluctua-
tions are expected, given the nonlinear nature of the model. For this
purpose, the chaotic/regular areas were measured over the section
6 [Eq. (11)] via a smaller alignment index (SALI) method. We
refrain from detailing the method here and direct the reader to the
original reference as presented by Skokos.18,19 Briefly, the algorithm
integrates a single trajectory to numerically determine whether it is
stable or chaotic, along with two deviation vectors evolved in tan-
gent space according to the linearized equations of motion. Based on

FIG. 3. Bifurcation diagram for n1 = 0, n2 = 1 for different values of fixed P̄,
corresponding to different horizontal lines from the bottom frame in Fig. 2. Colors
indicate stability, with purely unstable points in red, stable points in blue, and com-

plex unstable in green. P̄ = −4, P̄ = 0, and P̄ = 6 correspond, respectively, to
the magenta, blue, and yellow curves in the bottom frame (φ∗

2 = π ) of Fig. 2.

the local linearized geometry of phase space around the trajectory,
the two deviation vectors align with each other along the unstable
manifold direction, in case the trajectory is chaotic. On the other
hand, when it is stable, the local geometry is a plane tangent to a
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FIG. 4. Bifurcation diagram for n1 = 1, n2 = 0 for different values of fixed P̄,
corresponding to different horizontal lines from the top frame in Fig. 2. Colors indi-
cate stability, with purely unstable points in red, stable points in blue, and complex

unstable in green. P̄ = −4, P̄ = 0, P̄ = 4, and P̄ = 8 correspond, respectively,
to the magenta, blue, green, and yellow curves in the top frame (φ∗

2 = 0) of Fig. 2.

torus to which the vectors become parallel while keeping their rel-
ative angle non-null. Therefore, the orbit is deemed chaotic if the
deviation vectors align, or stable, in case they do not.

Running the SALI algorithm for each trajectory on a grid of ini-
tial conditions over the Poincaré section 6 for a given set (P̄, 1ω , H)

enables one to evaluate the percentage of stable area in phase space.
By repeating this while scanning the parameters (P̄, 1ω), we obtain
the color maps seen in Fig. 6, where each panel corresponds to
a different energy H value. It is worth noting that Hamiltonian
(6) defines compact energy surfaces in the four-dimensional phase
space, thus ensuring that the fractional area A is well defined.

The numerical integration of trajectories was made with an
eighth-order Runge–Kutta–Dormand–Prince method with an adap-
tive step, for relative and absolute precisions εabs = εrel = 10−13. In
these conditions, the total energy (5) (E(t) = H) presented max-
imum deviations of |δE| = |E(t) − E0| = 10−8, with deviations at
least one or two orders of magnitude smaller for smoother orbits.
To avoid evaluations of inverse-square roots in Eq. (8), integration
was carried using Hamiltonian (6) [Eq. (B1) in Appendix B] and
converted to phasor coordinates when needed using (7).

For the SALI implementation, the initial deviation vectors
ω̂i = (δu1, δu2, δv1, δv2), for i = 1, 2, were chosen orthogonal to each
other for all initial conditions, with

ω̂1 = (0, 1, 0, 0) and ω̂2 = (0, 0, 0, 1). (12)

The deviation vectors were normalized every δt = 0.5 time units to
prevent overflow. The numerical threshold differentiating chaotic
from regular orbits was SALI(t) < 10−10.

FIG. 5. Bifurcation diagram for n1 = 1, n2 = 1 for different values of fixed P̄,
corresponding to different horizontal lines from the bottom frame in Fig. 2. Colors
indicate stability, with purely unstable points in red, stable points in blue, and com-

plexly unstable in green. P̄ = −4, P̄ = 0, and P̄ = 4 correspond, respectively,
to the magenta, blue, and green curves in the bottom frame (φ∗

2 = π ) of Fig. 2.
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FIG. 6. Color map of the stable area portion in parameter space for multiple ener-
giesH. In the color bar, total chaos is given by A = 0 and total regularity by A = 1.
Grid size is 75 × 75.

At first, the predominance of stability in the system becomes
clear as, for most of the parameter space, the chaotic area is nearly
zero (dark brown regions—A ≈ 1). This should hold beyond the
parameter space limits chosen here (P̄, 1ω) ∈ [−12, 12] × [−25, 25]
as for either large |P̄| or |1ω|, the equations of motion become

İ1 ≈ −
√

2I1 sin(φ1),

İ2 ≈ −
√

2I2 sin(φ2),

φ̇1 ≈ ±|P̄| − cos(φ1)√
2I1

,

φ̇2 ≈ ±|P̄| ± |1ω| − cos(φ2)√
2I2

;

(13)

noting that I1 and I2 are limited by the total energy E = H in Eq. (5).
If either I1 or I2 is small (in view of the denominator for φ̇i), their
amplitude have a limited growth rate once φi evolves rapidly and
the average increment in İ1 is zero or small, therefore generating a
stable scenario. In case only |1ω| is large, φ2 and I2 become reg-
ular as well, resulting in a regular evolution for φ1. Therefore, for
high enough values of |P̄| and |1ω|, stability should still dominate
phase space, as the dynamics of waves uncouples and the system
reduces to the paradigmatic M = N = 1 case, which is analytically
treatable.13–15 More details on the dynamics for weak coupling are
given in Appendix E.

Despite this predominance of stability, a prominent chaotic
region appears at lower values of total momentum and frequency
detuning, which decreases for large energy and eventually vanishes
for H ≈ 10 (Fig. 6). Similar to what was previously discussed, the
suppression of chaos for increasing energy is due to the dominance
of the wave amplitude energy term in Hamiltonian (5). For high
H, the spatial coupling terms become negligible, as their amplitude
scales linearly with the wave’s amplitude whereas the “kinetic” term
scales quadratically. As a result, the system approaches a free wave
limit.

The emergence of these chaotic regions in phase space was
seen to be of a common type, namely, where chaos appears over
and around separatrices, as illustrated by the series of portraits in
Figs. 7 and 8, for H = 0.5. Figure 7 shows portraits for varying P̄, in a
parameter range over the first quadrant (P̄, 1ω > 0) in Fig. 6, while
Fig. 8 shows portraits for varying 1ω for values in the third quad-
rant (P̄, 1ω < 0), as the system goes from regions with full regularity
(A = 1.0) through regions of co-existence with chaos (A < 1.0).
Normally, chaos occurs within limited regions of phase space and
it coexists with invariant circles that are often seen for higher values
of amplitude I1.

In more detail, the chaotic layer as shown in Fig. 7 emerges
around the main island centered at φ1 = 0 (panel A) and increases as
secondary bifurcations disrupt the island’s invariant circles. Simul-
taneously, a pitchfork bifurcation further promotes chaos within the
main island but from the inside out (panels B, C, and D). In panel
C, it is seen that the chaotic domain, although fully connected, has
a slower chaotic regime around the bifurcated pair of islands, with
stickiness concentrated around this area. Finally, panels E and F
show that the secondary resonant islands disappear, leaving a rather
uniform chaotic sea (panel E) that further disappears, returning to
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FIG. 7. Phase space portraits on the Poincaré section6 [Eq. (11)]. (a) P̄ = 0.5,

(b) P̄ = 1.0, (c) P̄ = 1.5, (d) P̄ = 1.75, (e) P̄ = 3.0, (f) P̄ = 5.0. In all cases,
H = 0.5 and 1ω = 2.0.

FIG. 8. Phase space portraits on the Poincaré section 6 [Eq. (11)].
(a)1ω = −0.5, (b)1ω = −4.0, (c)1ω = −6.0, (d)1ω = −15.0. In all cases,

H = 0.5 and P̄ = −1.0.

full regularity (panel F). In a slightly different manner, the tran-
sition shown in Fig. 8 corresponds to a chaotic layer emerging in
between invariant regular sets (panels B and C), although with the
same process of secondary bifurcations taking place.

V. CONCLUSIONS

In the simple scenario of one particle interacting with two
waves, although, initially, a three degrees-of-freedom system, we
show that simple canonical transformations yield a two degrees-
of-freedom Hamiltonian with a clear connection to the original
one. On top of the transformations, the only restrictive hypotheses
made were the equal coupling parameter between each wave and
the particle, and the equal wavenumber for both waves. The other
assumptions made, i.e., the unit mass and unit coupling coefficients,
can be made by rescaling variables without loss of generality. This
simple form provides a framework to understand the mechanism of
the emergence of chaos in the system as the particle acts as a medi-
ator of energy-momentum exchange between the waves, which are
assumed to be non-interacting in more basic models.

For this simplified Hamiltonian, it was shown that the num-
ber of equilibrium solutions has a non-trivial dependence on the
control parameters, namely, the total momentum P̄ and frequency
detuning 1ω = ω2 − ω1. These equilibria correspond to any locked
configuration, where the particle travels along with the waves while
aligned with their extremum points. For any of these spatially locked
states, the nonlinear nature of wave-particle coupling can yield up
to four combinations of wave amplitudes allowing for equilibrium.
Moreover, the highest number of equilibria combinations was found
for P̄ > 0, indicating that the waves require a minimum amount
of momentum in order to carry the particle along with them. This
comes as a consequence of the topology of the wave amplitude equi-
librium function as two disjoint surfaces with concavity based on the
type of locked position selected.

Despite the interaction between one particle and two waves
being nearly integrable throughout most of the domain of its control
parameters, the self-consistent coupling term added in our model
was able to significantly induce chaos. In the limit where both the
total momentum P̄ and the frequency detuning are small (up to
an order of magnitude P̄ ≈ 10), the energy exchange between the
waves, as mediated by the particle, is enough to destabilize trajecto-
ries. This possibility of energy-momentum exchange promoted by
the non-linear coupling prevents the dynamics where the particle is
either free or enslaved to one of the waves, as in the cases for large |P̄|
or |1ω|. The emergence of chaos was seen around separatrices and
higher order bifurcations, as usually observed in a KAM description.
However, an ergodic limit, which could be related to the destabiliza-
tion of the particle motion, was not found in the equal wave limit
tested here, which could naturally be investigated as an extension of
the current work.

Beyond the first exploratory results shown here, the extent to
which the coupling strength parameters βi can differ in order to
promote enough energy-momentum exchange to produce chaos
is still unclear. By assuming equal coupling strength, we restrict
ourselves to cases where the dispersion relation is broad as a func-
tion of the wavelength, as in the case of a cold plasma. However,
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with different couplings, the imbalance between wave modes might
suppress instabilities and, therefore, global chaos.

In the same way, a difference in wavenumbers could induce
chaotic behavior, although the analysis in this case becomes cum-
bersome as the equations lose spatial periodicity and the number of
free parameters increases. More generally, one could evaluate how
to extend the energy-momentum exchange mechanism to the limit
of many particles and waves, thus approaching the complete model.
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APPENDIX A: PARAMETER REDUCTION VIA SCALINGS

In the simplification step of Hamiltonian (2)–(4), we impose
an equal wave number for both waves (k1 = k2 = k) as well as
the coupling parameters with the particle (β1 = β2), allowing one
to set εβ1 = εβ2 = β . To eliminate k from within the coupling
term, the position can be normalized to x′ = kx. For the remaining

parameters, we set the global scaling factor

α = (β2/m)
1/3

(A1)

and rescale variables according to

t′ = αt,

ω′
i = α−1ωi,

p′/p = I ′
1/I1 = I ′

2/I2 = P′/P = (mβ)−2/3,

(A2)

and

H′ = (mβ4)
−1/3

H. (A3)

The system in primed variables obtained from (2) is the reduced
model (4) (for N = 1 and M = 2). This scaling also acts on the action
so that S′ = (mβ)−2/3S.

APPENDIX B: CARTESIAN FORM OF THE EQUATIONS
OF MOTION

Hamiltonian (6) yields the following equations of motion:

u̇1 = ∂v1H′ = v1

(

1

2
r − P̄

)

,

u̇2 = ∂v2H′ = v2

(

1

2
r − P̄ + 1ω

)

,

v̇1 = −∂u1H′ = −u1

(

1

2
r − P̄

)

+ 1,

v̇2 = −∂u2H′ = −u2

(

1

2
r − P̄ + 1ω

)

+ 1,

(B1)

where r := u2
1 + v2

1 + u2
2 + v2

2.

APPENDIX C: DEGENERATE LIMIT OF NULL DETUNING

In Hamiltonian (3) or (4), the case ω1 = ω2 is degenerate [or
equivalently for 1ω = 0 in Hamiltonian (6) or (5)], as both waves
have the same wavenumber and the same phase velocity. This is
better investigated with the change of variables

ξ1 = X1 + X2√
2

, ξ2 = X2 − X1√
2

,

η1 = Y1 + Y2√
2

, and η2 = Y2 − Y1√
2

,

(C1)

which is canonical. Then, the Hamiltonian can be expressed as
follows:

H1,2
sc = H0(p, η1, x, ξ1) + H2 (η2, ξ2) + 1ω

2
(ξ1ξ2 + η1η2) , (C2)

with

H0(p, η1, x, ξ1) = p2

2
+ ω̄

(

ξ 2
1 + η2

1

2

)

+
√

2 (η1 sin(x) − ξ1 cos(x)) ,

(C3)

and

H2(η2, ξ2) = ω̄

(

ξ 2
2 + η2

2

2

)

(C4)
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for ω̄ := (ω1 + ω2)/2.
One recognizes in H0 the integrable model H1,1

sc (one wave,
one particle) with frequency ω̄ and coupling

√
2, and in H2, a har-

monic oscillator (with an eigenfrequency matching that of the wave
in H0). When 1ω = 0, these systems are uncoupled, and the limit
1ω → 0 can be investigated using KAM-type theory (noting that
Hamiltonian H2 is degenerate as it has no shear).

In addition, a Galilean transformation can be used to set ω̄ = 0.
Then, the limit 1ω → 0 can also lead to slow chaos.20–22

APPENDIX D: STABILITY OF LOCKED SOLUTIONS

By assuming the locked phases solution φ∗
i = niπ for ni = 0, 1

and i = 1, 2 and the corresponding amplitudes I∗1 , I∗2 , the Jacobian
for equilibrium solutions reads

J =







0 0 f1 1
0 0 1 f2
g1 0 0 0
0 g2 0 0






,

where fi and gi are defined as

fi = f(I∗i , ni) := 1 + (−1)ni

2
√

2(I∗i )
3

and

gi = g(I∗i , ni) := −(−1)ni
√

2Ii for i = 1, 2.

Given the biquadratic form of the Jacobian’s characteristic
polynomial

λ4 −
(

g1f1 + g2f2
)

λ2 + g1g2(f1f2 − 1) = 0,

one may solve it analytically for its eigenvalues λi as

λ±,± = ±
√

3±,

with

3±=1

2

(

g1f1 + g2f2 ±
√

(

g1f1 − g2f2
)2 + 4g1g2

)

,

and where all the four possible sign combinations are considered in
the notation ±.

APPENDIX E: DECOUPLING LIMIT

When analyzing the system with weak coupling, that is, in
the limit β = m � 1, one recovers the paradigmatic 1.5-degree-of-
freedom model of a particle slaved to two free waves. As done in
Appendix A, we set k1 = k2 = k and εβ1 = εβ2 = β in Hamiltonian
(2), for the case N = 1, M = 2. Setting p′ = p/m in the equations of
motion then yields

ẍ = −
√

2I1 sin(x − θ1) −
√

2I2 sin(x − θ2),

İi = β
√

2Ii sin(x − θi),

θ̇i − ωi = β(2Ii)
−1/2 cos(x − θi),

so that the particle evolves with the waves whereas the waves them-
selves evolve under an O(β) feedback, becoming free waves in the

limit β → 0. This scale separation does not satisfy the standard
KAM hypotheses, as the wave dynamics are degenerate (harmonic
oscillators).

An alternative way to apply KAM theory to the current model
would be to consider Hamiltonian (5) in the form

H′ = H1(I
′
1, φ1) + H2(I

′
2, φ2) + I ′

1I
′
2,

where

H1 = I ′
1

2
/2 − P̄I ′

1 −
√

2I ′
1 cos φ1 (E1)

and

H2 = I ′
2

2
/2 − (P̄ − 1ω)I ′

2 −
√

2I ′
2 cos φ2, (E2)

where both H1 and H2 reduce by a mere Galilean transformation
to the N = M = 1 integrable model, [Eq. (9) in Gomes et al.13]. We
leave these analyses for future work.
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